ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1570 by gezelter, Thu May 26 21:56:04 2011 UTC vs.
Revision 1706 by gezelter, Fri Apr 27 20:44:16 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    nGroups_ = snap_->getNumberOfCutoffGroups();
99 <
98 >    
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101 <    vector<int> identsLocal = info_->getIdentArray();
101 >    idents = info_->getIdentArray();
102      AtomLocalToGlobal = info_->getGlobalAtomIndices();
103      cgLocalToGlobal = info_->getGlobalGroupIndices();
104      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
66    vector<RealType> massFactorsLocal = info_->getMassFactors();
67    PairList excludes = info_->getExcludedInteractions();
68    PairList oneTwo = info_->getOneTwoInteractions();
69    PairList oneThree = info_->getOneThreeInteractions();
70    PairList oneFour = info_->getOneFourInteractions();
71    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
105  
106 +    massFactors = info_->getMassFactors();
107 +
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +
113   #ifdef IS_MPI
114  
115 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
116 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
77 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
78 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
115 >    MPI::Intracomm row = rowComm.getComm();
116 >    MPI::Intracomm col = colComm.getComm();
117  
118 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
119 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
120 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
121 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
118 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
119 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123  
124 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
125 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
126 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
127 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
124 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129  
130 <    nAtomsInRow_ = AtomCommIntRow->getSize();
131 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
132 <    nGroupsInRow_ = cgCommIntRow->getSize();
133 <    nGroupsInCol_ = cgCommIntColumn->getSize();
130 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
131 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
133 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134  
135 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
136 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
137 +    nGroupsInRow_ = cgPlanIntRow->getSize();
138 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
139 +
140      // Modify the data storage objects with the correct layouts and sizes:
141      atomRowData.resize(nAtomsInRow_);
142      atomRowData.setStorageLayout(storageLayout_);
# Line 101 | Line 146 | namespace OpenMD {
146      cgRowData.setStorageLayout(DataStorage::dslPosition);
147      cgColData.resize(nGroupsInCol_);
148      cgColData.setStorageLayout(DataStorage::dslPosition);
149 +        
150 +    identsRow.resize(nAtomsInRow_);
151 +    identsCol.resize(nAtomsInCol_);
152      
153 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
154 <                                      vector<RealType> (nAtomsInRow_, 0.0));
107 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
108 <                                      vector<RealType> (nAtomsInCol_, 0.0));
153 >    AtomPlanIntRow->gather(idents, identsRow);
154 >    AtomPlanIntColumn->gather(idents, identsCol);
155      
156 <    identsRow.reserve(nAtomsInRow_);
157 <    identsCol.reserve(nAtomsInCol_);
158 <    
113 <    AtomCommIntRow->gather(identsLocal, identsRow);
114 <    AtomCommIntColumn->gather(identsLocal, identsCol);
115 <    
116 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
117 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
118 <    
119 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
120 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
156 >    // allocate memory for the parallel objects
157 >    atypesRow.resize(nAtomsInRow_);
158 >    atypesCol.resize(nAtomsInCol_);
159  
160 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
161 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
160 >    for (int i = 0; i < nAtomsInRow_; i++)
161 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
162 >    for (int i = 0; i < nAtomsInCol_; i++)
163 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
164  
165 +    pot_row.resize(nAtomsInRow_);
166 +    pot_col.resize(nAtomsInCol_);
167 +
168 +    AtomRowToGlobal.resize(nAtomsInRow_);
169 +    AtomColToGlobal.resize(nAtomsInCol_);
170 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172 +
173 +    cgRowToGlobal.resize(nGroupsInRow_);
174 +    cgColToGlobal.resize(nGroupsInCol_);
175 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 +
178 +    massFactorsRow.resize(nAtomsInRow_);
179 +    massFactorsCol.resize(nAtomsInCol_);
180 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
181 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182 +
183      groupListRow_.clear();
184 <    groupListRow_.reserve(nGroupsInRow_);
184 >    groupListRow_.resize(nGroupsInRow_);
185      for (int i = 0; i < nGroupsInRow_; i++) {
186        int gid = cgRowToGlobal[i];
187        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 134 | Line 192 | namespace OpenMD {
192      }
193  
194      groupListCol_.clear();
195 <    groupListCol_.reserve(nGroupsInCol_);
195 >    groupListCol_.resize(nGroupsInCol_);
196      for (int i = 0; i < nGroupsInCol_; i++) {
197        int gid = cgColToGlobal[i];
198        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 144 | Line 202 | namespace OpenMD {
202        }      
203      }
204  
205 <    skipsForRowAtom.clear();
206 <    skipsForRowAtom.reserve(nAtomsInRow_);
207 <    for (int i = 0; i < nAtomsInRow_; i++) {
208 <      int iglob = AtomColToGlobal[i];
205 >    excludesForAtom.clear();
206 >    excludesForAtom.resize(nAtomsInRow_);
207 >    toposForAtom.clear();
208 >    toposForAtom.resize(nAtomsInRow_);
209 >    topoDist.clear();
210 >    topoDist.resize(nAtomsInRow_);
211 >    for (int i = 0; i < nAtomsInRow_; i++) {
212 >      int iglob = AtomRowToGlobal[i];
213 >
214        for (int j = 0; j < nAtomsInCol_; j++) {
215 <        int jglob = AtomRowToGlobal[j];        
216 <        if (excludes.hasPair(iglob, jglob))
217 <          skipsForRowAtom[i].push_back(j);      
215 >        int jglob = AtomColToGlobal[j];
216 >
217 >        if (excludes->hasPair(iglob, jglob))
218 >          excludesForAtom[i].push_back(j);      
219 >        
220 >        if (oneTwo->hasPair(iglob, jglob)) {
221 >          toposForAtom[i].push_back(j);
222 >          topoDist[i].push_back(1);
223 >        } else {
224 >          if (oneThree->hasPair(iglob, jglob)) {
225 >            toposForAtom[i].push_back(j);
226 >            topoDist[i].push_back(2);
227 >          } else {
228 >            if (oneFour->hasPair(iglob, jglob)) {
229 >              toposForAtom[i].push_back(j);
230 >              topoDist[i].push_back(3);
231 >            }
232 >          }
233 >        }
234        }      
235      }
236  
237 <    toposForRowAtom.clear();
238 <    toposForRowAtom.reserve(nAtomsInRow_);
239 <    for (int i = 0; i < nAtomsInRow_; i++) {
240 <      int iglob = AtomColToGlobal[i];
241 <      int nTopos = 0;
242 <      for (int j = 0; j < nAtomsInCol_; j++) {
243 <        int jglob = AtomRowToGlobal[j];        
244 <        if (oneTwo.hasPair(iglob, jglob)) {
245 <          toposForRowAtom[i].push_back(j);
246 <          topoDistRow[i][nTopos] = 1;
247 <          nTopos++;
237 > #else
238 >    excludesForAtom.clear();
239 >    excludesForAtom.resize(nLocal_);
240 >    toposForAtom.clear();
241 >    toposForAtom.resize(nLocal_);
242 >    topoDist.clear();
243 >    topoDist.resize(nLocal_);
244 >
245 >    for (int i = 0; i < nLocal_; i++) {
246 >      int iglob = AtomLocalToGlobal[i];
247 >
248 >      for (int j = 0; j < nLocal_; j++) {
249 >        int jglob = AtomLocalToGlobal[j];
250 >
251 >        if (excludes->hasPair(iglob, jglob))
252 >          excludesForAtom[i].push_back(j);              
253 >        
254 >        if (oneTwo->hasPair(iglob, jglob)) {
255 >          toposForAtom[i].push_back(j);
256 >          topoDist[i].push_back(1);
257 >        } else {
258 >          if (oneThree->hasPair(iglob, jglob)) {
259 >            toposForAtom[i].push_back(j);
260 >            topoDist[i].push_back(2);
261 >          } else {
262 >            if (oneFour->hasPair(iglob, jglob)) {
263 >              toposForAtom[i].push_back(j);
264 >              topoDist[i].push_back(3);
265 >            }
266 >          }
267          }
170        if (oneThree.hasPair(iglob, jglob)) {
171          toposForRowAtom[i].push_back(j);
172          topoDistRow[i][nTopos] = 2;
173          nTopos++;
174        }
175        if (oneFour.hasPair(iglob, jglob)) {
176          toposForRowAtom[i].push_back(j);
177          topoDistRow[i][nTopos] = 3;
178          nTopos++;
179        }
268        }      
269      }
182
270   #endif
271  
272 +    // allocate memory for the parallel objects
273 +    atypesLocal.resize(nLocal_);
274 +
275 +    for (int i = 0; i < nLocal_; i++)
276 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
277 +
278      groupList_.clear();
279 <    groupList_.reserve(nGroups_);
279 >    groupList_.resize(nGroups_);
280      for (int i = 0; i < nGroups_; i++) {
281        int gid = cgLocalToGlobal[i];
282        for (int j = 0; j < nLocal_; j++) {
283          int aid = AtomLocalToGlobal[j];
284 <        if (globalGroupMembership[aid] == gid)
284 >        if (globalGroupMembership[aid] == gid) {
285            groupList_[i].push_back(j);
286 +        }
287        }      
288      }
289  
196    skipsForLocalAtom.clear();
197    skipsForLocalAtom.reserve(nLocal_);
290  
291 <    for (int i = 0; i < nLocal_; i++) {
200 <      int iglob = AtomLocalToGlobal[i];
201 <      for (int j = 0; j < nLocal_; j++) {
202 <        int jglob = AtomLocalToGlobal[j];        
203 <        if (excludes.hasPair(iglob, jglob))
204 <          skipsForLocalAtom[i].push_back(j);      
205 <      }      
206 <    }
291 >    createGtypeCutoffMap();
292  
293 <    toposForLocalAtom.clear();
294 <    toposForLocalAtom.reserve(nLocal_);
295 <    for (int i = 0; i < nLocal_; i++) {
296 <      int iglob = AtomLocalToGlobal[i];
297 <      int nTopos = 0;
298 <      for (int j = 0; j < nLocal_; j++) {
299 <        int jglob = AtomLocalToGlobal[j];        
300 <        if (oneTwo.hasPair(iglob, jglob)) {
301 <          toposForLocalAtom[i].push_back(j);
302 <          topoDistLocal[i][nTopos] = 1;
303 <          nTopos++;
304 <        }
305 <        if (oneThree.hasPair(iglob, jglob)) {
306 <          toposForLocalAtom[i].push_back(j);
307 <          topoDistLocal[i][nTopos] = 2;
308 <          nTopos++;
309 <        }
310 <        if (oneFour.hasPair(iglob, jglob)) {
311 <          toposForLocalAtom[i].push_back(j);
312 <          topoDistLocal[i][nTopos] = 3;
313 <          nTopos++;
293 >  }
294 >  
295 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
296 >    
297 >    RealType tol = 1e-6;
298 >    largestRcut_ = 0.0;
299 >    RealType rc;
300 >    int atid;
301 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302 >    
303 >    map<int, RealType> atypeCutoff;
304 >      
305 >    for (set<AtomType*>::iterator at = atypes.begin();
306 >         at != atypes.end(); ++at){
307 >      atid = (*at)->getIdent();
308 >      if (userChoseCutoff_)
309 >        atypeCutoff[atid] = userCutoff_;
310 >      else
311 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312 >    }
313 >    
314 >    vector<RealType> gTypeCutoffs;
315 >    // first we do a single loop over the cutoff groups to find the
316 >    // largest cutoff for any atypes present in this group.
317 > #ifdef IS_MPI
318 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 >    groupRowToGtype.resize(nGroupsInRow_);
320 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
322 >      for (vector<int>::iterator ia = atomListRow.begin();
323 >           ia != atomListRow.end(); ++ia) {            
324 >        int atom1 = (*ia);
325 >        atid = identsRow[atom1];
326 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
327 >          groupCutoffRow[cg1] = atypeCutoff[atid];
328          }
329 +      }
330 +
331 +      bool gTypeFound = false;
332 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
333 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
334 +          groupRowToGtype[cg1] = gt;
335 +          gTypeFound = true;
336 +        }
337 +      }
338 +      if (!gTypeFound) {
339 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
340 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
341 +      }
342 +      
343 +    }
344 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 +    groupColToGtype.resize(nGroupsInCol_);
346 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348 +      for (vector<int>::iterator jb = atomListCol.begin();
349 +           jb != atomListCol.end(); ++jb) {            
350 +        int atom2 = (*jb);
351 +        atid = identsCol[atom2];
352 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
353 +          groupCutoffCol[cg2] = atypeCutoff[atid];
354 +        }
355 +      }
356 +      bool gTypeFound = false;
357 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
358 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
359 +          groupColToGtype[cg2] = gt;
360 +          gTypeFound = true;
361 +        }
362 +      }
363 +      if (!gTypeFound) {
364 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
365 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
366 +      }
367 +    }
368 + #else
369 +
370 +    vector<RealType> groupCutoff(nGroups_, 0.0);
371 +    groupToGtype.resize(nGroups_);
372 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373 +      groupCutoff[cg1] = 0.0;
374 +      vector<int> atomList = getAtomsInGroupRow(cg1);
375 +      for (vector<int>::iterator ia = atomList.begin();
376 +           ia != atomList.end(); ++ia) {            
377 +        int atom1 = (*ia);
378 +        atid = idents[atom1];
379 +        if (atypeCutoff[atid] > groupCutoff[cg1])
380 +          groupCutoff[cg1] = atypeCutoff[atid];
381 +      }
382 +      
383 +      bool gTypeFound = false;
384 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
386 +          groupToGtype[cg1] = gt;
387 +          gTypeFound = true;
388 +        }
389 +      }
390 +      if (!gTypeFound) {      
391 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
392 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393        }      
394      }
395 + #endif
396 +
397 +    // Now we find the maximum group cutoff value present in the simulation
398 +
399 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 +                                     gTypeCutoffs.end());
401 +
402 + #ifdef IS_MPI
403 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 +                              MPI::MAX);
405 + #endif
406 +    
407 +    RealType tradRcut = groupMax;
408 +
409 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
410 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
411 +        RealType thisRcut;
412 +        switch(cutoffPolicy_) {
413 +        case TRADITIONAL:
414 +          thisRcut = tradRcut;
415 +          break;
416 +        case MIX:
417 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 +          break;
419 +        case MAX:
420 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 +          break;
422 +        default:
423 +          sprintf(painCave.errMsg,
424 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
425 +                  "hit an unknown cutoff policy!\n");
426 +          painCave.severity = OPENMD_ERROR;
427 +          painCave.isFatal = 1;
428 +          simError();
429 +          break;
430 +        }
431 +
432 +        pair<int,int> key = make_pair(i,j);
433 +        gTypeCutoffMap[key].first = thisRcut;
434 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
435 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
436 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
437 +        // sanity check
438 +        
439 +        if (userChoseCutoff_) {
440 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441 +            sprintf(painCave.errMsg,
442 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
443 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444 +            painCave.severity = OPENMD_ERROR;
445 +            painCave.isFatal = 1;
446 +            simError();            
447 +          }
448 +        }
449 +      }
450 +    }
451    }
452 <  
452 >
453 >
454 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 >    int i, j;  
456 > #ifdef IS_MPI
457 >    i = groupRowToGtype[cg1];
458 >    j = groupColToGtype[cg2];
459 > #else
460 >    i = groupToGtype[cg1];
461 >    j = groupToGtype[cg2];
462 > #endif    
463 >    return gTypeCutoffMap[make_pair(i,j)];
464 >  }
465 >
466 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467 >    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468 >      if (toposForAtom[atom1][j] == atom2)
469 >        return topoDist[atom1][j];
470 >    }
471 >    return 0;
472 >  }
473 >
474 >  void ForceMatrixDecomposition::zeroWorkArrays() {
475 >    pairwisePot = 0.0;
476 >    embeddingPot = 0.0;
477 >
478 > #ifdef IS_MPI
479 >    if (storageLayout_ & DataStorage::dslForce) {
480 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
481 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
482 >    }
483 >
484 >    if (storageLayout_ & DataStorage::dslTorque) {
485 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
486 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
487 >    }
488 >    
489 >    fill(pot_row.begin(), pot_row.end(),
490 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491 >
492 >    fill(pot_col.begin(), pot_col.end(),
493 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
494 >
495 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
496 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 >           0.0);
498 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 >           0.0);
500 >    }
501 >
502 >    if (storageLayout_ & DataStorage::dslDensity) {      
503 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
504 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
505 >    }
506 >
507 >    if (storageLayout_ & DataStorage::dslFunctional) {  
508 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 >           0.0);
510 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
511 >           0.0);
512 >    }
513 >
514 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
515 >      fill(atomRowData.functionalDerivative.begin(),
516 >           atomRowData.functionalDerivative.end(), 0.0);
517 >      fill(atomColData.functionalDerivative.begin(),
518 >           atomColData.functionalDerivative.end(), 0.0);
519 >    }
520 >
521 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
522 >      fill(atomRowData.skippedCharge.begin(),
523 >           atomRowData.skippedCharge.end(), 0.0);
524 >      fill(atomColData.skippedCharge.begin(),
525 >           atomColData.skippedCharge.end(), 0.0);
526 >    }
527 >
528 > #endif
529 >    // even in parallel, we need to zero out the local arrays:
530 >
531 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
532 >      fill(snap_->atomData.particlePot.begin(),
533 >           snap_->atomData.particlePot.end(), 0.0);
534 >    }
535 >    
536 >    if (storageLayout_ & DataStorage::dslDensity) {      
537 >      fill(snap_->atomData.density.begin(),
538 >           snap_->atomData.density.end(), 0.0);
539 >    }
540 >
541 >    if (storageLayout_ & DataStorage::dslFunctional) {
542 >      fill(snap_->atomData.functional.begin(),
543 >           snap_->atomData.functional.end(), 0.0);
544 >    }
545 >
546 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
547 >      fill(snap_->atomData.functionalDerivative.begin(),
548 >           snap_->atomData.functionalDerivative.end(), 0.0);
549 >    }
550 >
551 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
552 >      fill(snap_->atomData.skippedCharge.begin(),
553 >           snap_->atomData.skippedCharge.end(), 0.0);
554 >    }
555 >  }
556 >
557 >
558    void ForceMatrixDecomposition::distributeData()  {
559      snap_ = sman_->getCurrentSnapshot();
560      storageLayout_ = sman_->getStorageLayout();
561   #ifdef IS_MPI
562      
563      // gather up the atomic positions
564 <    AtomCommVectorRow->gather(snap_->atomData.position,
564 >    AtomPlanVectorRow->gather(snap_->atomData.position,
565                                atomRowData.position);
566 <    AtomCommVectorColumn->gather(snap_->atomData.position,
566 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
567                                   atomColData.position);
568      
569      // gather up the cutoff group positions
570 <    cgCommVectorRow->gather(snap_->cgData.position,
570 >
571 >    cgPlanVectorRow->gather(snap_->cgData.position,
572                              cgRowData.position);
573 <    cgCommVectorColumn->gather(snap_->cgData.position,
573 >
574 >    cgPlanVectorColumn->gather(snap_->cgData.position,
575                                 cgColData.position);
576 +
577      
578      // if needed, gather the atomic rotation matrices
579      if (storageLayout_ & DataStorage::dslAmat) {
580 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
580 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
581                                  atomRowData.aMat);
582 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
582 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
583                                     atomColData.aMat);
584      }
585      
586      // if needed, gather the atomic eletrostatic frames
587      if (storageLayout_ & DataStorage::dslElectroFrame) {
588 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
588 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
589                                  atomRowData.electroFrame);
590 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
590 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
591                                     atomColData.electroFrame);
592      }
593 +
594   #endif      
595    }
596    
597 +  /* collects information obtained during the pre-pair loop onto local
598 +   * data structures.
599 +   */
600    void ForceMatrixDecomposition::collectIntermediateData() {
601      snap_ = sman_->getCurrentSnapshot();
602      storageLayout_ = sman_->getStorageLayout();
# Line 273 | Line 604 | namespace OpenMD {
604      
605      if (storageLayout_ & DataStorage::dslDensity) {
606        
607 <      AtomCommRealRow->scatter(atomRowData.density,
607 >      AtomPlanRealRow->scatter(atomRowData.density,
608                                 snap_->atomData.density);
609        
610        int n = snap_->atomData.density.size();
611 <      std::vector<RealType> rho_tmp(n, 0.0);
612 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
611 >      vector<RealType> rho_tmp(n, 0.0);
612 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
613        for (int i = 0; i < n; i++)
614          snap_->atomData.density[i] += rho_tmp[i];
615      }
616   #endif
617    }
618 <  
618 >
619 >  /*
620 >   * redistributes information obtained during the pre-pair loop out to
621 >   * row and column-indexed data structures
622 >   */
623    void ForceMatrixDecomposition::distributeIntermediateData() {
624      snap_ = sman_->getCurrentSnapshot();
625      storageLayout_ = sman_->getStorageLayout();
626   #ifdef IS_MPI
627      if (storageLayout_ & DataStorage::dslFunctional) {
628 <      AtomCommRealRow->gather(snap_->atomData.functional,
628 >      AtomPlanRealRow->gather(snap_->atomData.functional,
629                                atomRowData.functional);
630 <      AtomCommRealColumn->gather(snap_->atomData.functional,
630 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
631                                   atomColData.functional);
632      }
633      
634      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
635 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
635 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
636                                atomRowData.functionalDerivative);
637 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
637 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
638                                   atomColData.functionalDerivative);
639      }
640   #endif
# Line 313 | Line 648 | namespace OpenMD {
648      int n = snap_->atomData.force.size();
649      vector<Vector3d> frc_tmp(n, V3Zero);
650      
651 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
651 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
652      for (int i = 0; i < n; i++) {
653        snap_->atomData.force[i] += frc_tmp[i];
654        frc_tmp[i] = 0.0;
655      }
656      
657 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
658 <    for (int i = 0; i < n; i++)
657 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
658 >    for (int i = 0; i < n; i++) {
659        snap_->atomData.force[i] += frc_tmp[i];
660 <    
661 <    
660 >    }
661 >        
662      if (storageLayout_ & DataStorage::dslTorque) {
663  
664 <      int nt = snap_->atomData.force.size();
664 >      int nt = snap_->atomData.torque.size();
665        vector<Vector3d> trq_tmp(nt, V3Zero);
666  
667 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
668 <      for (int i = 0; i < n; i++) {
667 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
668 >      for (int i = 0; i < nt; i++) {
669          snap_->atomData.torque[i] += trq_tmp[i];
670          trq_tmp[i] = 0.0;
671        }
672        
673 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
674 <      for (int i = 0; i < n; i++)
673 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
674 >      for (int i = 0; i < nt; i++)
675          snap_->atomData.torque[i] += trq_tmp[i];
676      }
677 +
678 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
679 +
680 +      int ns = snap_->atomData.skippedCharge.size();
681 +      vector<RealType> skch_tmp(ns, 0.0);
682 +
683 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
684 +      for (int i = 0; i < ns; i++) {
685 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
686 +        skch_tmp[i] = 0.0;
687 +      }
688 +      
689 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
690 +      for (int i = 0; i < ns; i++)
691 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
692 +            
693 +    }
694      
695      nLocal_ = snap_->getNumberOfAtoms();
696  
697 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
698 <                                       vector<RealType> (nLocal_, 0.0));
697 >    vector<potVec> pot_temp(nLocal_,
698 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
699 >
700 >    // scatter/gather pot_row into the members of my column
701 >          
702 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
703 >
704 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
705 >      pairwisePot += pot_temp[ii];
706      
707 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
708 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
709 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
710 <        pot_local[i] += pot_temp[i][ii];
711 <      }
707 >    fill(pot_temp.begin(), pot_temp.end(),
708 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
709 >      
710 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
711 >    
712 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
713 >      pairwisePot += pot_temp[ii];    
714 >    
715 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
716 >      RealType ploc1 = pairwisePot[ii];
717 >      RealType ploc2 = 0.0;
718 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
719 >      pairwisePot[ii] = ploc2;
720      }
721 +
722 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
723 +      RealType ploc1 = embeddingPot[ii];
724 +      RealType ploc2 = 0.0;
725 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
726 +      embeddingPot[ii] = ploc2;
727 +    }
728 +
729   #endif
730 +
731    }
732  
733    int ForceMatrixDecomposition::getNAtomsInRow() {  
# Line 426 | Line 802 | namespace OpenMD {
802   #ifdef IS_MPI
803      return massFactorsRow[atom1];
804   #else
805 <    return massFactorsLocal[atom1];
805 >    return massFactors[atom1];
806   #endif
807    }
808  
# Line 434 | Line 810 | namespace OpenMD {
810   #ifdef IS_MPI
811      return massFactorsCol[atom2];
812   #else
813 <    return massFactorsLocal[atom2];
813 >    return massFactors[atom2];
814   #endif
815  
816    }
# Line 452 | Line 828 | namespace OpenMD {
828      return d;    
829    }
830  
831 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
832 < #ifdef IS_MPI
457 <    return skipsForRowAtom[atom1];
458 < #else
459 <    return skipsForLocalAtom[atom1];
460 < #endif
831 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
832 >    return excludesForAtom[atom1];
833    }
834  
835    /**
836 <   * there are a number of reasons to skip a pair or a particle mostly
837 <   * we do this to exclude atoms who are involved in short range
466 <   * interactions (bonds, bends, torsions), but we also need to
467 <   * exclude some overcounted interactions that result from the
468 <   * parallel decomposition.
836 >   * We need to exclude some overcounted interactions that result from
837 >   * the parallel decomposition.
838     */
839    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
840      int unique_id_1, unique_id_2;
841 <
841 >        
842   #ifdef IS_MPI
843      // in MPI, we have to look up the unique IDs for each atom
844      unique_id_1 = AtomRowToGlobal[atom1];
845      unique_id_2 = AtomColToGlobal[atom2];
846 + #else
847 +    unique_id_1 = AtomLocalToGlobal[atom1];
848 +    unique_id_2 = AtomLocalToGlobal[atom2];
849 + #endif  
850  
478    // this situation should only arise in MPI simulations
851      if (unique_id_1 == unique_id_2) return true;
852 <    
852 >
853 > #ifdef IS_MPI
854      // this prevents us from doing the pair on multiple processors
855      if (unique_id_1 < unique_id_2) {
856        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
857      } else {
858 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
858 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
859      }
487 #else
488    // in the normal loop, the atom numbers are unique
489    unique_id_1 = atom1;
490    unique_id_2 = atom2;
860   #endif
861      
862 < #ifdef IS_MPI
494 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
495 <         i != skipsForRowAtom[atom1].end(); ++i) {
496 <      if ( (*i) == unique_id_2 ) return true;
497 <    }    
498 < #else
499 <    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
500 <         i != skipsForLocalAtom[atom1].end(); ++i) {
501 <      if ( (*i) == unique_id_2 ) return true;
502 <    }    
503 < #endif
862 >    return false;
863    }
864  
865 <  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
865 >  /**
866 >   * We need to handle the interactions for atoms who are involved in
867 >   * the same rigid body as well as some short range interactions
868 >   * (bonds, bends, torsions) differently from other interactions.
869 >   * We'll still visit the pairwise routines, but with a flag that
870 >   * tells those routines to exclude the pair from direct long range
871 >   * interactions.  Some indirect interactions (notably reaction
872 >   * field) must still be handled for these pairs.
873 >   */
874 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
875 >
876 >    // excludesForAtom was constructed to use row/column indices in the MPI
877 >    // version, and to use local IDs in the non-MPI version:
878      
879 < #ifdef IS_MPI
880 <    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
881 <      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
879 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
880 >         i != excludesForAtom[atom1].end(); ++i) {
881 >      if ( (*i) == atom2 ) return true;
882      }
512 #else
513    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
514      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
515    }
516 #endif
883  
884 <    // zero is default for unconnected (i.e. normal) pair interactions
519 <    return 0;
884 >    return false;
885    }
886  
887 +
888    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
889   #ifdef IS_MPI
890      atomRowData.force[atom1] += fg;
# Line 536 | Line 902 | namespace OpenMD {
902    }
903  
904      // filling interaction blocks with pointers
905 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
906 <    InteractionData idat;
905 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
906 >                                                     int atom1, int atom2) {
907  
908 +    idat.excluded = excludeAtomPair(atom1, atom2);
909 +  
910   #ifdef IS_MPI
911 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
912 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
913 +    //                         ff_->getAtomType(identsCol[atom2]) );
914 +    
915      if (storageLayout_ & DataStorage::dslAmat) {
916        idat.A1 = &(atomRowData.aMat[atom1]);
917        idat.A2 = &(atomColData.aMat[atom2]);
# Line 560 | Line 932 | namespace OpenMD {
932        idat.rho2 = &(atomColData.density[atom2]);
933      }
934  
935 +    if (storageLayout_ & DataStorage::dslFunctional) {
936 +      idat.frho1 = &(atomRowData.functional[atom1]);
937 +      idat.frho2 = &(atomColData.functional[atom2]);
938 +    }
939 +
940      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
941        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
942        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
943      }
944  
945 +    if (storageLayout_ & DataStorage::dslParticlePot) {
946 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
947 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
948 +    }
949 +
950 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
951 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
952 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
953 +    }
954 +
955   #else
956 +    
957 +
958 +    // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
959 +    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
960 +    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
961 +
962 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
963 +    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
964 +    //                         ff_->getAtomType(idents[atom2]) );
965 +
966      if (storageLayout_ & DataStorage::dslAmat) {
967        idat.A1 = &(snap_->atomData.aMat[atom1]);
968        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 581 | Line 978 | namespace OpenMD {
978        idat.t2 = &(snap_->atomData.torque[atom2]);
979      }
980  
981 <    if (storageLayout_ & DataStorage::dslDensity) {
981 >    if (storageLayout_ & DataStorage::dslDensity) {    
982        idat.rho1 = &(snap_->atomData.density[atom1]);
983        idat.rho2 = &(snap_->atomData.density[atom2]);
984      }
985  
986 +    if (storageLayout_ & DataStorage::dslFunctional) {
987 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
988 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
989 +    }
990 +
991      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
992        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
993        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
994      }
995 +
996 +    if (storageLayout_ & DataStorage::dslParticlePot) {
997 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
998 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
999 +    }
1000 +
1001 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1002 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1003 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1004 +    }
1005   #endif
594    return idat;
1006    }
1007  
1008 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1009 <
599 <    InteractionData idat;
1008 >  
1009 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1010   #ifdef IS_MPI
1011 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1012 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1013 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1014 <    }
1015 <    if (storageLayout_ & DataStorage::dslTorque) {
606 <      idat.t1 = &(atomRowData.torque[atom1]);
607 <      idat.t2 = &(atomColData.torque[atom2]);
608 <    }
609 <    if (storageLayout_ & DataStorage::dslForce) {
610 <      idat.t1 = &(atomRowData.force[atom1]);
611 <      idat.t2 = &(atomColData.force[atom2]);
612 <    }
1011 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1012 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1013 >
1014 >    atomRowData.force[atom1] += *(idat.f1);
1015 >    atomColData.force[atom2] -= *(idat.f1);
1016   #else
1017 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1018 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1019 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1020 <    }
618 <    if (storageLayout_ & DataStorage::dslTorque) {
619 <      idat.t1 = &(snap_->atomData.torque[atom1]);
620 <      idat.t2 = &(snap_->atomData.torque[atom2]);
621 <    }
622 <    if (storageLayout_ & DataStorage::dslForce) {
623 <      idat.t1 = &(snap_->atomData.force[atom1]);
624 <      idat.t2 = &(snap_->atomData.force[atom2]);
625 <    }
1017 >    pairwisePot += *(idat.pot);
1018 >
1019 >    snap_->atomData.force[atom1] += *(idat.f1);
1020 >    snap_->atomData.force[atom2] -= *(idat.f1);
1021   #endif
1022      
1023    }
1024  
630
631
632
1025    /*
1026     * buildNeighborList
1027     *
# Line 639 | Line 1031 | namespace OpenMD {
1031    vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1032        
1033      vector<pair<int, int> > neighborList;
1034 +    groupCutoffs cuts;
1035 +    bool doAllPairs = false;
1036 +
1037   #ifdef IS_MPI
1038      cellListRow_.clear();
1039      cellListCol_.clear();
# Line 646 | Line 1041 | namespace OpenMD {
1041      cellList_.clear();
1042   #endif
1043  
1044 <    // dangerous to not do error checking.
650 <    RealType rCut_;
651 <
652 <    RealType rList_ = (rCut_ + skinThickness_);
1044 >    RealType rList_ = (largestRcut_ + skinThickness_);
1045      RealType rl2 = rList_ * rList_;
1046      Snapshot* snap_ = sman_->getCurrentSnapshot();
1047      Mat3x3d Hmat = snap_->getHmat();
# Line 661 | Line 1053 | namespace OpenMD {
1053      nCells_.y() = (int) ( Hy.length() )/ rList_;
1054      nCells_.z() = (int) ( Hz.length() )/ rList_;
1055  
1056 +    // handle small boxes where the cell offsets can end up repeating cells
1057 +    
1058 +    if (nCells_.x() < 3) doAllPairs = true;
1059 +    if (nCells_.y() < 3) doAllPairs = true;
1060 +    if (nCells_.z() < 3) doAllPairs = true;
1061 +
1062      Mat3x3d invHmat = snap_->getInvHmat();
1063      Vector3d rs, scaled, dr;
1064      Vector3i whichCell;
1065      int cellIndex;
1066 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1067  
1068   #ifdef IS_MPI
1069 <    for (int i = 0; i < nGroupsInRow_; i++) {
1070 <      rs = cgRowData.position[i];
1071 <      // scaled positions relative to the box vectors
1072 <      scaled = invHmat * rs;
1073 <      // wrap the vector back into the unit box by subtracting integer box
675 <      // numbers
676 <      for (int j = 0; j < 3; j++)
677 <        scaled[j] -= roundMe(scaled[j]);
678 <    
679 <      // find xyz-indices of cell that cutoffGroup is in.
680 <      whichCell.x() = nCells_.x() * scaled.x();
681 <      whichCell.y() = nCells_.y() * scaled.y();
682 <      whichCell.z() = nCells_.z() * scaled.z();
683 <
684 <      // find single index of this cell:
685 <      cellIndex = Vlinear(whichCell, nCells_);
686 <      // add this cutoff group to the list of groups in this cell;
687 <      cellListRow_[cellIndex].push_back(i);
688 <    }
1069 >    cellListRow_.resize(nCtot);
1070 >    cellListCol_.resize(nCtot);
1071 > #else
1072 >    cellList_.resize(nCtot);
1073 > #endif
1074  
1075 <    for (int i = 0; i < nGroupsInCol_; i++) {
1076 <      rs = cgColData.position[i];
692 <      // scaled positions relative to the box vectors
693 <      scaled = invHmat * rs;
694 <      // wrap the vector back into the unit box by subtracting integer box
695 <      // numbers
696 <      for (int j = 0; j < 3; j++)
697 <        scaled[j] -= roundMe(scaled[j]);
1075 >    if (!doAllPairs) {
1076 > #ifdef IS_MPI
1077  
1078 <      // find xyz-indices of cell that cutoffGroup is in.
1079 <      whichCell.x() = nCells_.x() * scaled.x();
1080 <      whichCell.y() = nCells_.y() * scaled.y();
1081 <      whichCell.z() = nCells_.z() * scaled.z();
1082 <
1083 <      // find single index of this cell:
1084 <      cellIndex = Vlinear(whichCell, nCells_);
1085 <      // add this cutoff group to the list of groups in this cell;
1086 <      cellListCol_[cellIndex].push_back(i);
1087 <    }
1078 >      for (int i = 0; i < nGroupsInRow_; i++) {
1079 >        rs = cgRowData.position[i];
1080 >        
1081 >        // scaled positions relative to the box vectors
1082 >        scaled = invHmat * rs;
1083 >        
1084 >        // wrap the vector back into the unit box by subtracting integer box
1085 >        // numbers
1086 >        for (int j = 0; j < 3; j++) {
1087 >          scaled[j] -= roundMe(scaled[j]);
1088 >          scaled[j] += 0.5;
1089 >        }
1090 >        
1091 >        // find xyz-indices of cell that cutoffGroup is in.
1092 >        whichCell.x() = nCells_.x() * scaled.x();
1093 >        whichCell.y() = nCells_.y() * scaled.y();
1094 >        whichCell.z() = nCells_.z() * scaled.z();
1095 >        
1096 >        // find single index of this cell:
1097 >        cellIndex = Vlinear(whichCell, nCells_);
1098 >        
1099 >        // add this cutoff group to the list of groups in this cell;
1100 >        cellListRow_[cellIndex].push_back(i);
1101 >      }
1102 >      for (int i = 0; i < nGroupsInCol_; i++) {
1103 >        rs = cgColData.position[i];
1104 >        
1105 >        // scaled positions relative to the box vectors
1106 >        scaled = invHmat * rs;
1107 >        
1108 >        // wrap the vector back into the unit box by subtracting integer box
1109 >        // numbers
1110 >        for (int j = 0; j < 3; j++) {
1111 >          scaled[j] -= roundMe(scaled[j]);
1112 >          scaled[j] += 0.5;
1113 >        }
1114 >        
1115 >        // find xyz-indices of cell that cutoffGroup is in.
1116 >        whichCell.x() = nCells_.x() * scaled.x();
1117 >        whichCell.y() = nCells_.y() * scaled.y();
1118 >        whichCell.z() = nCells_.z() * scaled.z();
1119 >        
1120 >        // find single index of this cell:
1121 >        cellIndex = Vlinear(whichCell, nCells_);
1122 >        
1123 >        // add this cutoff group to the list of groups in this cell;
1124 >        cellListCol_[cellIndex].push_back(i);
1125 >      }
1126 >    
1127   #else
1128 <    for (int i = 0; i < nGroups_; i++) {
1129 <      rs = snap_->cgData.position[i];
1130 <      // scaled positions relative to the box vectors
1131 <      scaled = invHmat * rs;
1132 <      // wrap the vector back into the unit box by subtracting integer box
1133 <      // numbers
1134 <      for (int j = 0; j < 3; j++)
1135 <        scaled[j] -= roundMe(scaled[j]);
1128 >      for (int i = 0; i < nGroups_; i++) {
1129 >        rs = snap_->cgData.position[i];
1130 >        
1131 >        // scaled positions relative to the box vectors
1132 >        scaled = invHmat * rs;
1133 >        
1134 >        // wrap the vector back into the unit box by subtracting integer box
1135 >        // numbers
1136 >        for (int j = 0; j < 3; j++) {
1137 >          scaled[j] -= roundMe(scaled[j]);
1138 >          scaled[j] += 0.5;
1139 >        }
1140 >        
1141 >        // find xyz-indices of cell that cutoffGroup is in.
1142 >        whichCell.x() = nCells_.x() * scaled.x();
1143 >        whichCell.y() = nCells_.y() * scaled.y();
1144 >        whichCell.z() = nCells_.z() * scaled.z();
1145 >        
1146 >        // find single index of this cell:
1147 >        cellIndex = Vlinear(whichCell, nCells_);
1148 >        
1149 >        // add this cutoff group to the list of groups in this cell;
1150 >        cellList_[cellIndex].push_back(i);
1151 >      }
1152  
719      // find xyz-indices of cell that cutoffGroup is in.
720      whichCell.x() = nCells_.x() * scaled.x();
721      whichCell.y() = nCells_.y() * scaled.y();
722      whichCell.z() = nCells_.z() * scaled.z();
723
724      // find single index of this cell:
725      cellIndex = Vlinear(whichCell, nCells_);
726      // add this cutoff group to the list of groups in this cell;
727      cellList_[cellIndex].push_back(i);
728    }
1153   #endif
1154  
1155 <
1156 <
1157 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1158 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1159 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
736 <          Vector3i m1v(m1x, m1y, m1z);
737 <          int m1 = Vlinear(m1v, nCells_);
738 <
739 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
740 <               os != cellOffsets_.end(); ++os) {
1155 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1156 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1157 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1158 >            Vector3i m1v(m1x, m1y, m1z);
1159 >            int m1 = Vlinear(m1v, nCells_);
1160              
1161 <            Vector3i m2v = m1v + (*os);
1162 <            
1163 <            if (m2v.x() >= nCells_.x()) {
1164 <              m2v.x() = 0;          
1165 <            } else if (m2v.x() < 0) {
747 <              m2v.x() = nCells_.x() - 1;
748 <            }
749 <            
750 <            if (m2v.y() >= nCells_.y()) {
751 <              m2v.y() = 0;          
752 <            } else if (m2v.y() < 0) {
753 <              m2v.y() = nCells_.y() - 1;
754 <            }
755 <            
756 <            if (m2v.z() >= nCells_.z()) {
757 <              m2v.z() = 0;          
758 <            } else if (m2v.z() < 0) {
759 <              m2v.z() = nCells_.z() - 1;
760 <            }
761 <            
762 <            int m2 = Vlinear (m2v, nCells_);
1161 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1162 >                 os != cellOffsets_.end(); ++os) {
1163 >              
1164 >              Vector3i m2v = m1v + (*os);
1165 >            
1166  
1167 < #ifdef IS_MPI
1168 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1169 <                 j1 != cellListRow_[m1].end(); ++j1) {
1170 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1171 <                   j2 != cellListCol_[m2].end(); ++j2) {
1172 <                              
1173 <                // Always do this if we're in different cells or if
1174 <                // we're in the same cell and the global index of the
1175 <                // j2 cutoff group is less than the j1 cutoff group
1167 >              if (m2v.x() >= nCells_.x()) {
1168 >                m2v.x() = 0;          
1169 >              } else if (m2v.x() < 0) {
1170 >                m2v.x() = nCells_.x() - 1;
1171 >              }
1172 >              
1173 >              if (m2v.y() >= nCells_.y()) {
1174 >                m2v.y() = 0;          
1175 >              } else if (m2v.y() < 0) {
1176 >                m2v.y() = nCells_.y() - 1;
1177 >              }
1178 >              
1179 >              if (m2v.z() >= nCells_.z()) {
1180 >                m2v.z() = 0;          
1181 >              } else if (m2v.z() < 0) {
1182 >                m2v.z() = nCells_.z() - 1;
1183 >              }
1184  
1185 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1185 >              int m2 = Vlinear (m2v, nCells_);
1186 >              
1187 > #ifdef IS_MPI
1188 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1189 >                   j1 != cellListRow_[m1].end(); ++j1) {
1190 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1191 >                     j2 != cellListCol_[m2].end(); ++j2) {
1192 >                  
1193 >                  // In parallel, we need to visit *all* pairs of row
1194 >                  // & column indicies and will divide labor in the
1195 >                  // force evaluation later.
1196                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1197                    snap_->wrapVector(dr);
1198 <                  if (dr.lengthSquare() < rl2) {
1198 >                  cuts = getGroupCutoffs( (*j1), (*j2) );
1199 >                  if (dr.lengthSquare() < cuts.third) {
1200                      neighborList.push_back(make_pair((*j1), (*j2)));
1201 <                  }
1201 >                  }                  
1202                  }
1203                }
782            }
1204   #else
1205 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1206 <                 j1 != cellList_[m1].end(); ++j1) {
1207 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1208 <                   j2 != cellList_[m2].end(); ++j2) {
1209 <                              
1210 <                // Always do this if we're in different cells or if
1211 <                // we're in the same cell and the global index of the
1212 <                // j2 cutoff group is less than the j1 cutoff group
1205 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1206 >                   j1 != cellList_[m1].end(); ++j1) {
1207 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1208 >                     j2 != cellList_[m2].end(); ++j2) {
1209 >    
1210 >                  // Always do this if we're in different cells or if
1211 >                  // we're in the same cell and the global index of
1212 >                  // the j2 cutoff group is greater than or equal to
1213 >                  // the j1 cutoff group.  Note that Rappaport's code
1214 >                  // has a "less than" conditional here, but that
1215 >                  // deals with atom-by-atom computation.  OpenMD
1216 >                  // allows atoms within a single cutoff group to
1217 >                  // interact with each other.
1218  
1219 <                if (m2 != m1 || (*j2) < (*j1)) {
1220 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1221 <                  snap_->wrapVector(dr);
1222 <                  if (dr.lengthSquare() < rl2) {
1223 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1219 >
1220 >
1221 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1222 >
1223 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1224 >                    snap_->wrapVector(dr);
1225 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1226 >                    if (dr.lengthSquare() < cuts.third) {
1227 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1228 >                    }
1229                    }
1230                  }
1231                }
801            }
1232   #endif
1233 +            }
1234            }
1235          }
1236        }
1237 +    } else {
1238 +      // branch to do all cutoff group pairs
1239 + #ifdef IS_MPI
1240 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1241 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1242 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1243 +          snap_->wrapVector(dr);
1244 +          cuts = getGroupCutoffs( j1, j2 );
1245 +          if (dr.lengthSquare() < cuts.third) {
1246 +            neighborList.push_back(make_pair(j1, j2));
1247 +          }
1248 +        }
1249 +      }      
1250 + #else
1251 +      // include all groups here.
1252 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1253 +        // include self group interactions j2 == j1
1254 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1255 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1256 +          snap_->wrapVector(dr);
1257 +          cuts = getGroupCutoffs( j1, j2 );
1258 +          if (dr.lengthSquare() < cuts.third) {
1259 +            neighborList.push_back(make_pair(j1, j2));
1260 +          }
1261 +        }    
1262 +      }
1263 + #endif
1264      }
1265 <
1265 >      
1266      // save the local cutoff group positions for the check that is
1267      // done on each loop:
1268      saved_CG_positions_.clear();
1269      for (int i = 0; i < nGroups_; i++)
1270        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1271 <
1271 >    
1272      return neighborList;
1273    }
1274   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines