ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1570 by gezelter, Thu May 26 21:56:04 2011 UTC vs.
Revision 1587 by gezelter, Fri Jul 8 20:25:32 2011 UTC

# Line 55 | Line 55 | namespace OpenMD {
55    void ForceMatrixDecomposition::distributeInitialData() {
56      snap_ = sman_->getCurrentSnapshot();
57      storageLayout_ = sman_->getStorageLayout();
58 +    ff_ = info_->getForceField();
59      nLocal_ = snap_->getNumberOfAtoms();
60 <    nGroups_ = snap_->getNumberOfCutoffGroups();
61 <
60 >    
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62      // gather the information for atomtype IDs (atids):
63 <    vector<int> identsLocal = info_->getIdentArray();
63 >    idents = info_->getIdentArray();
64      AtomLocalToGlobal = info_->getGlobalAtomIndices();
65      cgLocalToGlobal = info_->getGlobalGroupIndices();
66      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
66    vector<RealType> massFactorsLocal = info_->getMassFactors();
67    PairList excludes = info_->getExcludedInteractions();
68    PairList oneTwo = info_->getOneTwoInteractions();
69    PairList oneThree = info_->getOneThreeInteractions();
70    PairList oneFour = info_->getOneFourInteractions();
71    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
67  
68 +    massFactors = info_->getMassFactors();
69 +
70 +    PairList* excludes = info_->getExcludedInteractions();
71 +    PairList* oneTwo = info_->getOneTwoInteractions();
72 +    PairList* oneThree = info_->getOneThreeInteractions();
73 +    PairList* oneFour = info_->getOneFourInteractions();
74 +
75   #ifdef IS_MPI
76  
77      AtomCommIntRow = new Communicator<Row,int>(nLocal_);
78      AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79      AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80      AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 +    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
82  
83      AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
84      AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
85      AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
86      AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
87 +    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
88  
89      cgCommIntRow = new Communicator<Row,int>(nGroups_);
90      cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
# Line 101 | Line 105 | namespace OpenMD {
105      cgRowData.setStorageLayout(DataStorage::dslPosition);
106      cgColData.resize(nGroupsInCol_);
107      cgColData.setStorageLayout(DataStorage::dslPosition);
108 +        
109 +    identsRow.resize(nAtomsInRow_);
110 +    identsCol.resize(nAtomsInCol_);
111      
112 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
113 <                                      vector<RealType> (nAtomsInRow_, 0.0));
107 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
108 <                                      vector<RealType> (nAtomsInCol_, 0.0));
112 >    AtomCommIntRow->gather(idents, identsRow);
113 >    AtomCommIntColumn->gather(idents, identsCol);
114      
110    identsRow.reserve(nAtomsInRow_);
111    identsCol.reserve(nAtomsInCol_);
112    
113    AtomCommIntRow->gather(identsLocal, identsRow);
114    AtomCommIntColumn->gather(identsLocal, identsCol);
115    
115      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
116      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
117      
118      cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
119      cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
120  
121 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
122 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
121 >    AtomCommRealRow->gather(massFactors, massFactorsRow);
122 >    AtomCommRealColumn->gather(massFactors, massFactorsCol);
123  
124      groupListRow_.clear();
125 <    groupListRow_.reserve(nGroupsInRow_);
125 >    groupListRow_.resize(nGroupsInRow_);
126      for (int i = 0; i < nGroupsInRow_; i++) {
127        int gid = cgRowToGlobal[i];
128        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 134 | Line 133 | namespace OpenMD {
133      }
134  
135      groupListCol_.clear();
136 <    groupListCol_.reserve(nGroupsInCol_);
136 >    groupListCol_.resize(nGroupsInCol_);
137      for (int i = 0; i < nGroupsInCol_; i++) {
138        int gid = cgColToGlobal[i];
139        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 144 | Line 143 | namespace OpenMD {
143        }      
144      }
145  
146 <    skipsForRowAtom.clear();
147 <    skipsForRowAtom.reserve(nAtomsInRow_);
146 >    excludesForAtom.clear();
147 >    excludesForAtom.resize(nAtomsInRow_);
148 >    toposForAtom.clear();
149 >    toposForAtom.resize(nAtomsInRow_);
150 >    topoDist.clear();
151 >    topoDist.resize(nAtomsInRow_);
152      for (int i = 0; i < nAtomsInRow_; i++) {
153 <      int iglob = AtomColToGlobal[i];
151 <      for (int j = 0; j < nAtomsInCol_; j++) {
152 <        int jglob = AtomRowToGlobal[j];        
153 <        if (excludes.hasPair(iglob, jglob))
154 <          skipsForRowAtom[i].push_back(j);      
155 <      }      
156 <    }
153 >      int iglob = AtomRowToGlobal[i];
154  
158    toposForRowAtom.clear();
159    toposForRowAtom.reserve(nAtomsInRow_);
160    for (int i = 0; i < nAtomsInRow_; i++) {
161      int iglob = AtomColToGlobal[i];
162      int nTopos = 0;
155        for (int j = 0; j < nAtomsInCol_; j++) {
156 <        int jglob = AtomRowToGlobal[j];        
157 <        if (oneTwo.hasPair(iglob, jglob)) {
158 <          toposForRowAtom[i].push_back(j);
159 <          topoDistRow[i][nTopos] = 1;
160 <          nTopos++;
156 >        int jglob = AtomColToGlobal[j];
157 >
158 >        if (excludes->hasPair(iglob, jglob))
159 >          excludesForAtom[i].push_back(j);      
160 >        
161 >        if (oneTwo->hasPair(iglob, jglob)) {
162 >          toposForAtom[i].push_back(j);
163 >          topoDist[i].push_back(1);
164 >        } else {
165 >          if (oneThree->hasPair(iglob, jglob)) {
166 >            toposForAtom[i].push_back(j);
167 >            topoDist[i].push_back(2);
168 >          } else {
169 >            if (oneFour->hasPair(iglob, jglob)) {
170 >              toposForAtom[i].push_back(j);
171 >              topoDist[i].push_back(3);
172 >            }
173 >          }
174          }
170        if (oneThree.hasPair(iglob, jglob)) {
171          toposForRowAtom[i].push_back(j);
172          topoDistRow[i][nTopos] = 2;
173          nTopos++;
174        }
175        if (oneFour.hasPair(iglob, jglob)) {
176          toposForRowAtom[i].push_back(j);
177          topoDistRow[i][nTopos] = 3;
178          nTopos++;
179        }
175        }      
176      }
177  
178   #endif
179  
180      groupList_.clear();
181 <    groupList_.reserve(nGroups_);
181 >    groupList_.resize(nGroups_);
182      for (int i = 0; i < nGroups_; i++) {
183        int gid = cgLocalToGlobal[i];
184        for (int j = 0; j < nLocal_; j++) {
185          int aid = AtomLocalToGlobal[j];
186 <        if (globalGroupMembership[aid] == gid)
186 >        if (globalGroupMembership[aid] == gid) {
187            groupList_[i].push_back(j);
188 +        }
189        }      
190      }
191  
192 <    skipsForLocalAtom.clear();
193 <    skipsForLocalAtom.reserve(nLocal_);
192 >    excludesForAtom.clear();
193 >    excludesForAtom.resize(nLocal_);
194 >    toposForAtom.clear();
195 >    toposForAtom.resize(nLocal_);
196 >    topoDist.clear();
197 >    topoDist.resize(nLocal_);
198  
199      for (int i = 0; i < nLocal_; i++) {
200        int iglob = AtomLocalToGlobal[i];
201 +
202        for (int j = 0; j < nLocal_; j++) {
203 <        int jglob = AtomLocalToGlobal[j];        
204 <        if (excludes.hasPair(iglob, jglob))
205 <          skipsForLocalAtom[i].push_back(j);      
203 >        int jglob = AtomLocalToGlobal[j];
204 >
205 >        if (excludes->hasPair(iglob, jglob))
206 >          excludesForAtom[i].push_back(j);              
207 >        
208 >        if (oneTwo->hasPair(iglob, jglob)) {
209 >          toposForAtom[i].push_back(j);
210 >          topoDist[i].push_back(1);
211 >        } else {
212 >          if (oneThree->hasPair(iglob, jglob)) {
213 >            toposForAtom[i].push_back(j);
214 >            topoDist[i].push_back(2);
215 >          } else {
216 >            if (oneFour->hasPair(iglob, jglob)) {
217 >              toposForAtom[i].push_back(j);
218 >              topoDist[i].push_back(3);
219 >            }
220 >          }
221 >        }
222        }      
223      }
224 +    
225 +    createGtypeCutoffMap();
226  
227 <    toposForLocalAtom.clear();
228 <    toposForLocalAtom.reserve(nLocal_);
229 <    for (int i = 0; i < nLocal_; i++) {
230 <      int iglob = AtomLocalToGlobal[i];
231 <      int nTopos = 0;
232 <      for (int j = 0; j < nLocal_; j++) {
233 <        int jglob = AtomLocalToGlobal[j];        
234 <        if (oneTwo.hasPair(iglob, jglob)) {
235 <          toposForLocalAtom[i].push_back(j);
236 <          topoDistLocal[i][nTopos] = 1;
237 <          nTopos++;
227 >  }
228 >  
229 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
230 >    
231 >    RealType tol = 1e-6;
232 >    RealType rc;
233 >    int atid;
234 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
235 >    map<int, RealType> atypeCutoff;
236 >      
237 >    for (set<AtomType*>::iterator at = atypes.begin();
238 >         at != atypes.end(); ++at){
239 >      atid = (*at)->getIdent();
240 >      if (userChoseCutoff_)
241 >        atypeCutoff[atid] = userCutoff_;
242 >      else
243 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
244 >    }
245 >
246 >    vector<RealType> gTypeCutoffs;
247 >    // first we do a single loop over the cutoff groups to find the
248 >    // largest cutoff for any atypes present in this group.
249 > #ifdef IS_MPI
250 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
251 >    groupRowToGtype.resize(nGroupsInRow_);
252 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
253 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
254 >      for (vector<int>::iterator ia = atomListRow.begin();
255 >           ia != atomListRow.end(); ++ia) {            
256 >        int atom1 = (*ia);
257 >        atid = identsRow[atom1];
258 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
259 >          groupCutoffRow[cg1] = atypeCutoff[atid];
260          }
261 <        if (oneThree.hasPair(iglob, jglob)) {
262 <          toposForLocalAtom[i].push_back(j);
263 <          topoDistLocal[i][nTopos] = 2;
264 <          nTopos++;
261 >      }
262 >
263 >      bool gTypeFound = false;
264 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
265 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
266 >          groupRowToGtype[cg1] = gt;
267 >          gTypeFound = true;
268 >        }
269 >      }
270 >      if (!gTypeFound) {
271 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
272 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
273 >      }
274 >      
275 >    }
276 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
277 >    groupColToGtype.resize(nGroupsInCol_);
278 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
279 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
280 >      for (vector<int>::iterator jb = atomListCol.begin();
281 >           jb != atomListCol.end(); ++jb) {            
282 >        int atom2 = (*jb);
283 >        atid = identsCol[atom2];
284 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
285 >          groupCutoffCol[cg2] = atypeCutoff[atid];
286          }
287 <        if (oneFour.hasPair(iglob, jglob)) {
288 <          toposForLocalAtom[i].push_back(j);
289 <          topoDistLocal[i][nTopos] = 3;
290 <          nTopos++;
287 >      }
288 >      bool gTypeFound = false;
289 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
290 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
291 >          groupColToGtype[cg2] = gt;
292 >          gTypeFound = true;
293 >        }
294 >      }
295 >      if (!gTypeFound) {
296 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
297 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
298 >      }
299 >    }
300 > #else
301 >
302 >    vector<RealType> groupCutoff(nGroups_, 0.0);
303 >    groupToGtype.resize(nGroups_);
304 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
305 >
306 >      groupCutoff[cg1] = 0.0;
307 >      vector<int> atomList = getAtomsInGroupRow(cg1);
308 >
309 >      for (vector<int>::iterator ia = atomList.begin();
310 >           ia != atomList.end(); ++ia) {            
311 >        int atom1 = (*ia);
312 >        atid = idents[atom1];
313 >        if (atypeCutoff[atid] > groupCutoff[cg1]) {
314 >          groupCutoff[cg1] = atypeCutoff[atid];
315          }
316 +      }
317 +
318 +      bool gTypeFound = false;
319 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
320 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
321 +          groupToGtype[cg1] = gt;
322 +          gTypeFound = true;
323 +        }
324 +      }
325 +      if (!gTypeFound) {
326 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
327 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
328        }      
329      }
330 + #endif
331 +
332 +    // Now we find the maximum group cutoff value present in the simulation
333 +
334 +    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
335 +
336 + #ifdef IS_MPI
337 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
338 + #endif
339 +    
340 +    RealType tradRcut = groupMax;
341 +
342 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
343 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
344 +        RealType thisRcut;
345 +        switch(cutoffPolicy_) {
346 +        case TRADITIONAL:
347 +          thisRcut = tradRcut;
348 +          break;
349 +        case MIX:
350 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
351 +          break;
352 +        case MAX:
353 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
354 +          break;
355 +        default:
356 +          sprintf(painCave.errMsg,
357 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
358 +                  "hit an unknown cutoff policy!\n");
359 +          painCave.severity = OPENMD_ERROR;
360 +          painCave.isFatal = 1;
361 +          simError();
362 +          break;
363 +        }
364 +
365 +        pair<int,int> key = make_pair(i,j);
366 +        gTypeCutoffMap[key].first = thisRcut;
367 +
368 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
369 +
370 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
371 +        
372 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
373 +
374 +        // sanity check
375 +        
376 +        if (userChoseCutoff_) {
377 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
378 +            sprintf(painCave.errMsg,
379 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
380 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
381 +            painCave.severity = OPENMD_ERROR;
382 +            painCave.isFatal = 1;
383 +            simError();            
384 +          }
385 +        }
386 +      }
387 +    }
388    }
389 <  
389 >
390 >
391 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
392 >    int i, j;  
393 > #ifdef IS_MPI
394 >    i = groupRowToGtype[cg1];
395 >    j = groupColToGtype[cg2];
396 > #else
397 >    i = groupToGtype[cg1];
398 >    j = groupToGtype[cg2];
399 > #endif    
400 >    return gTypeCutoffMap[make_pair(i,j)];
401 >  }
402 >
403 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
404 >    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
405 >      if (toposForAtom[atom1][j] == atom2)
406 >        return topoDist[atom1][j];
407 >    }
408 >    return 0;
409 >  }
410 >
411 >  void ForceMatrixDecomposition::zeroWorkArrays() {
412 >    pairwisePot = 0.0;
413 >    embeddingPot = 0.0;
414 >
415 > #ifdef IS_MPI
416 >    if (storageLayout_ & DataStorage::dslForce) {
417 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
418 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
419 >    }
420 >
421 >    if (storageLayout_ & DataStorage::dslTorque) {
422 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
423 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
424 >    }
425 >    
426 >    fill(pot_row.begin(), pot_row.end(),
427 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
428 >
429 >    fill(pot_col.begin(), pot_col.end(),
430 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
431 >
432 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
433 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
434 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
435 >    }
436 >
437 >    if (storageLayout_ & DataStorage::dslDensity) {      
438 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
439 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
440 >    }
441 >
442 >    if (storageLayout_ & DataStorage::dslFunctional) {  
443 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
444 >      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
445 >    }
446 >
447 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
448 >      fill(atomRowData.functionalDerivative.begin(),
449 >           atomRowData.functionalDerivative.end(), 0.0);
450 >      fill(atomColData.functionalDerivative.begin(),
451 >           atomColData.functionalDerivative.end(), 0.0);
452 >    }
453 >
454 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
455 >      fill(atomRowData.skippedCharge.begin(),
456 >           atomRowData.skippedCharge.end(), 0.0);
457 >      fill(atomColData.skippedCharge.begin(),
458 >           atomColData.skippedCharge.end(), 0.0);
459 >    }
460 >
461 > #else
462 >    
463 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
464 >      fill(snap_->atomData.particlePot.begin(),
465 >           snap_->atomData.particlePot.end(), 0.0);
466 >    }
467 >    
468 >    if (storageLayout_ & DataStorage::dslDensity) {      
469 >      fill(snap_->atomData.density.begin(),
470 >           snap_->atomData.density.end(), 0.0);
471 >    }
472 >    if (storageLayout_ & DataStorage::dslFunctional) {
473 >      fill(snap_->atomData.functional.begin(),
474 >           snap_->atomData.functional.end(), 0.0);
475 >    }
476 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
477 >      fill(snap_->atomData.functionalDerivative.begin(),
478 >           snap_->atomData.functionalDerivative.end(), 0.0);
479 >    }
480 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
481 >      fill(snap_->atomData.skippedCharge.begin(),
482 >           snap_->atomData.skippedCharge.end(), 0.0);
483 >    }
484 > #endif
485 >    
486 >  }
487 >
488 >
489    void ForceMatrixDecomposition::distributeData()  {
490      snap_ = sman_->getCurrentSnapshot();
491      storageLayout_ = sman_->getStorageLayout();
# Line 266 | Line 521 | namespace OpenMD {
521   #endif      
522    }
523    
524 +  /* collects information obtained during the pre-pair loop onto local
525 +   * data structures.
526 +   */
527    void ForceMatrixDecomposition::collectIntermediateData() {
528      snap_ = sman_->getCurrentSnapshot();
529      storageLayout_ = sman_->getStorageLayout();
# Line 277 | Line 535 | namespace OpenMD {
535                                 snap_->atomData.density);
536        
537        int n = snap_->atomData.density.size();
538 <      std::vector<RealType> rho_tmp(n, 0.0);
538 >      vector<RealType> rho_tmp(n, 0.0);
539        AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
540        for (int i = 0; i < n; i++)
541          snap_->atomData.density[i] += rho_tmp[i];
542      }
543   #endif
544    }
545 <  
545 >
546 >  /*
547 >   * redistributes information obtained during the pre-pair loop out to
548 >   * row and column-indexed data structures
549 >   */
550    void ForceMatrixDecomposition::distributeIntermediateData() {
551      snap_ = sman_->getCurrentSnapshot();
552      storageLayout_ = sman_->getStorageLayout();
# Line 326 | Line 588 | namespace OpenMD {
588      
589      if (storageLayout_ & DataStorage::dslTorque) {
590  
591 <      int nt = snap_->atomData.force.size();
591 >      int nt = snap_->atomData.torque.size();
592        vector<Vector3d> trq_tmp(nt, V3Zero);
593  
594        AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
595 <      for (int i = 0; i < n; i++) {
595 >      for (int i = 0; i < nt; i++) {
596          snap_->atomData.torque[i] += trq_tmp[i];
597          trq_tmp[i] = 0.0;
598        }
599        
600        AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
601 <      for (int i = 0; i < n; i++)
601 >      for (int i = 0; i < nt; i++)
602          snap_->atomData.torque[i] += trq_tmp[i];
603      }
604 +
605 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
606 +
607 +      int ns = snap_->atomData.skippedCharge.size();
608 +      vector<RealType> skch_tmp(ns, 0.0);
609 +
610 +      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
611 +      for (int i = 0; i < ns; i++) {
612 +        snap_->atomData.skippedCharge[i] = skch_tmp[i];
613 +        skch_tmp[i] = 0.0;
614 +      }
615 +      
616 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
617 +      for (int i = 0; i < ns; i++)
618 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
619 +    }
620      
621      nLocal_ = snap_->getNumberOfAtoms();
622  
623 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
624 <                                       vector<RealType> (nLocal_, 0.0));
623 >    vector<potVec> pot_temp(nLocal_,
624 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
625 >
626 >    // scatter/gather pot_row into the members of my column
627 >          
628 >    AtomCommPotRow->scatter(pot_row, pot_temp);
629 >
630 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
631 >      pairwisePot += pot_temp[ii];
632      
633 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
634 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
635 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
636 <        pot_local[i] += pot_temp[i][ii];
637 <      }
638 <    }
633 >    fill(pot_temp.begin(), pot_temp.end(),
634 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
635 >      
636 >    AtomCommPotColumn->scatter(pot_col, pot_temp);    
637 >    
638 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
639 >      pairwisePot += pot_temp[ii];    
640   #endif
641 +
642    }
643  
644    int ForceMatrixDecomposition::getNAtomsInRow() {  
# Line 426 | Line 713 | namespace OpenMD {
713   #ifdef IS_MPI
714      return massFactorsRow[atom1];
715   #else
716 <    return massFactorsLocal[atom1];
716 >    return massFactors[atom1];
717   #endif
718    }
719  
# Line 434 | Line 721 | namespace OpenMD {
721   #ifdef IS_MPI
722      return massFactorsCol[atom2];
723   #else
724 <    return massFactorsLocal[atom2];
724 >    return massFactors[atom2];
725   #endif
726  
727    }
# Line 452 | Line 739 | namespace OpenMD {
739      return d;    
740    }
741  
742 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
743 < #ifdef IS_MPI
457 <    return skipsForRowAtom[atom1];
458 < #else
459 <    return skipsForLocalAtom[atom1];
460 < #endif
742 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
743 >    return excludesForAtom[atom1];
744    }
745  
746    /**
747 <   * there are a number of reasons to skip a pair or a particle mostly
748 <   * we do this to exclude atoms who are involved in short range
466 <   * interactions (bonds, bends, torsions), but we also need to
467 <   * exclude some overcounted interactions that result from the
468 <   * parallel decomposition.
747 >   * We need to exclude some overcounted interactions that result from
748 >   * the parallel decomposition.
749     */
750    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
751      int unique_id_1, unique_id_2;
# Line 484 | Line 764 | namespace OpenMD {
764      } else {
765        if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
766      }
487 #else
488    // in the normal loop, the atom numbers are unique
489    unique_id_1 = atom1;
490    unique_id_2 = atom2;
767   #endif
768 <    
493 < #ifdef IS_MPI
494 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
495 <         i != skipsForRowAtom[atom1].end(); ++i) {
496 <      if ( (*i) == unique_id_2 ) return true;
497 <    }    
498 < #else
499 <    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
500 <         i != skipsForLocalAtom[atom1].end(); ++i) {
501 <      if ( (*i) == unique_id_2 ) return true;
502 <    }    
503 < #endif
768 >    return false;
769    }
770  
771 <  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
771 >  /**
772 >   * We need to handle the interactions for atoms who are involved in
773 >   * the same rigid body as well as some short range interactions
774 >   * (bonds, bends, torsions) differently from other interactions.
775 >   * We'll still visit the pairwise routines, but with a flag that
776 >   * tells those routines to exclude the pair from direct long range
777 >   * interactions.  Some indirect interactions (notably reaction
778 >   * field) must still be handled for these pairs.
779 >   */
780 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
781 >    int unique_id_2;
782      
783   #ifdef IS_MPI
784 <    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
785 <      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
511 <    }
784 >    // in MPI, we have to look up the unique IDs for the row atom.
785 >    unique_id_2 = AtomColToGlobal[atom2];
786   #else
787 <    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
788 <      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
515 <    }
787 >    // in the normal loop, the atom numbers are unique
788 >    unique_id_2 = atom2;
789   #endif
790 +    
791 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
792 +         i != excludesForAtom[atom1].end(); ++i) {
793 +      if ( (*i) == unique_id_2 ) return true;
794 +    }
795  
796 <    // zero is default for unconnected (i.e. normal) pair interactions
519 <    return 0;
796 >    return false;
797    }
798  
799 +
800    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
801   #ifdef IS_MPI
802      atomRowData.force[atom1] += fg;
# Line 536 | Line 814 | namespace OpenMD {
814    }
815  
816      // filling interaction blocks with pointers
817 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
818 <    InteractionData idat;
817 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
818 >                                                     int atom1, int atom2) {
819  
820 +    idat.excluded = excludeAtomPair(atom1, atom2);
821 +  
822   #ifdef IS_MPI
823 +    
824 +    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
825 +                             ff_->getAtomType(identsCol[atom2]) );
826 +    
827      if (storageLayout_ & DataStorage::dslAmat) {
828        idat.A1 = &(atomRowData.aMat[atom1]);
829        idat.A2 = &(atomColData.aMat[atom2]);
# Line 560 | Line 844 | namespace OpenMD {
844        idat.rho2 = &(atomColData.density[atom2]);
845      }
846  
847 +    if (storageLayout_ & DataStorage::dslFunctional) {
848 +      idat.frho1 = &(atomRowData.functional[atom1]);
849 +      idat.frho2 = &(atomColData.functional[atom2]);
850 +    }
851 +
852      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
853        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
854        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
855      }
856  
857 +    if (storageLayout_ & DataStorage::dslParticlePot) {
858 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
859 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
860 +    }
861 +
862 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
863 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
864 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
865 +    }
866 +
867   #else
868 +
869 +    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
870 +                             ff_->getAtomType(idents[atom2]) );
871 +
872      if (storageLayout_ & DataStorage::dslAmat) {
873        idat.A1 = &(snap_->atomData.aMat[atom1]);
874        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 581 | Line 884 | namespace OpenMD {
884        idat.t2 = &(snap_->atomData.torque[atom2]);
885      }
886  
887 <    if (storageLayout_ & DataStorage::dslDensity) {
887 >    if (storageLayout_ & DataStorage::dslDensity) {    
888        idat.rho1 = &(snap_->atomData.density[atom1]);
889        idat.rho2 = &(snap_->atomData.density[atom2]);
890      }
891  
892 +    if (storageLayout_ & DataStorage::dslFunctional) {
893 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
894 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
895 +    }
896 +
897      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
898        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
899        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
900      }
593 #endif
594    return idat;
595  }
901  
902 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
903 <
904 <    InteractionData idat;
600 < #ifdef IS_MPI
601 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
602 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
603 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
604 <    }
605 <    if (storageLayout_ & DataStorage::dslTorque) {
606 <      idat.t1 = &(atomRowData.torque[atom1]);
607 <      idat.t2 = &(atomColData.torque[atom2]);
608 <    }
609 <    if (storageLayout_ & DataStorage::dslForce) {
610 <      idat.t1 = &(atomRowData.force[atom1]);
611 <      idat.t2 = &(atomColData.force[atom2]);
902 >    if (storageLayout_ & DataStorage::dslParticlePot) {
903 >      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
904 >      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
905      }
906 < #else
907 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
908 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
909 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
906 >
907 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
908 >      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
909 >      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
910      }
618    if (storageLayout_ & DataStorage::dslTorque) {
619      idat.t1 = &(snap_->atomData.torque[atom1]);
620      idat.t2 = &(snap_->atomData.torque[atom2]);
621    }
622    if (storageLayout_ & DataStorage::dslForce) {
623      idat.t1 = &(snap_->atomData.force[atom1]);
624      idat.t2 = &(snap_->atomData.force[atom2]);
625    }
911   #endif
627    
912    }
913  
914 +  
915 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
916 + #ifdef IS_MPI
917 +    pot_row[atom1] += 0.5 *  *(idat.pot);
918 +    pot_col[atom2] += 0.5 *  *(idat.pot);
919  
920 +    atomRowData.force[atom1] += *(idat.f1);
921 +    atomColData.force[atom2] -= *(idat.f1);
922 + #else
923 +    pairwisePot += *(idat.pot);
924  
925 +    snap_->atomData.force[atom1] += *(idat.f1);
926 +    snap_->atomData.force[atom2] -= *(idat.f1);
927 + #endif
928 +    
929 +  }
930  
931    /*
932     * buildNeighborList
# Line 639 | Line 937 | namespace OpenMD {
937    vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
938        
939      vector<pair<int, int> > neighborList;
940 +    groupCutoffs cuts;
941 +    bool doAllPairs = false;
942 +
943   #ifdef IS_MPI
944      cellListRow_.clear();
945      cellListCol_.clear();
# Line 646 | Line 947 | namespace OpenMD {
947      cellList_.clear();
948   #endif
949  
950 <    // dangerous to not do error checking.
650 <    RealType rCut_;
651 <
652 <    RealType rList_ = (rCut_ + skinThickness_);
950 >    RealType rList_ = (largestRcut_ + skinThickness_);
951      RealType rl2 = rList_ * rList_;
952      Snapshot* snap_ = sman_->getCurrentSnapshot();
953      Mat3x3d Hmat = snap_->getHmat();
# Line 661 | Line 959 | namespace OpenMD {
959      nCells_.y() = (int) ( Hy.length() )/ rList_;
960      nCells_.z() = (int) ( Hz.length() )/ rList_;
961  
962 +    // handle small boxes where the cell offsets can end up repeating cells
963 +    
964 +    if (nCells_.x() < 3) doAllPairs = true;
965 +    if (nCells_.y() < 3) doAllPairs = true;
966 +    if (nCells_.z() < 3) doAllPairs = true;
967 +
968      Mat3x3d invHmat = snap_->getInvHmat();
969      Vector3d rs, scaled, dr;
970      Vector3i whichCell;
971      int cellIndex;
972 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
973  
974   #ifdef IS_MPI
975 <    for (int i = 0; i < nGroupsInRow_; i++) {
976 <      rs = cgRowData.position[i];
672 <      // scaled positions relative to the box vectors
673 <      scaled = invHmat * rs;
674 <      // wrap the vector back into the unit box by subtracting integer box
675 <      // numbers
676 <      for (int j = 0; j < 3; j++)
677 <        scaled[j] -= roundMe(scaled[j]);
678 <    
679 <      // find xyz-indices of cell that cutoffGroup is in.
680 <      whichCell.x() = nCells_.x() * scaled.x();
681 <      whichCell.y() = nCells_.y() * scaled.y();
682 <      whichCell.z() = nCells_.z() * scaled.z();
683 <
684 <      // find single index of this cell:
685 <      cellIndex = Vlinear(whichCell, nCells_);
686 <      // add this cutoff group to the list of groups in this cell;
687 <      cellListRow_[cellIndex].push_back(i);
688 <    }
689 <
690 <    for (int i = 0; i < nGroupsInCol_; i++) {
691 <      rs = cgColData.position[i];
692 <      // scaled positions relative to the box vectors
693 <      scaled = invHmat * rs;
694 <      // wrap the vector back into the unit box by subtracting integer box
695 <      // numbers
696 <      for (int j = 0; j < 3; j++)
697 <        scaled[j] -= roundMe(scaled[j]);
698 <
699 <      // find xyz-indices of cell that cutoffGroup is in.
700 <      whichCell.x() = nCells_.x() * scaled.x();
701 <      whichCell.y() = nCells_.y() * scaled.y();
702 <      whichCell.z() = nCells_.z() * scaled.z();
703 <
704 <      // find single index of this cell:
705 <      cellIndex = Vlinear(whichCell, nCells_);
706 <      // add this cutoff group to the list of groups in this cell;
707 <      cellListCol_[cellIndex].push_back(i);
708 <    }
975 >    cellListRow_.resize(nCtot);
976 >    cellListCol_.resize(nCtot);
977   #else
978 <    for (int i = 0; i < nGroups_; i++) {
711 <      rs = snap_->cgData.position[i];
712 <      // scaled positions relative to the box vectors
713 <      scaled = invHmat * rs;
714 <      // wrap the vector back into the unit box by subtracting integer box
715 <      // numbers
716 <      for (int j = 0; j < 3; j++)
717 <        scaled[j] -= roundMe(scaled[j]);
718 <
719 <      // find xyz-indices of cell that cutoffGroup is in.
720 <      whichCell.x() = nCells_.x() * scaled.x();
721 <      whichCell.y() = nCells_.y() * scaled.y();
722 <      whichCell.z() = nCells_.z() * scaled.z();
723 <
724 <      // find single index of this cell:
725 <      cellIndex = Vlinear(whichCell, nCells_);
726 <      // add this cutoff group to the list of groups in this cell;
727 <      cellList_[cellIndex].push_back(i);
728 <    }
978 >    cellList_.resize(nCtot);
979   #endif
980  
981 +    if (!doAllPairs) {
982 + #ifdef IS_MPI
983  
984 +      for (int i = 0; i < nGroupsInRow_; i++) {
985 +        rs = cgRowData.position[i];
986 +        
987 +        // scaled positions relative to the box vectors
988 +        scaled = invHmat * rs;
989 +        
990 +        // wrap the vector back into the unit box by subtracting integer box
991 +        // numbers
992 +        for (int j = 0; j < 3; j++) {
993 +          scaled[j] -= roundMe(scaled[j]);
994 +          scaled[j] += 0.5;
995 +        }
996 +        
997 +        // find xyz-indices of cell that cutoffGroup is in.
998 +        whichCell.x() = nCells_.x() * scaled.x();
999 +        whichCell.y() = nCells_.y() * scaled.y();
1000 +        whichCell.z() = nCells_.z() * scaled.z();
1001 +        
1002 +        // find single index of this cell:
1003 +        cellIndex = Vlinear(whichCell, nCells_);
1004 +        
1005 +        // add this cutoff group to the list of groups in this cell;
1006 +        cellListRow_[cellIndex].push_back(i);
1007 +      }
1008 +      
1009 +      for (int i = 0; i < nGroupsInCol_; i++) {
1010 +        rs = cgColData.position[i];
1011 +        
1012 +        // scaled positions relative to the box vectors
1013 +        scaled = invHmat * rs;
1014 +        
1015 +        // wrap the vector back into the unit box by subtracting integer box
1016 +        // numbers
1017 +        for (int j = 0; j < 3; j++) {
1018 +          scaled[j] -= roundMe(scaled[j]);
1019 +          scaled[j] += 0.5;
1020 +        }
1021 +        
1022 +        // find xyz-indices of cell that cutoffGroup is in.
1023 +        whichCell.x() = nCells_.x() * scaled.x();
1024 +        whichCell.y() = nCells_.y() * scaled.y();
1025 +        whichCell.z() = nCells_.z() * scaled.z();
1026 +        
1027 +        // find single index of this cell:
1028 +        cellIndex = Vlinear(whichCell, nCells_);
1029 +        
1030 +        // add this cutoff group to the list of groups in this cell;
1031 +        cellListCol_[cellIndex].push_back(i);
1032 +      }
1033 + #else
1034 +      for (int i = 0; i < nGroups_; i++) {
1035 +        rs = snap_->cgData.position[i];
1036 +        
1037 +        // scaled positions relative to the box vectors
1038 +        scaled = invHmat * rs;
1039 +        
1040 +        // wrap the vector back into the unit box by subtracting integer box
1041 +        // numbers
1042 +        for (int j = 0; j < 3; j++) {
1043 +          scaled[j] -= roundMe(scaled[j]);
1044 +          scaled[j] += 0.5;
1045 +        }
1046 +        
1047 +        // find xyz-indices of cell that cutoffGroup is in.
1048 +        whichCell.x() = nCells_.x() * scaled.x();
1049 +        whichCell.y() = nCells_.y() * scaled.y();
1050 +        whichCell.z() = nCells_.z() * scaled.z();
1051 +        
1052 +        // find single index of this cell:
1053 +        cellIndex = Vlinear(whichCell, nCells_);      
1054 +        
1055 +        // add this cutoff group to the list of groups in this cell;
1056 +        cellList_[cellIndex].push_back(i);
1057 +      }
1058 + #endif
1059  
1060 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1061 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1062 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1063 <          Vector3i m1v(m1x, m1y, m1z);
1064 <          int m1 = Vlinear(m1v, nCells_);
738 <
739 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
740 <               os != cellOffsets_.end(); ++os) {
1060 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1061 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1062 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1063 >            Vector3i m1v(m1x, m1y, m1z);
1064 >            int m1 = Vlinear(m1v, nCells_);
1065              
1066 <            Vector3i m2v = m1v + (*os);
1067 <            
1068 <            if (m2v.x() >= nCells_.x()) {
1069 <              m2v.x() = 0;          
1070 <            } else if (m2v.x() < 0) {
1071 <              m2v.x() = nCells_.x() - 1;
1072 <            }
1073 <            
1074 <            if (m2v.y() >= nCells_.y()) {
1075 <              m2v.y() = 0;          
1076 <            } else if (m2v.y() < 0) {
1077 <              m2v.y() = nCells_.y() - 1;
1078 <            }
1079 <            
1080 <            if (m2v.z() >= nCells_.z()) {
1081 <              m2v.z() = 0;          
1082 <            } else if (m2v.z() < 0) {
1083 <              m2v.z() = nCells_.z() - 1;
1084 <            }
1085 <            
1086 <            int m2 = Vlinear (m2v, nCells_);
1087 <
1066 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1067 >                 os != cellOffsets_.end(); ++os) {
1068 >              
1069 >              Vector3i m2v = m1v + (*os);
1070 >              
1071 >              if (m2v.x() >= nCells_.x()) {
1072 >                m2v.x() = 0;          
1073 >              } else if (m2v.x() < 0) {
1074 >                m2v.x() = nCells_.x() - 1;
1075 >              }
1076 >              
1077 >              if (m2v.y() >= nCells_.y()) {
1078 >                m2v.y() = 0;          
1079 >              } else if (m2v.y() < 0) {
1080 >                m2v.y() = nCells_.y() - 1;
1081 >              }
1082 >              
1083 >              if (m2v.z() >= nCells_.z()) {
1084 >                m2v.z() = 0;          
1085 >              } else if (m2v.z() < 0) {
1086 >                m2v.z() = nCells_.z() - 1;
1087 >              }
1088 >              
1089 >              int m2 = Vlinear (m2v, nCells_);
1090 >              
1091   #ifdef IS_MPI
1092 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1093 <                 j1 != cellListRow_[m1].end(); ++j1) {
1094 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1095 <                   j2 != cellListCol_[m2].end(); ++j2) {
1096 <                              
1097 <                // Always do this if we're in different cells or if
1098 <                // we're in the same cell and the global index of the
1099 <                // j2 cutoff group is less than the j1 cutoff group
1100 <
1101 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1102 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1103 <                  snap_->wrapVector(dr);
1104 <                  if (dr.lengthSquare() < rl2) {
1105 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1092 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1093 >                   j1 != cellListRow_[m1].end(); ++j1) {
1094 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1095 >                     j2 != cellListCol_[m2].end(); ++j2) {
1096 >                  
1097 >                  // Always do this if we're in different cells or if
1098 >                  // we're in the same cell and the global index of the
1099 >                  // j2 cutoff group is less than the j1 cutoff group
1100 >                  
1101 >                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1102 >                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1103 >                    snap_->wrapVector(dr);
1104 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1105 >                    if (dr.lengthSquare() < cuts.third) {
1106 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1107 >                    }
1108                    }
1109                  }
1110                }
782            }
1111   #else
1112 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1113 <                 j1 != cellList_[m1].end(); ++j1) {
1114 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1115 <                   j2 != cellList_[m2].end(); ++j2) {
1116 <                              
1117 <                // Always do this if we're in different cells or if
1118 <                // we're in the same cell and the global index of the
1119 <                // j2 cutoff group is less than the j1 cutoff group
1120 <
1121 <                if (m2 != m1 || (*j2) < (*j1)) {
1122 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1123 <                  snap_->wrapVector(dr);
1124 <                  if (dr.lengthSquare() < rl2) {
1125 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1112 >              
1113 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1114 >                   j1 != cellList_[m1].end(); ++j1) {
1115 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1116 >                     j2 != cellList_[m2].end(); ++j2) {
1117 >                  
1118 >                  // Always do this if we're in different cells or if
1119 >                  // we're in the same cell and the global index of the
1120 >                  // j2 cutoff group is less than the j1 cutoff group
1121 >                  
1122 >                  if (m2 != m1 || (*j2) < (*j1)) {
1123 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1124 >                    snap_->wrapVector(dr);
1125 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1126 >                    if (dr.lengthSquare() < cuts.third) {
1127 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1128 >                    }
1129                    }
1130                  }
1131                }
801            }
1132   #endif
1133 +            }
1134            }
1135          }
1136        }
1137 +    } else {
1138 +      // branch to do all cutoff group pairs
1139 + #ifdef IS_MPI
1140 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1141 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1142 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1143 +          snap_->wrapVector(dr);
1144 +          cuts = getGroupCutoffs( j1, j2 );
1145 +          if (dr.lengthSquare() < cuts.third) {
1146 +            neighborList.push_back(make_pair(j1, j2));
1147 +          }
1148 +        }
1149 +      }
1150 + #else
1151 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1152 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1153 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1154 +          snap_->wrapVector(dr);
1155 +          cuts = getGroupCutoffs( j1, j2 );
1156 +          if (dr.lengthSquare() < cuts.third) {
1157 +            neighborList.push_back(make_pair(j1, j2));
1158 +          }
1159 +        }
1160 +      }        
1161 + #endif
1162      }
1163 <
1163 >      
1164      // save the local cutoff group positions for the check that is
1165      // done on each loop:
1166      saved_CG_positions_.clear();
1167      for (int i = 0; i < nGroups_; i++)
1168        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1169 <
1169 >    
1170      return neighborList;
1171    }
1172   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines