ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1562 by gezelter, Thu May 12 17:00:14 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1931 by gezelter, Mon Aug 19 19:20:32 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
53  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96 < #ifdef IS_MPI    
97 <    int nLocal = snap_->getNumberOfAtoms();
98 <    int nGroups = snap_->getNumberOfCutoffGroups();
96 >    ff_ = info_->getForceField();
97 >    nLocal_ = snap_->getNumberOfAtoms();
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    regions = info_->getRegions();
103 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
104 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
105 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
106 >
107 >    massFactors = info_->getMassFactors();
108 >
109 >    PairList* excludes = info_->getExcludedInteractions();
110 >    PairList* oneTwo = info_->getOneTwoInteractions();
111 >    PairList* oneThree = info_->getOneThreeInteractions();
112 >    PairList* oneFour = info_->getOneFourInteractions();
113      
114 <    AtomCommIntRow = new Communicator<Row,int>(nLocal);
115 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
116 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
117 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
114 >    if (needVelocities_)
115 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
116 >                                     DataStorage::dslVelocity);
117 >    else
118 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
119 >    
120 > #ifdef IS_MPI
121 >
122 >    MPI::Intracomm row = rowComm.getComm();
123 >    MPI::Intracomm col = colComm.getComm();
124  
125 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal);
126 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
127 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
128 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
125 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
126 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
127 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
128 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
129 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
130  
131 <    cgCommIntRow = new Communicator<Row,int>(nGroups);
132 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
133 <    cgCommIntColumn = new Communicator<Column,int>(nGroups);
134 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
131 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
132 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
133 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
134 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
135 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
136  
137 <    int nAtomsInRow = AtomCommIntRow->getSize();
138 <    int nAtomsInCol = AtomCommIntColumn->getSize();
139 <    int nGroupsInRow = cgCommIntRow->getSize();
140 <    int nGroupsInCol = cgCommIntColumn->getSize();
137 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
138 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
139 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
140 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
141  
142 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
143 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
144 +    nGroupsInRow_ = cgPlanIntRow->getSize();
145 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
146 +
147      // Modify the data storage objects with the correct layouts and sizes:
148 <    atomRowData.resize(nAtomsInRow);
148 >    atomRowData.resize(nAtomsInRow_);
149      atomRowData.setStorageLayout(storageLayout_);
150 <    atomColData.resize(nAtomsInCol);
150 >    atomColData.resize(nAtomsInCol_);
151      atomColData.setStorageLayout(storageLayout_);
152 <    cgRowData.resize(nGroupsInRow);
152 >    cgRowData.resize(nGroupsInRow_);
153      cgRowData.setStorageLayout(DataStorage::dslPosition);
154 <    cgColData.resize(nGroupsInCol);
155 <    cgColData.setStorageLayout(DataStorage::dslPosition);
154 >    cgColData.resize(nGroupsInCol_);
155 >    if (needVelocities_)
156 >      // we only need column velocities if we need them.
157 >      cgColData.setStorageLayout(DataStorage::dslPosition |
158 >                                 DataStorage::dslVelocity);
159 >    else    
160 >      cgColData.setStorageLayout(DataStorage::dslPosition);
161 >      
162 >    identsRow.resize(nAtomsInRow_);
163 >    identsCol.resize(nAtomsInCol_);
164      
165 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
166 <                                      vector<RealType> (nAtomsInRow, 0.0));
93 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
94 <                                      vector<RealType> (nAtomsInCol, 0.0));
165 >    AtomPlanIntRow->gather(idents, identsRow);
166 >    AtomPlanIntColumn->gather(idents, identsCol);
167  
168 <
169 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
168 >    regionsRow.resize(nAtomsInRow_);
169 >    regionsCol.resize(nAtomsInCol_);
170      
171 <    // gather the information for atomtype IDs (atids):
172 <    vector<int> identsLocal = info_->getIdentArray();
101 <    identsRow.reserve(nAtomsInRow);
102 <    identsCol.reserve(nAtomsInCol);
171 >    AtomPlanIntRow->gather(regions, regionsRow);
172 >    AtomPlanIntColumn->gather(regions, regionsCol);
173      
174 <    AtomCommIntRow->gather(identsLocal, identsRow);
175 <    AtomCommIntColumn->gather(identsLocal, identsCol);
176 <    
107 <    AtomLocalToGlobal = info_->getGlobalAtomIndices();
108 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
109 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
110 <    
111 <    cgLocalToGlobal = info_->getGlobalGroupIndices();
112 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
113 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
174 >    // allocate memory for the parallel objects
175 >    atypesRow.resize(nAtomsInRow_);
176 >    atypesCol.resize(nAtomsInCol_);
177  
178 <    // still need:
179 <    // topoDist
180 <    // exclude
178 >    for (int i = 0; i < nAtomsInRow_; i++)
179 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
180 >    for (int i = 0; i < nAtomsInCol_; i++)
181 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
182 >
183 >    pot_row.resize(nAtomsInRow_);
184 >    pot_col.resize(nAtomsInCol_);
185 >
186 >    expot_row.resize(nAtomsInRow_);
187 >    expot_col.resize(nAtomsInCol_);
188 >
189 >    AtomRowToGlobal.resize(nAtomsInRow_);
190 >    AtomColToGlobal.resize(nAtomsInCol_);
191 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
192 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
193 >
194 >    cgRowToGlobal.resize(nGroupsInRow_);
195 >    cgColToGlobal.resize(nGroupsInCol_);
196 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
197 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
198 >
199 >    massFactorsRow.resize(nAtomsInRow_);
200 >    massFactorsCol.resize(nAtomsInCol_);
201 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
202 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
203 >
204 >    groupListRow_.clear();
205 >    groupListRow_.resize(nGroupsInRow_);
206 >    for (int i = 0; i < nGroupsInRow_; i++) {
207 >      int gid = cgRowToGlobal[i];
208 >      for (int j = 0; j < nAtomsInRow_; j++) {
209 >        int aid = AtomRowToGlobal[j];
210 >        if (globalGroupMembership[aid] == gid)
211 >          groupListRow_[i].push_back(j);
212 >      }      
213 >    }
214 >
215 >    groupListCol_.clear();
216 >    groupListCol_.resize(nGroupsInCol_);
217 >    for (int i = 0; i < nGroupsInCol_; i++) {
218 >      int gid = cgColToGlobal[i];
219 >      for (int j = 0; j < nAtomsInCol_; j++) {
220 >        int aid = AtomColToGlobal[j];
221 >        if (globalGroupMembership[aid] == gid)
222 >          groupListCol_[i].push_back(j);
223 >      }      
224 >    }
225 >
226 >    excludesForAtom.clear();
227 >    excludesForAtom.resize(nAtomsInRow_);
228 >    toposForAtom.clear();
229 >    toposForAtom.resize(nAtomsInRow_);
230 >    topoDist.clear();
231 >    topoDist.resize(nAtomsInRow_);
232 >    for (int i = 0; i < nAtomsInRow_; i++) {
233 >      int iglob = AtomRowToGlobal[i];
234 >
235 >      for (int j = 0; j < nAtomsInCol_; j++) {
236 >        int jglob = AtomColToGlobal[j];
237 >
238 >        if (excludes->hasPair(iglob, jglob))
239 >          excludesForAtom[i].push_back(j);      
240 >        
241 >        if (oneTwo->hasPair(iglob, jglob)) {
242 >          toposForAtom[i].push_back(j);
243 >          topoDist[i].push_back(1);
244 >        } else {
245 >          if (oneThree->hasPair(iglob, jglob)) {
246 >            toposForAtom[i].push_back(j);
247 >            topoDist[i].push_back(2);
248 >          } else {
249 >            if (oneFour->hasPair(iglob, jglob)) {
250 >              toposForAtom[i].push_back(j);
251 >              topoDist[i].push_back(3);
252 >            }
253 >          }
254 >        }
255 >      }      
256 >    }
257 >
258 > #else
259 >    excludesForAtom.clear();
260 >    excludesForAtom.resize(nLocal_);
261 >    toposForAtom.clear();
262 >    toposForAtom.resize(nLocal_);
263 >    topoDist.clear();
264 >    topoDist.resize(nLocal_);
265 >
266 >    for (int i = 0; i < nLocal_; i++) {
267 >      int iglob = AtomLocalToGlobal[i];
268 >
269 >      for (int j = 0; j < nLocal_; j++) {
270 >        int jglob = AtomLocalToGlobal[j];
271 >
272 >        if (excludes->hasPair(iglob, jglob))
273 >          excludesForAtom[i].push_back(j);              
274 >        
275 >        if (oneTwo->hasPair(iglob, jglob)) {
276 >          toposForAtom[i].push_back(j);
277 >          topoDist[i].push_back(1);
278 >        } else {
279 >          if (oneThree->hasPair(iglob, jglob)) {
280 >            toposForAtom[i].push_back(j);
281 >            topoDist[i].push_back(2);
282 >          } else {
283 >            if (oneFour->hasPair(iglob, jglob)) {
284 >              toposForAtom[i].push_back(j);
285 >              topoDist[i].push_back(3);
286 >            }
287 >          }
288 >        }
289 >      }      
290 >    }
291   #endif
292 +
293 +    // allocate memory for the parallel objects
294 +    atypesLocal.resize(nLocal_);
295 +
296 +    for (int i = 0; i < nLocal_; i++)
297 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
298 +
299 +    groupList_.clear();
300 +    groupList_.resize(nGroups_);
301 +    for (int i = 0; i < nGroups_; i++) {
302 +      int gid = cgLocalToGlobal[i];
303 +      for (int j = 0; j < nLocal_; j++) {
304 +        int aid = AtomLocalToGlobal[j];
305 +        if (globalGroupMembership[aid] == gid) {
306 +          groupList_[i].push_back(j);
307 +        }
308 +      }      
309 +    }
310 +
311 +
312 +    createGtypeCutoffMap();
313 +
314 +  }
315 +  
316 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
317 +    
318 +    GrCut.clear();
319 +    GrCutSq.clear();
320 +    GrlistSq.clear();
321 +
322 +    RealType tol = 1e-6;
323 +    largestRcut_ = 0.0;
324 +    int atid;
325 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
326 +    
327 +    map<int, RealType> atypeCutoff;
328 +      
329 +    for (set<AtomType*>::iterator at = atypes.begin();
330 +         at != atypes.end(); ++at){
331 +      atid = (*at)->getIdent();
332 +      if (userChoseCutoff_)
333 +        atypeCutoff[atid] = userCutoff_;
334 +      else
335 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
336 +    }
337 +    
338 +    vector<RealType> gTypeCutoffs;
339 +    // first we do a single loop over the cutoff groups to find the
340 +    // largest cutoff for any atypes present in this group.
341 + #ifdef IS_MPI
342 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
343 +    groupRowToGtype.resize(nGroupsInRow_);
344 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
345 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
346 +      for (vector<int>::iterator ia = atomListRow.begin();
347 +           ia != atomListRow.end(); ++ia) {            
348 +        int atom1 = (*ia);
349 +        atid = identsRow[atom1];
350 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
351 +          groupCutoffRow[cg1] = atypeCutoff[atid];
352 +        }
353 +      }
354 +
355 +      bool gTypeFound = false;
356 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
357 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
358 +          groupRowToGtype[cg1] = gt;
359 +          gTypeFound = true;
360 +        }
361 +      }
362 +      if (!gTypeFound) {
363 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
364 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
365 +      }
366 +      
367 +    }
368 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
369 +    groupColToGtype.resize(nGroupsInCol_);
370 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
371 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
372 +      for (vector<int>::iterator jb = atomListCol.begin();
373 +           jb != atomListCol.end(); ++jb) {            
374 +        int atom2 = (*jb);
375 +        atid = identsCol[atom2];
376 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
377 +          groupCutoffCol[cg2] = atypeCutoff[atid];
378 +        }
379 +      }
380 +      bool gTypeFound = false;
381 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
382 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
383 +          groupColToGtype[cg2] = gt;
384 +          gTypeFound = true;
385 +        }
386 +      }
387 +      if (!gTypeFound) {
388 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
389 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
390 +      }
391 +    }
392 + #else
393 +
394 +    vector<RealType> groupCutoff(nGroups_, 0.0);
395 +    groupToGtype.resize(nGroups_);
396 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
397 +      groupCutoff[cg1] = 0.0;
398 +      vector<int> atomList = getAtomsInGroupRow(cg1);
399 +      for (vector<int>::iterator ia = atomList.begin();
400 +           ia != atomList.end(); ++ia) {            
401 +        int atom1 = (*ia);
402 +        atid = idents[atom1];
403 +        if (atypeCutoff[atid] > groupCutoff[cg1])
404 +          groupCutoff[cg1] = atypeCutoff[atid];
405 +      }
406 +      
407 +      bool gTypeFound = false;
408 +      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
409 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
410 +          groupToGtype[cg1] = gt;
411 +          gTypeFound = true;
412 +        }
413 +      }
414 +      if (!gTypeFound) {      
415 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
416 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
417 +      }      
418 +    }
419 + #endif
420 +
421 +    // Now we find the maximum group cutoff value present in the simulation
422 +
423 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
424 +                                     gTypeCutoffs.end());
425 +
426 + #ifdef IS_MPI
427 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
428 +                              MPI::MAX);
429 + #endif
430 +    
431 +    RealType tradRcut = groupMax;
432 +
433 +    GrCut.resize( gTypeCutoffs.size() );
434 +    GrCutSq.resize( gTypeCutoffs.size() );
435 +    GrlistSq.resize( gTypeCutoffs.size() );
436 +
437 +
438 +    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
439 +      GrCut[i].resize( gTypeCutoffs.size() , 0.0);
440 +      GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 );
441 +      GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 );
442 +
443 +      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
444 +        RealType thisRcut;
445 +        switch(cutoffPolicy_) {
446 +        case TRADITIONAL:
447 +          thisRcut = tradRcut;
448 +          break;
449 +        case MIX:
450 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
451 +          break;
452 +        case MAX:
453 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
454 +          break;
455 +        default:
456 +          sprintf(painCave.errMsg,
457 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
458 +                  "hit an unknown cutoff policy!\n");
459 +          painCave.severity = OPENMD_ERROR;
460 +          painCave.isFatal = 1;
461 +          simError();
462 +          break;
463 +        }
464 +
465 +        GrCut[i][j] = thisRcut;
466 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
467 +        GrCutSq[i][j] = thisRcut * thisRcut;
468 +        GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2);
469 +
470 +        // pair<int,int> key = make_pair(i,j);
471 +        // gTypeCutoffMap[key].first = thisRcut;
472 +        // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
473 +        // sanity check
474 +        
475 +        if (userChoseCutoff_) {
476 +          if (abs(GrCut[i][j] - userCutoff_) > 0.0001) {
477 +            sprintf(painCave.errMsg,
478 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
479 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
480 +            painCave.severity = OPENMD_ERROR;
481 +            painCave.isFatal = 1;
482 +            simError();            
483 +          }
484 +        }
485 +      }
486 +    }
487    }
488 +
489 +  void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) {
490 +    int i, j;  
491 + #ifdef IS_MPI
492 +    i = groupRowToGtype[cg1];
493 +    j = groupColToGtype[cg2];
494 + #else
495 +    i = groupToGtype[cg1];
496 +    j = groupToGtype[cg2];
497 + #endif    
498 +    rcut = GrCut[i][j];
499 +    rcutsq = GrCutSq[i][j];
500 +    rlistsq = GrlistSq[i][j];
501 +    return;
502 +    //return gTypeCutoffMap[make_pair(i,j)];
503 +  }
504 +
505 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
506 +    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
507 +      if (toposForAtom[atom1][j] == atom2)
508 +        return topoDist[atom1][j];
509 +    }                                          
510 +    return 0;
511 +  }
512 +
513 +  void ForceMatrixDecomposition::zeroWorkArrays() {
514 +    pairwisePot = 0.0;
515 +    embeddingPot = 0.0;
516 +    excludedPot = 0.0;
517 +    excludedSelfPot = 0.0;
518 +
519 + #ifdef IS_MPI
520 +    if (storageLayout_ & DataStorage::dslForce) {
521 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
522 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
523 +    }
524 +
525 +    if (storageLayout_ & DataStorage::dslTorque) {
526 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
527 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
528 +    }
529      
530 +    fill(pot_row.begin(), pot_row.end(),
531 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
532  
533 +    fill(pot_col.begin(), pot_col.end(),
534 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
535  
536 +    fill(expot_row.begin(), expot_row.end(),
537 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
538 +
539 +    fill(expot_col.begin(), expot_col.end(),
540 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
541 +
542 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
543 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
544 +           0.0);
545 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
546 +           0.0);
547 +    }
548 +
549 +    if (storageLayout_ & DataStorage::dslDensity) {      
550 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
551 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
552 +    }
553 +
554 +    if (storageLayout_ & DataStorage::dslFunctional) {  
555 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
556 +           0.0);
557 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
558 +           0.0);
559 +    }
560 +
561 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
562 +      fill(atomRowData.functionalDerivative.begin(),
563 +           atomRowData.functionalDerivative.end(), 0.0);
564 +      fill(atomColData.functionalDerivative.begin(),
565 +           atomColData.functionalDerivative.end(), 0.0);
566 +    }
567 +
568 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
569 +      fill(atomRowData.skippedCharge.begin(),
570 +           atomRowData.skippedCharge.end(), 0.0);
571 +      fill(atomColData.skippedCharge.begin(),
572 +           atomColData.skippedCharge.end(), 0.0);
573 +    }
574 +
575 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
576 +      fill(atomRowData.flucQFrc.begin(),
577 +           atomRowData.flucQFrc.end(), 0.0);
578 +      fill(atomColData.flucQFrc.begin(),
579 +           atomColData.flucQFrc.end(), 0.0);
580 +    }
581 +
582 +    if (storageLayout_ & DataStorage::dslElectricField) {    
583 +      fill(atomRowData.electricField.begin(),
584 +           atomRowData.electricField.end(), V3Zero);
585 +      fill(atomColData.electricField.begin(),
586 +           atomColData.electricField.end(), V3Zero);
587 +    }
588 +
589 + #endif
590 +    // even in parallel, we need to zero out the local arrays:
591 +
592 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
593 +      fill(snap_->atomData.particlePot.begin(),
594 +           snap_->atomData.particlePot.end(), 0.0);
595 +    }
596 +    
597 +    if (storageLayout_ & DataStorage::dslDensity) {      
598 +      fill(snap_->atomData.density.begin(),
599 +           snap_->atomData.density.end(), 0.0);
600 +    }
601 +
602 +    if (storageLayout_ & DataStorage::dslFunctional) {
603 +      fill(snap_->atomData.functional.begin(),
604 +           snap_->atomData.functional.end(), 0.0);
605 +    }
606 +
607 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
608 +      fill(snap_->atomData.functionalDerivative.begin(),
609 +           snap_->atomData.functionalDerivative.end(), 0.0);
610 +    }
611 +
612 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
613 +      fill(snap_->atomData.skippedCharge.begin(),
614 +           snap_->atomData.skippedCharge.end(), 0.0);
615 +    }
616 +
617 +    if (storageLayout_ & DataStorage::dslElectricField) {      
618 +      fill(snap_->atomData.electricField.begin(),
619 +           snap_->atomData.electricField.end(), V3Zero);
620 +    }
621 +  }
622 +
623 +
624    void ForceMatrixDecomposition::distributeData()  {
625      snap_ = sman_->getCurrentSnapshot();
626      storageLayout_ = sman_->getStorageLayout();
627   #ifdef IS_MPI
628      
629      // gather up the atomic positions
630 <    AtomCommVectorRow->gather(snap_->atomData.position,
630 >    AtomPlanVectorRow->gather(snap_->atomData.position,
631                                atomRowData.position);
632 <    AtomCommVectorColumn->gather(snap_->atomData.position,
632 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
633                                   atomColData.position);
634      
635      // gather up the cutoff group positions
636 <    cgCommVectorRow->gather(snap_->cgData.position,
636 >
637 >    cgPlanVectorRow->gather(snap_->cgData.position,
638                              cgRowData.position);
639 <    cgCommVectorColumn->gather(snap_->cgData.position,
639 >
640 >    cgPlanVectorColumn->gather(snap_->cgData.position,
641                                 cgColData.position);
642 +
643 +
644 +
645 +    if (needVelocities_) {
646 +      // gather up the atomic velocities
647 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
648 +                                   atomColData.velocity);
649 +      
650 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
651 +                                 cgColData.velocity);
652 +    }
653 +
654      
655      // if needed, gather the atomic rotation matrices
656      if (storageLayout_ & DataStorage::dslAmat) {
657 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
657 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
658                                  atomRowData.aMat);
659 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
659 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
660                                     atomColData.aMat);
661      }
662 <    
663 <    // if needed, gather the atomic eletrostatic frames
664 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
665 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
666 <                                atomRowData.electroFrame);
667 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
668 <                                   atomColData.electroFrame);
662 >
663 >    // if needed, gather the atomic eletrostatic information
664 >    if (storageLayout_ & DataStorage::dslDipole) {
665 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
666 >                                atomRowData.dipole);
667 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
668 >                                   atomColData.dipole);
669      }
670 +
671 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
672 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
673 +                                atomRowData.quadrupole);
674 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
675 +                                   atomColData.quadrupole);
676 +    }
677 +        
678 +    // if needed, gather the atomic fluctuating charge values
679 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
680 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
681 +                              atomRowData.flucQPos);
682 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
683 +                                 atomColData.flucQPos);
684 +    }
685 +
686   #endif      
687    }
688    
689 +  /* collects information obtained during the pre-pair loop onto local
690 +   * data structures.
691 +   */
692    void ForceMatrixDecomposition::collectIntermediateData() {
693      snap_ = sman_->getCurrentSnapshot();
694      storageLayout_ = sman_->getStorageLayout();
# Line 162 | Line 696 | namespace OpenMD {
696      
697      if (storageLayout_ & DataStorage::dslDensity) {
698        
699 <      AtomCommRealRow->scatter(atomRowData.density,
699 >      AtomPlanRealRow->scatter(atomRowData.density,
700                                 snap_->atomData.density);
701        
702        int n = snap_->atomData.density.size();
703 <      std::vector<RealType> rho_tmp(n, 0.0);
704 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
703 >      vector<RealType> rho_tmp(n, 0.0);
704 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
705        for (int i = 0; i < n; i++)
706          snap_->atomData.density[i] += rho_tmp[i];
707      }
708 +
709 +    // this isn't necessary if we don't have polarizable atoms, but
710 +    // we'll leave it here for now.
711 +    if (storageLayout_ & DataStorage::dslElectricField) {
712 +      
713 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
714 +                                 snap_->atomData.electricField);
715 +      
716 +      int n = snap_->atomData.electricField.size();
717 +      vector<Vector3d> field_tmp(n, V3Zero);
718 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
719 +                                    field_tmp);
720 +      for (int i = 0; i < n; i++)
721 +        snap_->atomData.electricField[i] += field_tmp[i];
722 +    }
723   #endif
724    }
725 <  
725 >
726 >  /*
727 >   * redistributes information obtained during the pre-pair loop out to
728 >   * row and column-indexed data structures
729 >   */
730    void ForceMatrixDecomposition::distributeIntermediateData() {
731      snap_ = sman_->getCurrentSnapshot();
732      storageLayout_ = sman_->getStorageLayout();
733   #ifdef IS_MPI
734      if (storageLayout_ & DataStorage::dslFunctional) {
735 <      AtomCommRealRow->gather(snap_->atomData.functional,
735 >      AtomPlanRealRow->gather(snap_->atomData.functional,
736                                atomRowData.functional);
737 <      AtomCommRealColumn->gather(snap_->atomData.functional,
737 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
738                                   atomColData.functional);
739      }
740      
741      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
742 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
742 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
743                                atomRowData.functionalDerivative);
744 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
744 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
745                                   atomColData.functionalDerivative);
746      }
747   #endif
# Line 202 | Line 755 | namespace OpenMD {
755      int n = snap_->atomData.force.size();
756      vector<Vector3d> frc_tmp(n, V3Zero);
757      
758 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
758 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
759      for (int i = 0; i < n; i++) {
760        snap_->atomData.force[i] += frc_tmp[i];
761        frc_tmp[i] = 0.0;
762      }
763      
764 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
765 <    for (int i = 0; i < n; i++)
764 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
765 >    for (int i = 0; i < n; i++) {
766        snap_->atomData.force[i] += frc_tmp[i];
767 <    
768 <    
767 >    }
768 >        
769      if (storageLayout_ & DataStorage::dslTorque) {
770  
771 <      int nt = snap_->atomData.force.size();
771 >      int nt = snap_->atomData.torque.size();
772        vector<Vector3d> trq_tmp(nt, V3Zero);
773  
774 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
775 <      for (int i = 0; i < n; i++) {
774 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
775 >      for (int i = 0; i < nt; i++) {
776          snap_->atomData.torque[i] += trq_tmp[i];
777          trq_tmp[i] = 0.0;
778        }
779        
780 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
781 <      for (int i = 0; i < n; i++)
780 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
781 >      for (int i = 0; i < nt; i++)
782          snap_->atomData.torque[i] += trq_tmp[i];
783      }
231    
232    int nLocal = snap_->getNumberOfAtoms();
784  
785 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
786 <                                       vector<RealType> (nLocal, 0.0));
785 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
786 >
787 >      int ns = snap_->atomData.skippedCharge.size();
788 >      vector<RealType> skch_tmp(ns, 0.0);
789 >
790 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
791 >      for (int i = 0; i < ns; i++) {
792 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
793 >        skch_tmp[i] = 0.0;
794 >      }
795 >      
796 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
797 >      for (int i = 0; i < ns; i++)
798 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
799 >            
800 >    }
801      
802 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
803 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
804 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
805 <        pot_local[i] += pot_temp[i][ii];
802 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
803 >
804 >      int nq = snap_->atomData.flucQFrc.size();
805 >      vector<RealType> fqfrc_tmp(nq, 0.0);
806 >
807 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
808 >      for (int i = 0; i < nq; i++) {
809 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
810 >        fqfrc_tmp[i] = 0.0;
811        }
812 +      
813 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
814 +      for (int i = 0; i < nq; i++)
815 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
816 +            
817      }
818 +
819 +    if (storageLayout_ & DataStorage::dslElectricField) {
820 +
821 +      int nef = snap_->atomData.electricField.size();
822 +      vector<Vector3d> efield_tmp(nef, V3Zero);
823 +
824 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
825 +      for (int i = 0; i < nef; i++) {
826 +        snap_->atomData.electricField[i] += efield_tmp[i];
827 +        efield_tmp[i] = 0.0;
828 +      }
829 +      
830 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
831 +      for (int i = 0; i < nef; i++)
832 +        snap_->atomData.electricField[i] += efield_tmp[i];
833 +    }
834 +
835 +
836 +    nLocal_ = snap_->getNumberOfAtoms();
837 +
838 +    vector<potVec> pot_temp(nLocal_,
839 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
840 +    vector<potVec> expot_temp(nLocal_,
841 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
842 +
843 +    // scatter/gather pot_row into the members of my column
844 +          
845 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
846 +    AtomPlanPotRow->scatter(expot_row, expot_temp);
847 +
848 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
849 +      pairwisePot += pot_temp[ii];
850 +
851 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
852 +      excludedPot += expot_temp[ii];
853 +        
854 +    if (storageLayout_ & DataStorage::dslParticlePot) {
855 +      // This is the pairwise contribution to the particle pot.  The
856 +      // embedding contribution is added in each of the low level
857 +      // non-bonded routines.  In single processor, this is done in
858 +      // unpackInteractionData, not in collectData.
859 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
860 +        for (int i = 0; i < nLocal_; i++) {
861 +          // factor of two is because the total potential terms are divided
862 +          // by 2 in parallel due to row/ column scatter      
863 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
864 +        }
865 +      }
866 +    }
867 +
868 +    fill(pot_temp.begin(), pot_temp.end(),
869 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
870 +    fill(expot_temp.begin(), expot_temp.end(),
871 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
872 +      
873 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
874 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
875 +    
876 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
877 +      pairwisePot += pot_temp[ii];    
878 +
879 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
880 +      excludedPot += expot_temp[ii];    
881 +
882 +    if (storageLayout_ & DataStorage::dslParticlePot) {
883 +      // This is the pairwise contribution to the particle pot.  The
884 +      // embedding contribution is added in each of the low level
885 +      // non-bonded routines.  In single processor, this is done in
886 +      // unpackInteractionData, not in collectData.
887 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
888 +        for (int i = 0; i < nLocal_; i++) {
889 +          // factor of two is because the total potential terms are divided
890 +          // by 2 in parallel due to row/ column scatter      
891 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
892 +        }
893 +      }
894 +    }
895 +    
896 +    if (storageLayout_ & DataStorage::dslParticlePot) {
897 +      int npp = snap_->atomData.particlePot.size();
898 +      vector<RealType> ppot_temp(npp, 0.0);
899 +
900 +      // This is the direct or embedding contribution to the particle
901 +      // pot.
902 +      
903 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
904 +      for (int i = 0; i < npp; i++) {
905 +        snap_->atomData.particlePot[i] += ppot_temp[i];
906 +      }
907 +
908 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
909 +      
910 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
911 +      for (int i = 0; i < npp; i++) {
912 +        snap_->atomData.particlePot[i] += ppot_temp[i];
913 +      }
914 +    }
915 +
916 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
917 +      RealType ploc1 = pairwisePot[ii];
918 +      RealType ploc2 = 0.0;
919 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
920 +      pairwisePot[ii] = ploc2;
921 +    }
922 +
923 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
924 +      RealType ploc1 = excludedPot[ii];
925 +      RealType ploc2 = 0.0;
926 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
927 +      excludedPot[ii] = ploc2;
928 +    }
929 +
930 +    // Here be dragons.
931 +    MPI::Intracomm col = colComm.getComm();
932 +
933 +    col.Allreduce(MPI::IN_PLACE,
934 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
935 +                  MPI::REALTYPE, MPI::SUM);
936 +
937 +
938   #endif
939 +
940    }
941  
942 +  /**
943 +   * Collects information obtained during the post-pair (and embedding
944 +   * functional) loops onto local data structures.
945 +   */
946 +  void ForceMatrixDecomposition::collectSelfData() {
947 +    snap_ = sman_->getCurrentSnapshot();
948 +    storageLayout_ = sman_->getStorageLayout();
949 +
950 + #ifdef IS_MPI
951 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
952 +      RealType ploc1 = embeddingPot[ii];
953 +      RealType ploc2 = 0.0;
954 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
955 +      embeddingPot[ii] = ploc2;
956 +    }    
957 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
958 +      RealType ploc1 = excludedSelfPot[ii];
959 +      RealType ploc2 = 0.0;
960 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
961 +      excludedSelfPot[ii] = ploc2;
962 +    }    
963 + #endif
964 +    
965 +  }
966 +
967 +
968 +
969 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
970 + #ifdef IS_MPI
971 +    return nAtomsInRow_;
972 + #else
973 +    return nLocal_;
974 + #endif
975 +  }
976 +
977 +  /**
978 +   * returns the list of atoms belonging to this group.  
979 +   */
980 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
981 + #ifdef IS_MPI
982 +    return groupListRow_[cg1];
983 + #else
984 +    return groupList_[cg1];
985 + #endif
986 +  }
987 +
988 +  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
989 + #ifdef IS_MPI
990 +    return groupListCol_[cg2];
991 + #else
992 +    return groupList_[cg2];
993 + #endif
994 +  }
995    
996    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
997      Vector3d d;
# Line 253 | Line 1002 | namespace OpenMD {
1002      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
1003   #endif
1004      
1005 <    snap_->wrapVector(d);
1005 >    if (usePeriodicBoundaryConditions_) {
1006 >      snap_->wrapVector(d);
1007 >    }
1008      return d;    
1009    }
1010  
1011 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
1012 + #ifdef IS_MPI
1013 +    return cgColData.velocity[cg2];
1014 + #else
1015 +    return snap_->cgData.velocity[cg2];
1016 + #endif
1017 +  }
1018  
1019 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
1020 + #ifdef IS_MPI
1021 +    return atomColData.velocity[atom2];
1022 + #else
1023 +    return snap_->atomData.velocity[atom2];
1024 + #endif
1025 +  }
1026 +
1027 +
1028    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1029  
1030      Vector3d d;
# Line 267 | Line 1034 | namespace OpenMD {
1034   #else
1035      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1036   #endif
1037 <
1038 <    snap_->wrapVector(d);
1037 >    if (usePeriodicBoundaryConditions_) {
1038 >      snap_->wrapVector(d);
1039 >    }
1040      return d;    
1041    }
1042    
# Line 280 | Line 1048 | namespace OpenMD {
1048   #else
1049      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1050   #endif
1051 <    
1052 <    snap_->wrapVector(d);
1051 >    if (usePeriodicBoundaryConditions_) {
1052 >      snap_->wrapVector(d);
1053 >    }
1054      return d;    
1055    }
1056 +
1057 +  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1058 + #ifdef IS_MPI
1059 +    return massFactorsRow[atom1];
1060 + #else
1061 +    return massFactors[atom1];
1062 + #endif
1063 +  }
1064 +
1065 +  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1066 + #ifdef IS_MPI
1067 +    return massFactorsCol[atom2];
1068 + #else
1069 +    return massFactors[atom2];
1070 + #endif
1071 +
1072 +  }
1073      
1074    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1075      Vector3d d;
# Line 293 | Line 1079 | namespace OpenMD {
1079   #else
1080      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1081   #endif
1082 <
1083 <    snap_->wrapVector(d);
1082 >    if (usePeriodicBoundaryConditions_) {
1083 >      snap_->wrapVector(d);
1084 >    }
1085      return d;    
1086    }
1087  
1088 +  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1089 +    return excludesForAtom[atom1];
1090 +  }
1091 +
1092 +  /**
1093 +   * We need to exclude some overcounted interactions that result from
1094 +   * the parallel decomposition.
1095 +   */
1096 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1097 +    int unique_id_1, unique_id_2;
1098 +        
1099 + #ifdef IS_MPI
1100 +    // in MPI, we have to look up the unique IDs for each atom
1101 +    unique_id_1 = AtomRowToGlobal[atom1];
1102 +    unique_id_2 = AtomColToGlobal[atom2];
1103 +    // group1 = cgRowToGlobal[cg1];
1104 +    // group2 = cgColToGlobal[cg2];
1105 + #else
1106 +    unique_id_1 = AtomLocalToGlobal[atom1];
1107 +    unique_id_2 = AtomLocalToGlobal[atom2];
1108 +    int group1 = cgLocalToGlobal[cg1];
1109 +    int group2 = cgLocalToGlobal[cg2];
1110 + #endif  
1111 +
1112 +    if (unique_id_1 == unique_id_2) return true;
1113 +
1114 + #ifdef IS_MPI
1115 +    // this prevents us from doing the pair on multiple processors
1116 +    if (unique_id_1 < unique_id_2) {
1117 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1118 +    } else {
1119 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1120 +    }
1121 + #endif    
1122 +
1123 + #ifndef IS_MPI
1124 +    if (group1 == group2) {
1125 +      if (unique_id_1 < unique_id_2) return true;
1126 +    }
1127 + #endif
1128 +    
1129 +    return false;
1130 +  }
1131 +
1132 +  /**
1133 +   * We need to handle the interactions for atoms who are involved in
1134 +   * the same rigid body as well as some short range interactions
1135 +   * (bonds, bends, torsions) differently from other interactions.
1136 +   * We'll still visit the pairwise routines, but with a flag that
1137 +   * tells those routines to exclude the pair from direct long range
1138 +   * interactions.  Some indirect interactions (notably reaction
1139 +   * field) must still be handled for these pairs.
1140 +   */
1141 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1142 +
1143 +    // excludesForAtom was constructed to use row/column indices in the MPI
1144 +    // version, and to use local IDs in the non-MPI version:
1145 +    
1146 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1147 +         i != excludesForAtom[atom1].end(); ++i) {
1148 +      if ( (*i) == atom2 ) return true;
1149 +    }
1150 +
1151 +    return false;
1152 +  }
1153 +
1154 +
1155    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1156   #ifdef IS_MPI
1157      atomRowData.force[atom1] += fg;
# Line 312 | Line 1166 | namespace OpenMD {
1166   #else
1167      snap_->atomData.force[atom2] += fg;
1168   #endif
315
1169    }
1170  
1171      // filling interaction blocks with pointers
1172 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1172 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1173 >                                                     int atom1, int atom2) {
1174  
1175 <    InteractionData idat;
1175 >    idat.excluded = excludeAtomPair(atom1, atom2);
1176 >  
1177   #ifdef IS_MPI
1178 +    //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1179 +    idat.atid1 = identsRow[atom1];
1180 +    idat.atid2 = identsCol[atom2];
1181 +
1182 +    if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) {
1183 +      idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]);
1184 +    } else {
1185 +      idat.sameRegion = false;
1186 +    }
1187 +
1188      if (storageLayout_ & DataStorage::dslAmat) {
1189        idat.A1 = &(atomRowData.aMat[atom1]);
1190        idat.A2 = &(atomColData.aMat[atom2]);
1191      }
1192 <
328 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
329 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
330 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
331 <    }
332 <
1192 >    
1193      if (storageLayout_ & DataStorage::dslTorque) {
1194        idat.t1 = &(atomRowData.torque[atom1]);
1195        idat.t2 = &(atomColData.torque[atom2]);
1196      }
1197  
1198 +    if (storageLayout_ & DataStorage::dslDipole) {
1199 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1200 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1201 +    }
1202 +
1203 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1204 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1205 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1206 +    }
1207 +
1208      if (storageLayout_ & DataStorage::dslDensity) {
1209        idat.rho1 = &(atomRowData.density[atom1]);
1210        idat.rho2 = &(atomColData.density[atom2]);
1211      }
1212  
1213 +    if (storageLayout_ & DataStorage::dslFunctional) {
1214 +      idat.frho1 = &(atomRowData.functional[atom1]);
1215 +      idat.frho2 = &(atomColData.functional[atom2]);
1216 +    }
1217 +
1218      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1219        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1220        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1221      }
1222 +
1223 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1224 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1225 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1226 +    }
1227 +
1228 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1229 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1230 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1231 +    }
1232 +
1233 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1234 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1235 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1236 +    }
1237 +
1238   #else
1239 +    
1240 +    //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1241 +    idat.atid1 = idents[atom1];
1242 +    idat.atid2 = idents[atom2];
1243 +
1244 +    if (regions[atom1] >= 0 && regions[atom2] >= 0) {
1245 +      idat.sameRegion = (regions[atom1] == regions[atom2]);
1246 +    } else {
1247 +      idat.sameRegion = false;
1248 +    }
1249 +
1250      if (storageLayout_ & DataStorage::dslAmat) {
1251        idat.A1 = &(snap_->atomData.aMat[atom1]);
1252        idat.A2 = &(snap_->atomData.aMat[atom2]);
1253      }
1254  
353    if (storageLayout_ & DataStorage::dslElectroFrame) {
354      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
355      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
356    }
357
1255      if (storageLayout_ & DataStorage::dslTorque) {
1256        idat.t1 = &(snap_->atomData.torque[atom1]);
1257        idat.t2 = &(snap_->atomData.torque[atom2]);
1258      }
1259  
1260 <    if (storageLayout_ & DataStorage::dslDensity) {
1260 >    if (storageLayout_ & DataStorage::dslDipole) {
1261 >      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1262 >      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1263 >    }
1264 >
1265 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1266 >      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1267 >      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1268 >    }
1269 >
1270 >    if (storageLayout_ & DataStorage::dslDensity) {    
1271        idat.rho1 = &(snap_->atomData.density[atom1]);
1272        idat.rho2 = &(snap_->atomData.density[atom2]);
1273      }
1274  
1275 +    if (storageLayout_ & DataStorage::dslFunctional) {
1276 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1277 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1278 +    }
1279 +
1280      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1281        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1282        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1283      }
1284 +
1285 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1286 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1287 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1288 +    }
1289 +
1290 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1291 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1292 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1293 +    }
1294 +
1295 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1296 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1297 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1298 +    }
1299 +
1300   #endif
373    
1301    }
375  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
376    InteractionData idat;
377    skippedCharge1
378      skippedCharge2
379      rij
380      d
381    electroMult
382    sw
383    f
384 #ifdef IS_MPI
1302  
1303 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1304 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1305 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1303 >  
1304 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1305 > #ifdef IS_MPI
1306 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1307 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1308 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1309 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1310 >
1311 >    atomRowData.force[atom1] += *(idat.f1);
1312 >    atomColData.force[atom2] -= *(idat.f1);
1313 >
1314 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1315 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1316 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1317      }
1318 <    if (storageLayout_ & DataStorage::dslTorque) {
1319 <      idat.t1 = &(atomRowData.torque[atom1]);
1320 <      idat.t2 = &(atomColData.torque[atom2]);
1318 >
1319 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1320 >      atomRowData.electricField[atom1] += *(idat.eField1);
1321 >      atomColData.electricField[atom2] += *(idat.eField2);
1322      }
1323  
1324 + #else
1325 +    pairwisePot += *(idat.pot);
1326 +    excludedPot += *(idat.excludedPot);
1327 +
1328 +    snap_->atomData.force[atom1] += *(idat.f1);
1329 +    snap_->atomData.force[atom2] -= *(idat.f1);
1330 +
1331 +    if (idat.doParticlePot) {
1332 +      // This is the pairwise contribution to the particle pot.  The
1333 +      // embedding contribution is added in each of the low level
1334 +      // non-bonded routines.  In parallel, this calculation is done
1335 +      // in collectData, not in unpackInteractionData.
1336 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1337 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1338 +    }
1339      
1340 <  }
1341 <  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
1342 <  }
1340 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1341 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1342 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1343 >    }
1344  
1345 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1346 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1347 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1348 +    }
1349  
1350 + #endif
1351 +    
1352 +  }
1353 +
1354    /*
1355     * buildNeighborList
1356     *
1357     * first element of pair is row-indexed CutoffGroup
1358     * second element of pair is column-indexed CutoffGroup
1359     */
1360 <  vector<pair<int, int> >  buildNeighborList() {
1361 <    Vector3d dr, invWid, rs, shift;
1362 <    Vector3i cc, m1v, m2s;
1363 <    RealType rrNebr;
1364 <    int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset;
1360 >  void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) {
1361 >    
1362 >    neighborList.clear();
1363 >    groupCutoffs cuts;
1364 >    bool doAllPairs = false;
1365  
1366 +    RealType rList_ = (largestRcut_ + skinThickness_);
1367 +    RealType rcut, rcutsq, rlistsq;
1368 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1369 +    Mat3x3d box;
1370 +    Mat3x3d invBox;
1371  
1372 <    vector<pair<int, int> > neighborList;  
1373 <    Vector3i nCells;
1374 <    Vector3d invWid, r;
1372 >    Vector3d rs, scaled, dr;
1373 >    Vector3i whichCell;
1374 >    int cellIndex;
1375  
1376 <    rList_ = (rCut_ + skinThickness_);
1377 <    rl2 = rList_ * rList_;
1378 <
1379 <    snap_ = sman_->getCurrentSnapshot();
1380 <    Mat3x3d Hmat = snap_->getHmat();
1381 <    Vector3d Hx = Hmat.getColumn(0);
1382 <    Vector3d Hy = Hmat.getColumn(1);
1383 <    Vector3d Hz = Hmat.getColumn(2);
1384 <
1385 <    nCells.x() = (int) ( Hx.length() )/ rList_;
1386 <    nCells.y() = (int) ( Hy.length() )/ rList_;
1387 <    nCells.z() = (int) ( Hz.length() )/ rList_;
1388 <
431 <    for (i = 0; i < nGroupsInRow; i++) {
432 <      rs = cgRowData.position[i];
433 <      snap_->scaleVector(rs);    
1376 > #ifdef IS_MPI
1377 >    cellListRow_.clear();
1378 >    cellListCol_.clear();
1379 > #else
1380 >    cellList_.clear();
1381 > #endif
1382 >    
1383 >    if (!usePeriodicBoundaryConditions_) {
1384 >      box = snap_->getBoundingBox();
1385 >      invBox = snap_->getInvBoundingBox();
1386 >    } else {
1387 >      box = snap_->getHmat();
1388 >      invBox = snap_->getInvHmat();
1389      }
1390      
1391 +    Vector3d boxX = box.getColumn(0);
1392 +    Vector3d boxY = box.getColumn(1);
1393 +    Vector3d boxZ = box.getColumn(2);
1394 +    
1395 +    nCells_.x() = (int) ( boxX.length() )/ rList_;
1396 +    nCells_.y() = (int) ( boxY.length() )/ rList_;
1397 +    nCells_.z() = (int) ( boxZ.length() )/ rList_;
1398 +    
1399 +    // handle small boxes where the cell offsets can end up repeating cells
1400 +    
1401 +    if (nCells_.x() < 3) doAllPairs = true;
1402 +    if (nCells_.y() < 3) doAllPairs = true;
1403 +    if (nCells_.z() < 3) doAllPairs = true;
1404 +    
1405 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1406 +    
1407 + #ifdef IS_MPI
1408 +    cellListRow_.resize(nCtot);
1409 +    cellListCol_.resize(nCtot);
1410 + #else
1411 +    cellList_.resize(nCtot);
1412 + #endif
1413 +    
1414 +    if (!doAllPairs) {
1415 + #ifdef IS_MPI
1416 +      
1417 +      for (int i = 0; i < nGroupsInRow_; i++) {
1418 +        rs = cgRowData.position[i];
1419 +        
1420 +        // scaled positions relative to the box vectors
1421 +        scaled = invBox * rs;
1422 +        
1423 +        // wrap the vector back into the unit box by subtracting integer box
1424 +        // numbers
1425 +        for (int j = 0; j < 3; j++) {
1426 +          scaled[j] -= roundMe(scaled[j]);
1427 +          scaled[j] += 0.5;
1428 +          // Handle the special case when an object is exactly on the
1429 +          // boundary (a scaled coordinate of 1.0 is the same as
1430 +          // scaled coordinate of 0.0)
1431 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1432 +        }
1433 +        
1434 +        // find xyz-indices of cell that cutoffGroup is in.
1435 +        whichCell.x() = nCells_.x() * scaled.x();
1436 +        whichCell.y() = nCells_.y() * scaled.y();
1437 +        whichCell.z() = nCells_.z() * scaled.z();
1438 +        
1439 +        // find single index of this cell:
1440 +        cellIndex = Vlinear(whichCell, nCells_);
1441 +        
1442 +        // add this cutoff group to the list of groups in this cell;
1443 +        cellListRow_[cellIndex].push_back(i);
1444 +      }
1445 +      for (int i = 0; i < nGroupsInCol_; i++) {
1446 +        rs = cgColData.position[i];
1447 +        
1448 +        // scaled positions relative to the box vectors
1449 +        scaled = invBox * rs;
1450 +        
1451 +        // wrap the vector back into the unit box by subtracting integer box
1452 +        // numbers
1453 +        for (int j = 0; j < 3; j++) {
1454 +          scaled[j] -= roundMe(scaled[j]);
1455 +          scaled[j] += 0.5;
1456 +          // Handle the special case when an object is exactly on the
1457 +          // boundary (a scaled coordinate of 1.0 is the same as
1458 +          // scaled coordinate of 0.0)
1459 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1460 +        }
1461 +        
1462 +        // find xyz-indices of cell that cutoffGroup is in.
1463 +        whichCell.x() = nCells_.x() * scaled.x();
1464 +        whichCell.y() = nCells_.y() * scaled.y();
1465 +        whichCell.z() = nCells_.z() * scaled.z();
1466 +        
1467 +        // find single index of this cell:
1468 +        cellIndex = Vlinear(whichCell, nCells_);
1469 +        
1470 +        // add this cutoff group to the list of groups in this cell;
1471 +        cellListCol_[cellIndex].push_back(i);
1472 +      }
1473 +      
1474 + #else
1475 +      for (int i = 0; i < nGroups_; i++) {
1476 +        rs = snap_->cgData.position[i];
1477 +        
1478 +        // scaled positions relative to the box vectors
1479 +        scaled = invBox * rs;
1480 +        
1481 +        // wrap the vector back into the unit box by subtracting integer box
1482 +        // numbers
1483 +        for (int j = 0; j < 3; j++) {
1484 +          scaled[j] -= roundMe(scaled[j]);
1485 +          scaled[j] += 0.5;
1486 +          // Handle the special case when an object is exactly on the
1487 +          // boundary (a scaled coordinate of 1.0 is the same as
1488 +          // scaled coordinate of 0.0)
1489 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1490 +        }
1491 +        
1492 +        // find xyz-indices of cell that cutoffGroup is in.
1493 +        whichCell.x() = nCells_.x() * scaled.x();
1494 +        whichCell.y() = nCells_.y() * scaled.y();
1495 +        whichCell.z() = nCells_.z() * scaled.z();
1496 +        
1497 +        // find single index of this cell:
1498 +        cellIndex = Vlinear(whichCell, nCells_);
1499 +        
1500 +        // add this cutoff group to the list of groups in this cell;
1501 +        cellList_[cellIndex].push_back(i);
1502 +      }
1503  
1504 <    VDiv (invWid, cells, region);
438 <    for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1;
439 <    for (n = 0; n < nMol; n ++) {
440 <      VSAdd (rs, mol[n].r, 0.5, region);
441 <      VMul (cc, rs, invWid);
442 <      c = VLinear (cc, cells) + nMol;
443 <      cellList[n] = cellList[c];
444 <      cellList[c] = n;
445 <    }
446 <    nebrTabLen = 0;
447 <    for (m1z = 0; m1z < cells.z(); m1z++) {
448 <      for (m1y = 0; m1y < cells.y(); m1y++) {
449 <        for (m1x = 0; m1x < cells.x(); m1x++) {
450 <          Vector3i m1v(m1x, m1y, m1z);
451 <          m1 = VLinear(m1v, cells) + nMol;
452 <          for (offset = 0; offset < nOffset_; offset++) {
453 <            m2v = m1v + cellOffsets_[offset];
454 <            shift = V3Zero();
1504 > #endif
1505  
1506 <            if (m2v.x() >= cells.x) {
1507 <              m2v.x() = 0;          
1508 <              shift.x() = region.x();  
1509 <            } else if (m2v.x() < 0) {
1510 <              m2v.x() = cells.x() - 1;
1511 <              shift.x() = - region.x();
1512 <            }
1506 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1507 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1508 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1509 >            Vector3i m1v(m1x, m1y, m1z);
1510 >            int m1 = Vlinear(m1v, nCells_);
1511 >            
1512 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1513 >                 os != cellOffsets_.end(); ++os) {
1514 >              
1515 >              Vector3i m2v = m1v + (*os);
1516 >            
1517  
1518 <            if (m2v.y() >= cells.y()) {
1519 <              m2v.y() = 0;          
1520 <              shift.y() = region.y();  
1521 <            } else if (m2v.y() < 0) {
1522 <              m2v.y() = cells.y() - 1;
1523 <              shift.y() = - region.y();
1524 <            }
1518 >              if (m2v.x() >= nCells_.x()) {
1519 >                m2v.x() = 0;          
1520 >              } else if (m2v.x() < 0) {
1521 >                m2v.x() = nCells_.x() - 1;
1522 >              }
1523 >              
1524 >              if (m2v.y() >= nCells_.y()) {
1525 >                m2v.y() = 0;          
1526 >              } else if (m2v.y() < 0) {
1527 >                m2v.y() = nCells_.y() - 1;
1528 >              }
1529 >              
1530 >              if (m2v.z() >= nCells_.z()) {
1531 >                m2v.z() = 0;          
1532 >              } else if (m2v.z() < 0) {
1533 >                m2v.z() = nCells_.z() - 1;
1534 >              }
1535  
1536 <            m2 = VLinear (m2v, cells) + nMol;
1537 <            for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) {
1538 <              for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) {
1539 <                if (m1 != m2 || j2 < j1) {
1540 <                  dr = mol[j1].r - mol[j2].r;
1541 <                  VSub (dr, mol[j1].r, mol[j2].r);
1542 <                  VVSub (dr, shift);
1543 <                  if (VLenSq (dr) < rrNebr) {
1544 <                    neighborList.push_back(make_pair(j1, j2));
1536 >              int m2 = Vlinear (m2v, nCells_);
1537 >              
1538 > #ifdef IS_MPI
1539 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1540 >                   j1 != cellListRow_[m1].end(); ++j1) {
1541 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1542 >                     j2 != cellListCol_[m2].end(); ++j2) {
1543 >                  
1544 >                  // In parallel, we need to visit *all* pairs of row
1545 >                  // & column indicies and will divide labor in the
1546 >                  // force evaluation later.
1547 >                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1548 >                  if (usePeriodicBoundaryConditions_) {
1549 >                    snap_->wrapVector(dr);
1550                    }
1551 +                  getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1552 +                  if (dr.lengthSquare() < rlistsq) {
1553 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1554 +                  }                  
1555                  }
1556                }
1557 + #else
1558 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1559 +                   j1 != cellList_[m1].end(); ++j1) {
1560 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1561 +                     j2 != cellList_[m2].end(); ++j2) {
1562 +    
1563 +                  // Always do this if we're in different cells or if
1564 +                  // we're in the same cell and the global index of
1565 +                  // the j2 cutoff group is greater than or equal to
1566 +                  // the j1 cutoff group.  Note that Rappaport's code
1567 +                  // has a "less than" conditional here, but that
1568 +                  // deals with atom-by-atom computation.  OpenMD
1569 +                  // allows atoms within a single cutoff group to
1570 +                  // interact with each other.
1571 +
1572 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1573 +
1574 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1575 +                    if (usePeriodicBoundaryConditions_) {
1576 +                      snap_->wrapVector(dr);
1577 +                    }
1578 +                    getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1579 +                    if (dr.lengthSquare() < rlistsq) {
1580 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1581 +                    }
1582 +                  }
1583 +                }
1584 +              }
1585 + #endif
1586              }
1587            }
1588          }
1589        }
1590 +    } else {
1591 +      // branch to do all cutoff group pairs
1592 + #ifdef IS_MPI
1593 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1594 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1595 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1596 +          if (usePeriodicBoundaryConditions_) {
1597 +            snap_->wrapVector(dr);
1598 +          }
1599 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq);
1600 +          if (dr.lengthSquare() < rlistsq) {
1601 +            neighborList.push_back(make_pair(j1, j2));
1602 +          }
1603 +        }
1604 +      }      
1605 + #else
1606 +      // include all groups here.
1607 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1608 +        // include self group interactions j2 == j1
1609 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1610 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1611 +          if (usePeriodicBoundaryConditions_) {
1612 +            snap_->wrapVector(dr);
1613 +          }
1614 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq );
1615 +          if (dr.lengthSquare() < rlistsq) {
1616 +            neighborList.push_back(make_pair(j1, j2));
1617 +          }
1618 +        }    
1619 +      }
1620 + #endif
1621      }
1622 +      
1623 +    // save the local cutoff group positions for the check that is
1624 +    // done on each loop:
1625 +    saved_CG_positions_.clear();
1626 +    for (int i = 0; i < nGroups_; i++)
1627 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1628    }
490
491  
1629   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines