ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1538 by chuckv, Tue Jan 11 18:58:12 2011 UTC vs.
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1756 by gezelter, Mon Jun 18 18:23:20 2012 UTC

# Line 1 | Line 1
1 < /**
2 < * @file ForceDecomposition.cpp
3 < * @author Charles Vardeman <cvardema.at.nd.edu>
4 < * @date 08/18/2010
5 < * @time 11:56am
6 < * @version 1.0
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
8 * @section LICENSE
9 * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved.
10 *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
# Line 43 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 + #include "parallel/ForceMatrixDecomposition.hpp"
43 + #include "math/SquareMatrix3.hpp"
44 + #include "nonbonded/NonBondedInteraction.hpp"
45 + #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48 + using namespace std;
49 + namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52  
53 < /*  -*- c++ -*-  */
54 < #include "config.h"
55 < #include <stdlib.h>
53 >    // In a parallel computation, row and colum scans must visit all
54 >    // surrounding cells (not just the 14 upper triangular blocks that
55 >    // are used when the processor can see all pairs)
56   #ifdef IS_MPI
57 < #include <mpi.h>
58 < #endif
57 >    cellOffsets_.clear();
58 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 >    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 >    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 >    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 >    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 >    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 >    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 >    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 >    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 >    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 >    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 >    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 >    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 >    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 >    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 > #endif    
86 >  }
87  
58 #include <iostream>
59 #include <vector>
60 #include <algorithm>
61 #include <cmath>
62 #include "parallel/ForceDecomposition.hpp"
88  
89 +  /**
90 +   * distributeInitialData is essentially a copy of the older fortran
91 +   * SimulationSetup
92 +   */
93 +  void ForceMatrixDecomposition::distributeInitialData() {
94 +    snap_ = sman_->getCurrentSnapshot();
95 +    storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97 +    nLocal_ = snap_->getNumberOfAtoms();
98 +  
99 +    nGroups_ = info_->getNLocalCutoffGroups();
100 +    // gather the information for atomtype IDs (atids):
101 +    idents = info_->getIdentArray();
102 +    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 +    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 +    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 < using namespace std;
66 < using namespace OpenMD;
106 >    massFactors = info_->getMassFactors();
107  
108 < //__static
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112 >    
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119   #ifdef IS_MPI
120 < static vector<MPI:Comm> communictors;
121 < #endif
120 >
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 < //____ MPITypeTraits
125 < template<typename T>
126 < struct MPITypeTraits;
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 < #ifdef IS_MPI
131 < template<>
132 < struct MPITypeTraits<RealType> {
133 <  static const MPI::Datatype datatype;
134 < };
82 < const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL;
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 < template<>
137 < struct MPITypeTraits<int> {
138 <  static const MPI::Datatype datatype;
139 < };
88 < const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT;
89 < #endif
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 < /**
142 < * Constructor for ForceDecomposition Parallel Decomposition Method
143 < * Will try to construct a symmetric grid of processors. Ideally, the
144 < * number of processors will be a square ex: 4, 9, 16, 25.
95 < *
96 < */
141 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 >    nGroupsInRow_ = cgPlanIntRow->getSize();
144 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
145  
146 < ForceDecomposition::ForceDecomposition() {
146 >    // Modify the data storage objects with the correct layouts and sizes:
147 >    atomRowData.resize(nAtomsInRow_);
148 >    atomRowData.setStorageLayout(storageLayout_);
149 >    atomColData.resize(nAtomsInCol_);
150 >    atomColData.setStorageLayout(storageLayout_);
151 >    cgRowData.resize(nGroupsInRow_);
152 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
153 >    cgColData.resize(nGroupsInCol_);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163 >    
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166 >    
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 < #ifdef IS_MPI
172 <  int nProcs = MPI::COMM_WORLD.Get_size();
173 <  int worldRank = MPI::COMM_WORLD.Get_rank();
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175 >
176 >    pot_row.resize(nAtomsInRow_);
177 >    pot_col.resize(nAtomsInCol_);
178 >
179 >    AtomRowToGlobal.resize(nAtomsInRow_);
180 >    AtomColToGlobal.resize(nAtomsInCol_);
181 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
182 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
183 >
184 >    cgRowToGlobal.resize(nGroupsInRow_);
185 >    cgColToGlobal.resize(nGroupsInCol_);
186 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
187 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
188 >
189 >    massFactorsRow.resize(nAtomsInRow_);
190 >    massFactorsCol.resize(nAtomsInCol_);
191 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
192 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
193 >
194 >    groupListRow_.clear();
195 >    groupListRow_.resize(nGroupsInRow_);
196 >    for (int i = 0; i < nGroupsInRow_; i++) {
197 >      int gid = cgRowToGlobal[i];
198 >      for (int j = 0; j < nAtomsInRow_; j++) {
199 >        int aid = AtomRowToGlobal[j];
200 >        if (globalGroupMembership[aid] == gid)
201 >          groupListRow_[i].push_back(j);
202 >      }      
203 >    }
204 >
205 >    groupListCol_.clear();
206 >    groupListCol_.resize(nGroupsInCol_);
207 >    for (int i = 0; i < nGroupsInCol_; i++) {
208 >      int gid = cgColToGlobal[i];
209 >      for (int j = 0; j < nAtomsInCol_; j++) {
210 >        int aid = AtomColToGlobal[j];
211 >        if (globalGroupMembership[aid] == gid)
212 >          groupListCol_[i].push_back(j);
213 >      }      
214 >    }
215 >
216 >    excludesForAtom.clear();
217 >    excludesForAtom.resize(nAtomsInRow_);
218 >    toposForAtom.clear();
219 >    toposForAtom.resize(nAtomsInRow_);
220 >    topoDist.clear();
221 >    topoDist.resize(nAtomsInRow_);
222 >    for (int i = 0; i < nAtomsInRow_; i++) {
223 >      int iglob = AtomRowToGlobal[i];
224 >
225 >      for (int j = 0; j < nAtomsInCol_; j++) {
226 >        int jglob = AtomColToGlobal[j];
227 >
228 >        if (excludes->hasPair(iglob, jglob))
229 >          excludesForAtom[i].push_back(j);      
230 >        
231 >        if (oneTwo->hasPair(iglob, jglob)) {
232 >          toposForAtom[i].push_back(j);
233 >          topoDist[i].push_back(1);
234 >        } else {
235 >          if (oneThree->hasPair(iglob, jglob)) {
236 >            toposForAtom[i].push_back(j);
237 >            topoDist[i].push_back(2);
238 >          } else {
239 >            if (oneFour->hasPair(iglob, jglob)) {
240 >              toposForAtom[i].push_back(j);
241 >              topoDist[i].push_back(3);
242 >            }
243 >          }
244 >        }
245 >      }      
246 >    }
247 >
248 > #else
249 >    excludesForAtom.clear();
250 >    excludesForAtom.resize(nLocal_);
251 >    toposForAtom.clear();
252 >    toposForAtom.resize(nLocal_);
253 >    topoDist.clear();
254 >    topoDist.resize(nLocal_);
255 >
256 >    for (int i = 0; i < nLocal_; i++) {
257 >      int iglob = AtomLocalToGlobal[i];
258 >
259 >      for (int j = 0; j < nLocal_; j++) {
260 >        int jglob = AtomLocalToGlobal[j];
261 >
262 >        if (excludes->hasPair(iglob, jglob))
263 >          excludesForAtom[i].push_back(j);              
264 >        
265 >        if (oneTwo->hasPair(iglob, jglob)) {
266 >          toposForAtom[i].push_back(j);
267 >          topoDist[i].push_back(1);
268 >        } else {
269 >          if (oneThree->hasPair(iglob, jglob)) {
270 >            toposForAtom[i].push_back(j);
271 >            topoDist[i].push_back(2);
272 >          } else {
273 >            if (oneFour->hasPair(iglob, jglob)) {
274 >              toposForAtom[i].push_back(j);
275 >              topoDist[i].push_back(3);
276 >            }
277 >          }
278 >        }
279 >      }      
280 >    }
281   #endif
282  
283 <  // First time through, construct column stride.
284 <  if (communicators.size() == 0)
285 <  {
286 <    int nColumnsMax = (int) round(sqrt((float) nProcs));
287 <    for (int i = 0; i < nProcs; ++i)
288 <    {
289 <      if (nProcs%i==0) nColumns=i;
283 >    // allocate memory for the parallel objects
284 >    atypesLocal.resize(nLocal_);
285 >
286 >    for (int i = 0; i < nLocal_; i++)
287 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
288 >
289 >    groupList_.clear();
290 >    groupList_.resize(nGroups_);
291 >    for (int i = 0; i < nGroups_; i++) {
292 >      int gid = cgLocalToGlobal[i];
293 >      for (int j = 0; j < nLocal_; j++) {
294 >        int aid = AtomLocalToGlobal[j];
295 >        if (globalGroupMembership[aid] == gid) {
296 >          groupList_[i].push_back(j);
297 >        }
298 >      }      
299      }
300  
301 <    int nRows = nProcs/nColumns;    
302 <    myRank_ = (int) worldRank%nColumns;
301 >
302 >    createGtypeCutoffMap();
303 >
304    }
305 <  else
306 <  {
307 <    myRank_ = myRank/nColumns;
308 <  }
309 <  MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0);
310 <  
311 <  isColumn_ = false;
312 <  
313 < }
305 >  
306 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
307 >    
308 >    RealType tol = 1e-6;
309 >    largestRcut_ = 0.0;
310 >    RealType rc;
311 >    int atid;
312 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
313 >    
314 >    map<int, RealType> atypeCutoff;
315 >      
316 >    for (set<AtomType*>::iterator at = atypes.begin();
317 >         at != atypes.end(); ++at){
318 >      atid = (*at)->getIdent();
319 >      if (userChoseCutoff_)
320 >        atypeCutoff[atid] = userCutoff_;
321 >      else
322 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
323 >    }
324 >    
325 >    vector<RealType> gTypeCutoffs;
326 >    // first we do a single loop over the cutoff groups to find the
327 >    // largest cutoff for any atypes present in this group.
328 > #ifdef IS_MPI
329 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
330 >    groupRowToGtype.resize(nGroupsInRow_);
331 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
332 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
333 >      for (vector<int>::iterator ia = atomListRow.begin();
334 >           ia != atomListRow.end(); ++ia) {            
335 >        int atom1 = (*ia);
336 >        atid = identsRow[atom1];
337 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
338 >          groupCutoffRow[cg1] = atypeCutoff[atid];
339 >        }
340 >      }
341  
342 < ForceDecomposition::gather(sendbuf, receivebuf){
343 <  communicators(myIndex_).Allgatherv();
344 < }
342 >      bool gTypeFound = false;
343 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
344 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
345 >          groupRowToGtype[cg1] = gt;
346 >          gTypeFound = true;
347 >        }
348 >      }
349 >      if (!gTypeFound) {
350 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
351 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
352 >      }
353 >      
354 >    }
355 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
356 >    groupColToGtype.resize(nGroupsInCol_);
357 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
358 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
359 >      for (vector<int>::iterator jb = atomListCol.begin();
360 >           jb != atomListCol.end(); ++jb) {            
361 >        int atom2 = (*jb);
362 >        atid = identsCol[atom2];
363 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
364 >          groupCutoffCol[cg2] = atypeCutoff[atid];
365 >        }
366 >      }
367 >      bool gTypeFound = false;
368 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
369 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
370 >          groupColToGtype[cg2] = gt;
371 >          gTypeFound = true;
372 >        }
373 >      }
374 >      if (!gTypeFound) {
375 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
376 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
377 >      }
378 >    }
379 > #else
380  
381 +    vector<RealType> groupCutoff(nGroups_, 0.0);
382 +    groupToGtype.resize(nGroups_);
383 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
384 +      groupCutoff[cg1] = 0.0;
385 +      vector<int> atomList = getAtomsInGroupRow(cg1);
386 +      for (vector<int>::iterator ia = atomList.begin();
387 +           ia != atomList.end(); ++ia) {            
388 +        int atom1 = (*ia);
389 +        atid = idents[atom1];
390 +        if (atypeCutoff[atid] > groupCutoff[cg1])
391 +          groupCutoff[cg1] = atypeCutoff[atid];
392 +      }
393 +      
394 +      bool gTypeFound = false;
395 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
396 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
397 +          groupToGtype[cg1] = gt;
398 +          gTypeFound = true;
399 +        }
400 +      }
401 +      if (!gTypeFound) {      
402 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
403 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
404 +      }      
405 +    }
406 + #endif
407  
408 +    // Now we find the maximum group cutoff value present in the simulation
409  
410 < ForceDecomposition::scatter(sbuffer, rbuffer){
411 <  communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM);
412 < }
410 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
411 >                                     gTypeCutoffs.end());
412 >
413 > #ifdef IS_MPI
414 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
415 >                              MPI::MAX);
416 > #endif
417 >    
418 >    RealType tradRcut = groupMax;
419 >
420 >    for (int i = 0; i < gTypeCutoffs.size();  i++) {
421 >      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
422 >        RealType thisRcut;
423 >        switch(cutoffPolicy_) {
424 >        case TRADITIONAL:
425 >          thisRcut = tradRcut;
426 >          break;
427 >        case MIX:
428 >          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
429 >          break;
430 >        case MAX:
431 >          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
432 >          break;
433 >        default:
434 >          sprintf(painCave.errMsg,
435 >                  "ForceMatrixDecomposition::createGtypeCutoffMap "
436 >                  "hit an unknown cutoff policy!\n");
437 >          painCave.severity = OPENMD_ERROR;
438 >          painCave.isFatal = 1;
439 >          simError();
440 >          break;
441 >        }
442 >
443 >        pair<int,int> key = make_pair(i,j);
444 >        gTypeCutoffMap[key].first = thisRcut;
445 >        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
446 >        gTypeCutoffMap[key].second = thisRcut*thisRcut;
447 >        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
448 >        // sanity check
449 >        
450 >        if (userChoseCutoff_) {
451 >          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
452 >            sprintf(painCave.errMsg,
453 >                    "ForceMatrixDecomposition::createGtypeCutoffMap "
454 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
455 >            painCave.severity = OPENMD_ERROR;
456 >            painCave.isFatal = 1;
457 >            simError();            
458 >          }
459 >        }
460 >      }
461 >    }
462 >  }
463 >
464 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
465 >    int i, j;  
466 > #ifdef IS_MPI
467 >    i = groupRowToGtype[cg1];
468 >    j = groupColToGtype[cg2];
469 > #else
470 >    i = groupToGtype[cg1];
471 >    j = groupToGtype[cg2];
472 > #endif    
473 >    return gTypeCutoffMap[make_pair(i,j)];
474 >  }
475 >
476 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
477 >    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
478 >      if (toposForAtom[atom1][j] == atom2)
479 >        return topoDist[atom1][j];
480 >    }
481 >    return 0;
482 >  }
483 >
484 >  void ForceMatrixDecomposition::zeroWorkArrays() {
485 >    pairwisePot = 0.0;
486 >    embeddingPot = 0.0;
487 >
488 > #ifdef IS_MPI
489 >    if (storageLayout_ & DataStorage::dslForce) {
490 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
491 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
492 >    }
493 >
494 >    if (storageLayout_ & DataStorage::dslTorque) {
495 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
496 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
497 >    }
498 >    
499 >    fill(pot_row.begin(), pot_row.end(),
500 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
501 >
502 >    fill(pot_col.begin(), pot_col.end(),
503 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
504 >
505 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
506 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
507 >           0.0);
508 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
509 >           0.0);
510 >    }
511 >
512 >    if (storageLayout_ & DataStorage::dslDensity) {      
513 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
514 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
515 >    }
516 >
517 >    if (storageLayout_ & DataStorage::dslFunctional) {  
518 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
519 >           0.0);
520 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
521 >           0.0);
522 >    }
523 >
524 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
525 >      fill(atomRowData.functionalDerivative.begin(),
526 >           atomRowData.functionalDerivative.end(), 0.0);
527 >      fill(atomColData.functionalDerivative.begin(),
528 >           atomColData.functionalDerivative.end(), 0.0);
529 >    }
530 >
531 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
532 >      fill(atomRowData.skippedCharge.begin(),
533 >           atomRowData.skippedCharge.end(), 0.0);
534 >      fill(atomColData.skippedCharge.begin(),
535 >           atomColData.skippedCharge.end(), 0.0);
536 >    }
537 >
538 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
539 >      fill(atomRowData.flucQFrc.begin(),
540 >           atomRowData.flucQFrc.end(), 0.0);
541 >      fill(atomColData.flucQFrc.begin(),
542 >           atomColData.flucQFrc.end(), 0.0);
543 >    }
544 >
545 >    if (storageLayout_ & DataStorage::dslElectricField) {    
546 >      fill(atomRowData.electricField.begin(),
547 >           atomRowData.electricField.end(), V3Zero);
548 >      fill(atomColData.electricField.begin(),
549 >           atomColData.electricField.end(), V3Zero);
550 >    }
551 >
552 >    if (storageLayout_ & DataStorage::dslFlucQForce) {    
553 >      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
554 >           0.0);
555 >      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
556 >           0.0);
557 >    }
558 >
559 > #endif
560 >    // even in parallel, we need to zero out the local arrays:
561 >
562 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
563 >      fill(snap_->atomData.particlePot.begin(),
564 >           snap_->atomData.particlePot.end(), 0.0);
565 >    }
566 >    
567 >    if (storageLayout_ & DataStorage::dslDensity) {      
568 >      fill(snap_->atomData.density.begin(),
569 >           snap_->atomData.density.end(), 0.0);
570 >    }
571 >
572 >    if (storageLayout_ & DataStorage::dslFunctional) {
573 >      fill(snap_->atomData.functional.begin(),
574 >           snap_->atomData.functional.end(), 0.0);
575 >    }
576 >
577 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
578 >      fill(snap_->atomData.functionalDerivative.begin(),
579 >           snap_->atomData.functionalDerivative.end(), 0.0);
580 >    }
581 >
582 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
583 >      fill(snap_->atomData.skippedCharge.begin(),
584 >           snap_->atomData.skippedCharge.end(), 0.0);
585 >    }
586 >
587 >    if (storageLayout_ & DataStorage::dslElectricField) {      
588 >      fill(snap_->atomData.electricField.begin(),
589 >           snap_->atomData.electricField.end(), V3Zero);
590 >    }
591 >  }
592 >
593 >
594 >  void ForceMatrixDecomposition::distributeData()  {
595 >    snap_ = sman_->getCurrentSnapshot();
596 >    storageLayout_ = sman_->getStorageLayout();
597 > #ifdef IS_MPI
598 >    
599 >    // gather up the atomic positions
600 >    AtomPlanVectorRow->gather(snap_->atomData.position,
601 >                              atomRowData.position);
602 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
603 >                                 atomColData.position);
604 >    
605 >    // gather up the cutoff group positions
606 >
607 >    cgPlanVectorRow->gather(snap_->cgData.position,
608 >                            cgRowData.position);
609 >
610 >    cgPlanVectorColumn->gather(snap_->cgData.position,
611 >                               cgColData.position);
612 >
613 >
614 >
615 >    if (needVelocities_) {
616 >      // gather up the atomic velocities
617 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
618 >                                   atomColData.velocity);
619 >      
620 >      cgPlanVectorColumn->gather(snap_->cgData.velocity,
621 >                                 cgColData.velocity);
622 >    }
623 >
624 >    
625 >    // if needed, gather the atomic rotation matrices
626 >    if (storageLayout_ & DataStorage::dslAmat) {
627 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
628 >                                atomRowData.aMat);
629 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
630 >                                   atomColData.aMat);
631 >    }
632 >    
633 >    // if needed, gather the atomic eletrostatic frames
634 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
635 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
636 >                                atomRowData.electroFrame);
637 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
638 >                                   atomColData.electroFrame);
639 >    }
640 >
641 >    // if needed, gather the atomic fluctuating charge values
642 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
643 >      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
644 >                              atomRowData.flucQPos);
645 >      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
646 >                                 atomColData.flucQPos);
647 >    }
648 >
649 > #endif      
650 >  }
651 >  
652 >  /* collects information obtained during the pre-pair loop onto local
653 >   * data structures.
654 >   */
655 >  void ForceMatrixDecomposition::collectIntermediateData() {
656 >    snap_ = sman_->getCurrentSnapshot();
657 >    storageLayout_ = sman_->getStorageLayout();
658 > #ifdef IS_MPI
659 >    
660 >    if (storageLayout_ & DataStorage::dslDensity) {
661 >      
662 >      AtomPlanRealRow->scatter(atomRowData.density,
663 >                               snap_->atomData.density);
664 >      
665 >      int n = snap_->atomData.density.size();
666 >      vector<RealType> rho_tmp(n, 0.0);
667 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
668 >      for (int i = 0; i < n; i++)
669 >        snap_->atomData.density[i] += rho_tmp[i];
670 >    }
671 >
672 >    if (storageLayout_ & DataStorage::dslElectricField) {
673 >      
674 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
675 >                                 snap_->atomData.electricField);
676 >      
677 >      int n = snap_->atomData.electricField.size();
678 >      vector<Vector3d> field_tmp(n, V3Zero);
679 >      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
680 >      for (int i = 0; i < n; i++)
681 >        snap_->atomData.electricField[i] += field_tmp[i];
682 >    }
683 > #endif
684 >  }
685 >
686 >  /*
687 >   * redistributes information obtained during the pre-pair loop out to
688 >   * row and column-indexed data structures
689 >   */
690 >  void ForceMatrixDecomposition::distributeIntermediateData() {
691 >    snap_ = sman_->getCurrentSnapshot();
692 >    storageLayout_ = sman_->getStorageLayout();
693 > #ifdef IS_MPI
694 >    if (storageLayout_ & DataStorage::dslFunctional) {
695 >      AtomPlanRealRow->gather(snap_->atomData.functional,
696 >                              atomRowData.functional);
697 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
698 >                                 atomColData.functional);
699 >    }
700 >    
701 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
702 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
703 >                              atomRowData.functionalDerivative);
704 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
705 >                                 atomColData.functionalDerivative);
706 >    }
707 > #endif
708 >  }
709 >  
710 >  
711 >  void ForceMatrixDecomposition::collectData() {
712 >    snap_ = sman_->getCurrentSnapshot();
713 >    storageLayout_ = sman_->getStorageLayout();
714 > #ifdef IS_MPI    
715 >    int n = snap_->atomData.force.size();
716 >    vector<Vector3d> frc_tmp(n, V3Zero);
717 >    
718 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
719 >    for (int i = 0; i < n; i++) {
720 >      snap_->atomData.force[i] += frc_tmp[i];
721 >      frc_tmp[i] = 0.0;
722 >    }
723 >    
724 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
725 >    for (int i = 0; i < n; i++) {
726 >      snap_->atomData.force[i] += frc_tmp[i];
727 >    }
728 >        
729 >    if (storageLayout_ & DataStorage::dslTorque) {
730 >
731 >      int nt = snap_->atomData.torque.size();
732 >      vector<Vector3d> trq_tmp(nt, V3Zero);
733 >
734 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
735 >      for (int i = 0; i < nt; i++) {
736 >        snap_->atomData.torque[i] += trq_tmp[i];
737 >        trq_tmp[i] = 0.0;
738 >      }
739 >      
740 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
741 >      for (int i = 0; i < nt; i++)
742 >        snap_->atomData.torque[i] += trq_tmp[i];
743 >    }
744 >
745 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
746  
747 +      int ns = snap_->atomData.skippedCharge.size();
748 +      vector<RealType> skch_tmp(ns, 0.0);
749  
750 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
751 +      for (int i = 0; i < ns; i++) {
752 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
753 +        skch_tmp[i] = 0.0;
754 +      }
755 +      
756 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
757 +      for (int i = 0; i < ns; i++)
758 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
759 +            
760 +    }
761 +    
762 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
763 +
764 +      int nq = snap_->atomData.flucQFrc.size();
765 +      vector<RealType> fqfrc_tmp(nq, 0.0);
766 +
767 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
768 +      for (int i = 0; i < nq; i++) {
769 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
770 +        fqfrc_tmp[i] = 0.0;
771 +      }
772 +      
773 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
774 +      for (int i = 0; i < nq; i++)
775 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
776 +            
777 +    }
778 +
779 +    nLocal_ = snap_->getNumberOfAtoms();
780 +
781 +    vector<potVec> pot_temp(nLocal_,
782 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
783 +
784 +    // scatter/gather pot_row into the members of my column
785 +          
786 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
787 +
788 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
789 +      pairwisePot += pot_temp[ii];
790 +        
791 +    if (storageLayout_ & DataStorage::dslParticlePot) {
792 +      // This is the pairwise contribution to the particle pot.  The
793 +      // embedding contribution is added in each of the low level
794 +      // non-bonded routines.  In single processor, this is done in
795 +      // unpackInteractionData, not in collectData.
796 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
797 +        for (int i = 0; i < nLocal_; i++) {
798 +          // factor of two is because the total potential terms are divided
799 +          // by 2 in parallel due to row/ column scatter      
800 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
801 +        }
802 +      }
803 +    }
804 +
805 +    fill(pot_temp.begin(), pot_temp.end(),
806 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
807 +      
808 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
809 +    
810 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
811 +      pairwisePot += pot_temp[ii];    
812 +
813 +    if (storageLayout_ & DataStorage::dslParticlePot) {
814 +      // This is the pairwise contribution to the particle pot.  The
815 +      // embedding contribution is added in each of the low level
816 +      // non-bonded routines.  In single processor, this is done in
817 +      // unpackInteractionData, not in collectData.
818 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
819 +        for (int i = 0; i < nLocal_; i++) {
820 +          // factor of two is because the total potential terms are divided
821 +          // by 2 in parallel due to row/ column scatter      
822 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
823 +        }
824 +      }
825 +    }
826 +    
827 +    if (storageLayout_ & DataStorage::dslParticlePot) {
828 +      int npp = snap_->atomData.particlePot.size();
829 +      vector<RealType> ppot_temp(npp, 0.0);
830 +
831 +      // This is the direct or embedding contribution to the particle
832 +      // pot.
833 +      
834 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
835 +      for (int i = 0; i < npp; i++) {
836 +        snap_->atomData.particlePot[i] += ppot_temp[i];
837 +      }
838 +
839 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
840 +      
841 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
842 +      for (int i = 0; i < npp; i++) {
843 +        snap_->atomData.particlePot[i] += ppot_temp[i];
844 +      }
845 +    }
846 +
847 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
848 +      RealType ploc1 = pairwisePot[ii];
849 +      RealType ploc2 = 0.0;
850 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
851 +      pairwisePot[ii] = ploc2;
852 +    }
853 +
854 +    // Here be dragons.
855 +    MPI::Intracomm col = colComm.getComm();
856 +
857 +    col.Allreduce(MPI::IN_PLACE,
858 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
859 +                  MPI::REALTYPE, MPI::SUM);
860 +
861 +
862 + #endif
863 +
864 +  }
865 +
866 +  /**
867 +   * Collects information obtained during the post-pair (and embedding
868 +   * functional) loops onto local data structures.
869 +   */
870 +  void ForceMatrixDecomposition::collectSelfData() {
871 +    snap_ = sman_->getCurrentSnapshot();
872 +    storageLayout_ = sman_->getStorageLayout();
873 +
874 + #ifdef IS_MPI
875 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
876 +      RealType ploc1 = embeddingPot[ii];
877 +      RealType ploc2 = 0.0;
878 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
879 +      embeddingPot[ii] = ploc2;
880 +    }    
881 + #endif
882 +    
883 +  }
884 +
885 +
886 +
887 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
888 + #ifdef IS_MPI
889 +    return nAtomsInRow_;
890 + #else
891 +    return nLocal_;
892 + #endif
893 +  }
894 +
895 +  /**
896 +   * returns the list of atoms belonging to this group.  
897 +   */
898 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
899 + #ifdef IS_MPI
900 +    return groupListRow_[cg1];
901 + #else
902 +    return groupList_[cg1];
903 + #endif
904 +  }
905 +
906 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
907 + #ifdef IS_MPI
908 +    return groupListCol_[cg2];
909 + #else
910 +    return groupList_[cg2];
911 + #endif
912 +  }
913 +  
914 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
915 +    Vector3d d;
916 +    
917 + #ifdef IS_MPI
918 +    d = cgColData.position[cg2] - cgRowData.position[cg1];
919 + #else
920 +    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
921 + #endif
922 +    
923 +    snap_->wrapVector(d);
924 +    return d;    
925 +  }
926 +
927 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
928 + #ifdef IS_MPI
929 +    return cgColData.velocity[cg2];
930 + #else
931 +    return snap_->cgData.velocity[cg2];
932 + #endif
933 +  }
934 +
935 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
936 + #ifdef IS_MPI
937 +    return atomColData.velocity[atom2];
938 + #else
939 +    return snap_->atomData.velocity[atom2];
940 + #endif
941 +  }
942 +
943 +
944 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
945 +
946 +    Vector3d d;
947 +    
948 + #ifdef IS_MPI
949 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
950 + #else
951 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
952 + #endif
953 +
954 +    snap_->wrapVector(d);
955 +    return d;    
956 +  }
957 +  
958 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
959 +    Vector3d d;
960 +    
961 + #ifdef IS_MPI
962 +    d = cgColData.position[cg2] - atomColData.position[atom2];
963 + #else
964 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
965 + #endif
966 +    
967 +    snap_->wrapVector(d);
968 +    return d;    
969 +  }
970 +
971 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
972 + #ifdef IS_MPI
973 +    return massFactorsRow[atom1];
974 + #else
975 +    return massFactors[atom1];
976 + #endif
977 +  }
978 +
979 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
980 + #ifdef IS_MPI
981 +    return massFactorsCol[atom2];
982 + #else
983 +    return massFactors[atom2];
984 + #endif
985 +
986 +  }
987 +    
988 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
989 +    Vector3d d;
990 +    
991 + #ifdef IS_MPI
992 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
993 + #else
994 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
995 + #endif
996 +
997 +    snap_->wrapVector(d);
998 +    return d;    
999 +  }
1000 +
1001 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1002 +    return excludesForAtom[atom1];
1003 +  }
1004 +
1005 +  /**
1006 +   * We need to exclude some overcounted interactions that result from
1007 +   * the parallel decomposition.
1008 +   */
1009 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1010 +    int unique_id_1, unique_id_2, group1, group2;
1011 +        
1012 + #ifdef IS_MPI
1013 +    // in MPI, we have to look up the unique IDs for each atom
1014 +    unique_id_1 = AtomRowToGlobal[atom1];
1015 +    unique_id_2 = AtomColToGlobal[atom2];
1016 +    group1 = cgRowToGlobal[cg1];
1017 +    group2 = cgColToGlobal[cg2];
1018 + #else
1019 +    unique_id_1 = AtomLocalToGlobal[atom1];
1020 +    unique_id_2 = AtomLocalToGlobal[atom2];
1021 +    group1 = cgLocalToGlobal[cg1];
1022 +    group2 = cgLocalToGlobal[cg2];
1023 + #endif  
1024 +
1025 +    if (unique_id_1 == unique_id_2) return true;
1026 +
1027 + #ifdef IS_MPI
1028 +    // this prevents us from doing the pair on multiple processors
1029 +    if (unique_id_1 < unique_id_2) {
1030 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1031 +    } else {
1032 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1033 +    }
1034 + #endif    
1035 +
1036 + #ifndef IS_MPI
1037 +    if (group1 == group2) {
1038 +      if (unique_id_1 < unique_id_2) return true;
1039 +    }
1040 + #endif
1041 +    
1042 +    return false;
1043 +  }
1044 +
1045 +  /**
1046 +   * We need to handle the interactions for atoms who are involved in
1047 +   * the same rigid body as well as some short range interactions
1048 +   * (bonds, bends, torsions) differently from other interactions.
1049 +   * We'll still visit the pairwise routines, but with a flag that
1050 +   * tells those routines to exclude the pair from direct long range
1051 +   * interactions.  Some indirect interactions (notably reaction
1052 +   * field) must still be handled for these pairs.
1053 +   */
1054 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1055 +
1056 +    // excludesForAtom was constructed to use row/column indices in the MPI
1057 +    // version, and to use local IDs in the non-MPI version:
1058 +    
1059 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1060 +         i != excludesForAtom[atom1].end(); ++i) {
1061 +      if ( (*i) == atom2 ) return true;
1062 +    }
1063 +
1064 +    return false;
1065 +  }
1066 +
1067 +
1068 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1069 + #ifdef IS_MPI
1070 +    atomRowData.force[atom1] += fg;
1071 + #else
1072 +    snap_->atomData.force[atom1] += fg;
1073 + #endif
1074 +  }
1075 +
1076 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1077 + #ifdef IS_MPI
1078 +    atomColData.force[atom2] += fg;
1079 + #else
1080 +    snap_->atomData.force[atom2] += fg;
1081 + #endif
1082 +  }
1083 +
1084 +    // filling interaction blocks with pointers
1085 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1086 +                                                     int atom1, int atom2) {
1087 +
1088 +    idat.excluded = excludeAtomPair(atom1, atom2);
1089 +  
1090 + #ifdef IS_MPI
1091 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1092 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1093 +    //                         ff_->getAtomType(identsCol[atom2]) );
1094 +    
1095 +    if (storageLayout_ & DataStorage::dslAmat) {
1096 +      idat.A1 = &(atomRowData.aMat[atom1]);
1097 +      idat.A2 = &(atomColData.aMat[atom2]);
1098 +    }
1099 +    
1100 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
1101 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1102 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1103 +    }
1104 +
1105 +    if (storageLayout_ & DataStorage::dslTorque) {
1106 +      idat.t1 = &(atomRowData.torque[atom1]);
1107 +      idat.t2 = &(atomColData.torque[atom2]);
1108 +    }
1109 +
1110 +    if (storageLayout_ & DataStorage::dslDensity) {
1111 +      idat.rho1 = &(atomRowData.density[atom1]);
1112 +      idat.rho2 = &(atomColData.density[atom2]);
1113 +    }
1114 +
1115 +    if (storageLayout_ & DataStorage::dslFunctional) {
1116 +      idat.frho1 = &(atomRowData.functional[atom1]);
1117 +      idat.frho2 = &(atomColData.functional[atom2]);
1118 +    }
1119 +
1120 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1121 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1122 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1123 +    }
1124 +
1125 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1126 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1127 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1128 +    }
1129 +
1130 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1131 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1132 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1133 +    }
1134 +
1135 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1136 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1137 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1138 +    }
1139 +
1140 + #else
1141 +    
1142 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1143 +
1144 +    if (storageLayout_ & DataStorage::dslAmat) {
1145 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
1146 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1147 +    }
1148 +
1149 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
1150 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1151 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1152 +    }
1153 +
1154 +    if (storageLayout_ & DataStorage::dslTorque) {
1155 +      idat.t1 = &(snap_->atomData.torque[atom1]);
1156 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1157 +    }
1158 +
1159 +    if (storageLayout_ & DataStorage::dslDensity) {    
1160 +      idat.rho1 = &(snap_->atomData.density[atom1]);
1161 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1162 +    }
1163 +
1164 +    if (storageLayout_ & DataStorage::dslFunctional) {
1165 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1166 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1167 +    }
1168 +
1169 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1170 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1171 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1172 +    }
1173 +
1174 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1175 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1176 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1177 +    }
1178 +
1179 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1180 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1181 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1182 +    }
1183 +
1184 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1185 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1186 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1187 +    }
1188 +
1189 + #endif
1190 +  }
1191 +
1192 +  
1193 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1194 + #ifdef IS_MPI
1195 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1196 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1197 +
1198 +    atomRowData.force[atom1] += *(idat.f1);
1199 +    atomColData.force[atom2] -= *(idat.f1);
1200 +
1201 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1202 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1203 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1204 +    }
1205 +
1206 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1207 +      atomRowData.electricField[atom1] += *(idat.eField1);
1208 +      atomColData.electricField[atom2] += *(idat.eField2);
1209 +    }
1210 +
1211 + #else
1212 +    pairwisePot += *(idat.pot);
1213 +
1214 +    snap_->atomData.force[atom1] += *(idat.f1);
1215 +    snap_->atomData.force[atom2] -= *(idat.f1);
1216 +
1217 +    if (idat.doParticlePot) {
1218 +      // This is the pairwise contribution to the particle pot.  The
1219 +      // embedding contribution is added in each of the low level
1220 +      // non-bonded routines.  In parallel, this calculation is done
1221 +      // in collectData, not in unpackInteractionData.
1222 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1223 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1224 +    }
1225 +    
1226 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1227 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1228 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1229 +    }
1230 +
1231 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1232 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1233 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1234 +    }
1235 +
1236 + #endif
1237 +    
1238 +  }
1239 +
1240 +  /*
1241 +   * buildNeighborList
1242 +   *
1243 +   * first element of pair is row-indexed CutoffGroup
1244 +   * second element of pair is column-indexed CutoffGroup
1245 +   */
1246 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1247 +      
1248 +    vector<pair<int, int> > neighborList;
1249 +    groupCutoffs cuts;
1250 +    bool doAllPairs = false;
1251 +
1252 + #ifdef IS_MPI
1253 +    cellListRow_.clear();
1254 +    cellListCol_.clear();
1255 + #else
1256 +    cellList_.clear();
1257 + #endif
1258 +
1259 +    RealType rList_ = (largestRcut_ + skinThickness_);
1260 +    RealType rl2 = rList_ * rList_;
1261 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1262 +    Mat3x3d Hmat = snap_->getHmat();
1263 +    Vector3d Hx = Hmat.getColumn(0);
1264 +    Vector3d Hy = Hmat.getColumn(1);
1265 +    Vector3d Hz = Hmat.getColumn(2);
1266 +
1267 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1268 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1269 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1270 +
1271 +    // handle small boxes where the cell offsets can end up repeating cells
1272 +    
1273 +    if (nCells_.x() < 3) doAllPairs = true;
1274 +    if (nCells_.y() < 3) doAllPairs = true;
1275 +    if (nCells_.z() < 3) doAllPairs = true;
1276 +
1277 +    Mat3x3d invHmat = snap_->getInvHmat();
1278 +    Vector3d rs, scaled, dr;
1279 +    Vector3i whichCell;
1280 +    int cellIndex;
1281 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1282 +
1283 + #ifdef IS_MPI
1284 +    cellListRow_.resize(nCtot);
1285 +    cellListCol_.resize(nCtot);
1286 + #else
1287 +    cellList_.resize(nCtot);
1288 + #endif
1289 +
1290 +    if (!doAllPairs) {
1291 + #ifdef IS_MPI
1292 +
1293 +      for (int i = 0; i < nGroupsInRow_; i++) {
1294 +        rs = cgRowData.position[i];
1295 +        
1296 +        // scaled positions relative to the box vectors
1297 +        scaled = invHmat * rs;
1298 +        
1299 +        // wrap the vector back into the unit box by subtracting integer box
1300 +        // numbers
1301 +        for (int j = 0; j < 3; j++) {
1302 +          scaled[j] -= roundMe(scaled[j]);
1303 +          scaled[j] += 0.5;
1304 +        }
1305 +        
1306 +        // find xyz-indices of cell that cutoffGroup is in.
1307 +        whichCell.x() = nCells_.x() * scaled.x();
1308 +        whichCell.y() = nCells_.y() * scaled.y();
1309 +        whichCell.z() = nCells_.z() * scaled.z();
1310 +        
1311 +        // find single index of this cell:
1312 +        cellIndex = Vlinear(whichCell, nCells_);
1313 +        
1314 +        // add this cutoff group to the list of groups in this cell;
1315 +        cellListRow_[cellIndex].push_back(i);
1316 +      }
1317 +      for (int i = 0; i < nGroupsInCol_; i++) {
1318 +        rs = cgColData.position[i];
1319 +        
1320 +        // scaled positions relative to the box vectors
1321 +        scaled = invHmat * rs;
1322 +        
1323 +        // wrap the vector back into the unit box by subtracting integer box
1324 +        // numbers
1325 +        for (int j = 0; j < 3; j++) {
1326 +          scaled[j] -= roundMe(scaled[j]);
1327 +          scaled[j] += 0.5;
1328 +        }
1329 +        
1330 +        // find xyz-indices of cell that cutoffGroup is in.
1331 +        whichCell.x() = nCells_.x() * scaled.x();
1332 +        whichCell.y() = nCells_.y() * scaled.y();
1333 +        whichCell.z() = nCells_.z() * scaled.z();
1334 +        
1335 +        // find single index of this cell:
1336 +        cellIndex = Vlinear(whichCell, nCells_);
1337 +        
1338 +        // add this cutoff group to the list of groups in this cell;
1339 +        cellListCol_[cellIndex].push_back(i);
1340 +      }
1341 +    
1342 + #else
1343 +      for (int i = 0; i < nGroups_; i++) {
1344 +        rs = snap_->cgData.position[i];
1345 +        
1346 +        // scaled positions relative to the box vectors
1347 +        scaled = invHmat * rs;
1348 +        
1349 +        // wrap the vector back into the unit box by subtracting integer box
1350 +        // numbers
1351 +        for (int j = 0; j < 3; j++) {
1352 +          scaled[j] -= roundMe(scaled[j]);
1353 +          scaled[j] += 0.5;
1354 +        }
1355 +        
1356 +        // find xyz-indices of cell that cutoffGroup is in.
1357 +        whichCell.x() = nCells_.x() * scaled.x();
1358 +        whichCell.y() = nCells_.y() * scaled.y();
1359 +        whichCell.z() = nCells_.z() * scaled.z();
1360 +        
1361 +        // find single index of this cell:
1362 +        cellIndex = Vlinear(whichCell, nCells_);
1363 +        
1364 +        // add this cutoff group to the list of groups in this cell;
1365 +        cellList_[cellIndex].push_back(i);
1366 +      }
1367 +
1368 + #endif
1369 +
1370 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1371 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1372 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1373 +            Vector3i m1v(m1x, m1y, m1z);
1374 +            int m1 = Vlinear(m1v, nCells_);
1375 +            
1376 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1377 +                 os != cellOffsets_.end(); ++os) {
1378 +              
1379 +              Vector3i m2v = m1v + (*os);
1380 +            
1381 +
1382 +              if (m2v.x() >= nCells_.x()) {
1383 +                m2v.x() = 0;          
1384 +              } else if (m2v.x() < 0) {
1385 +                m2v.x() = nCells_.x() - 1;
1386 +              }
1387 +              
1388 +              if (m2v.y() >= nCells_.y()) {
1389 +                m2v.y() = 0;          
1390 +              } else if (m2v.y() < 0) {
1391 +                m2v.y() = nCells_.y() - 1;
1392 +              }
1393 +              
1394 +              if (m2v.z() >= nCells_.z()) {
1395 +                m2v.z() = 0;          
1396 +              } else if (m2v.z() < 0) {
1397 +                m2v.z() = nCells_.z() - 1;
1398 +              }
1399 +
1400 +              int m2 = Vlinear (m2v, nCells_);
1401 +              
1402 + #ifdef IS_MPI
1403 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1404 +                   j1 != cellListRow_[m1].end(); ++j1) {
1405 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1406 +                     j2 != cellListCol_[m2].end(); ++j2) {
1407 +                  
1408 +                  // In parallel, we need to visit *all* pairs of row
1409 +                  // & column indicies and will divide labor in the
1410 +                  // force evaluation later.
1411 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1412 +                  snap_->wrapVector(dr);
1413 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1414 +                  if (dr.lengthSquare() < cuts.third) {
1415 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1416 +                  }                  
1417 +                }
1418 +              }
1419 + #else
1420 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1421 +                   j1 != cellList_[m1].end(); ++j1) {
1422 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1423 +                     j2 != cellList_[m2].end(); ++j2) {
1424 +    
1425 +                  // Always do this if we're in different cells or if
1426 +                  // we're in the same cell and the global index of
1427 +                  // the j2 cutoff group is greater than or equal to
1428 +                  // the j1 cutoff group.  Note that Rappaport's code
1429 +                  // has a "less than" conditional here, but that
1430 +                  // deals with atom-by-atom computation.  OpenMD
1431 +                  // allows atoms within a single cutoff group to
1432 +                  // interact with each other.
1433 +
1434 +
1435 +
1436 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1437 +
1438 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1439 +                    snap_->wrapVector(dr);
1440 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1441 +                    if (dr.lengthSquare() < cuts.third) {
1442 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1443 +                    }
1444 +                  }
1445 +                }
1446 +              }
1447 + #endif
1448 +            }
1449 +          }
1450 +        }
1451 +      }
1452 +    } else {
1453 +      // branch to do all cutoff group pairs
1454 + #ifdef IS_MPI
1455 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1456 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1457 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1458 +          snap_->wrapVector(dr);
1459 +          cuts = getGroupCutoffs( j1, j2 );
1460 +          if (dr.lengthSquare() < cuts.third) {
1461 +            neighborList.push_back(make_pair(j1, j2));
1462 +          }
1463 +        }
1464 +      }      
1465 + #else
1466 +      // include all groups here.
1467 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1468 +        // include self group interactions j2 == j1
1469 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1470 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1471 +          snap_->wrapVector(dr);
1472 +          cuts = getGroupCutoffs( j1, j2 );
1473 +          if (dr.lengthSquare() < cuts.third) {
1474 +            neighborList.push_back(make_pair(j1, j2));
1475 +          }
1476 +        }    
1477 +      }
1478 + #endif
1479 +    }
1480 +      
1481 +    // save the local cutoff group positions for the check that is
1482 +    // done on each loop:
1483 +    saved_CG_positions_.clear();
1484 +    for (int i = 0; i < nGroups_; i++)
1485 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1486 +    
1487 +    return neighborList;
1488 +  }
1489 + } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines