ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1575 by gezelter, Fri Jun 3 21:39:49 2011 UTC vs.
Revision 1760 by gezelter, Thu Jun 21 19:26:46 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    nGroups_ = snap_->getNumberOfCutoffGroups();
99 <
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101 <    identsLocal = info_->getIdentArray();
101 >    idents = info_->getIdentArray();
102      AtomLocalToGlobal = info_->getGlobalAtomIndices();
103      cgLocalToGlobal = info_->getGlobalGroupIndices();
104      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67    vector<RealType> massFactorsLocal = info_->getMassFactors();
68    PairList excludes = info_->getExcludedInteractions();
69    PairList oneTwo = info_->getOneTwoInteractions();
70    PairList oneThree = info_->getOneThreeInteractions();
71    PairList oneFour = info_->getOneFourInteractions();
105  
106 +    massFactors = info_->getMassFactors();
107 +
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +    
113 +    if (needVelocities_)
114 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 +                                     DataStorage::dslVelocity);
116 +    else
117 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 +    
119   #ifdef IS_MPI
120  
121 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
122 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
77 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
78 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
79 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
128 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    nAtomsInRow_ = AtomCommIntRow->getSize();
137 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
138 <    nGroupsInRow_ = cgCommIntRow->getSize();
139 <    nGroupsInCol_ = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147      atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
# Line 102 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
155 <        
156 <    identsRow.reserve(nAtomsInRow_);
157 <    identsCol.reserve(nAtomsInCol_);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163      
164 <    AtomCommIntRow->gather(identsLocal, identsRow);
165 <    AtomCommIntColumn->gather(identsLocal, identsCol);
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166      
167 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
168 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
169 <    
116 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
117 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
172 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 +    pot_row.resize(nAtomsInRow_);
177 +    pot_col.resize(nAtomsInCol_);
178 +
179 +    expot_row.resize(nAtomsInRow_);
180 +    expot_col.resize(nAtomsInCol_);
181 +
182 +    AtomRowToGlobal.resize(nAtomsInRow_);
183 +    AtomColToGlobal.resize(nAtomsInCol_);
184 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 +
187 +    cgRowToGlobal.resize(nGroupsInRow_);
188 +    cgColToGlobal.resize(nGroupsInCol_);
189 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 +
192 +    massFactorsRow.resize(nAtomsInRow_);
193 +    massFactorsCol.resize(nAtomsInCol_);
194 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 +
197      groupListRow_.clear();
198 <    groupListRow_.reserve(nGroupsInRow_);
198 >    groupListRow_.resize(nGroupsInRow_);
199      for (int i = 0; i < nGroupsInRow_; i++) {
200        int gid = cgRowToGlobal[i];
201        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 131 | Line 206 | namespace OpenMD {
206      }
207  
208      groupListCol_.clear();
209 <    groupListCol_.reserve(nGroupsInCol_);
209 >    groupListCol_.resize(nGroupsInCol_);
210      for (int i = 0; i < nGroupsInCol_; i++) {
211        int gid = cgColToGlobal[i];
212        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 141 | Line 216 | namespace OpenMD {
216        }      
217      }
218  
219 <    skipsForRowAtom.clear();
220 <    skipsForRowAtom.reserve(nAtomsInRow_);
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221 >    toposForAtom.clear();
222 >    toposForAtom.resize(nAtomsInRow_);
223 >    topoDist.clear();
224 >    topoDist.resize(nAtomsInRow_);
225      for (int i = 0; i < nAtomsInRow_; i++) {
226        int iglob = AtomRowToGlobal[i];
227 +
228        for (int j = 0; j < nAtomsInCol_; j++) {
229 <        int jglob = AtomColToGlobal[j];        
230 <        if (excludes.hasPair(iglob, jglob))
231 <          skipsForRowAtom[i].push_back(j);      
229 >        int jglob = AtomColToGlobal[j];
230 >
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233 >        
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235 >          toposForAtom[i].push_back(j);
236 >          topoDist[i].push_back(1);
237 >        } else {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239 >            toposForAtom[i].push_back(j);
240 >            topoDist[i].push_back(2);
241 >          } else {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243 >              toposForAtom[i].push_back(j);
244 >              topoDist[i].push_back(3);
245 >            }
246 >          }
247 >        }
248        }      
249      }
250  
251 <    toposForRowAtom.clear();
252 <    toposForRowAtom.reserve(nAtomsInRow_);
253 <    for (int i = 0; i < nAtomsInRow_; i++) {
254 <      int iglob = AtomRowToGlobal[i];
255 <      int nTopos = 0;
256 <      for (int j = 0; j < nAtomsInCol_; j++) {
257 <        int jglob = AtomColToGlobal[j];        
258 <        if (oneTwo.hasPair(iglob, jglob)) {
259 <          toposForRowAtom[i].push_back(j);
260 <          topoDistRow[i][nTopos] = 1;
261 <          nTopos++;
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254 >    toposForAtom.clear();
255 >    toposForAtom.resize(nLocal_);
256 >    topoDist.clear();
257 >    topoDist.resize(nLocal_);
258 >
259 >    for (int i = 0; i < nLocal_; i++) {
260 >      int iglob = AtomLocalToGlobal[i];
261 >
262 >      for (int j = 0; j < nLocal_; j++) {
263 >        int jglob = AtomLocalToGlobal[j];
264 >
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267 >        
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269 >          toposForAtom[i].push_back(j);
270 >          topoDist[i].push_back(1);
271 >        } else {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273 >            toposForAtom[i].push_back(j);
274 >            topoDist[i].push_back(2);
275 >          } else {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277 >              toposForAtom[i].push_back(j);
278 >              topoDist[i].push_back(3);
279 >            }
280 >          }
281          }
167        if (oneThree.hasPair(iglob, jglob)) {
168          toposForRowAtom[i].push_back(j);
169          topoDistRow[i][nTopos] = 2;
170          nTopos++;
171        }
172        if (oneFour.hasPair(iglob, jglob)) {
173          toposForRowAtom[i].push_back(j);
174          topoDistRow[i][nTopos] = 3;
175          nTopos++;
176        }
282        }      
283      }
179
284   #endif
285  
286 +    // allocate memory for the parallel objects
287 +    atypesLocal.resize(nLocal_);
288 +
289 +    for (int i = 0; i < nLocal_; i++)
290 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 +
292      groupList_.clear();
293 <    groupList_.reserve(nGroups_);
293 >    groupList_.resize(nGroups_);
294      for (int i = 0; i < nGroups_; i++) {
295        int gid = cgLocalToGlobal[i];
296        for (int j = 0; j < nLocal_; j++) {
297          int aid = AtomLocalToGlobal[j];
298 <        if (globalGroupMembership[aid] == gid)
298 >        if (globalGroupMembership[aid] == gid) {
299            groupList_[i].push_back(j);
300 +        }
301        }      
302      }
303  
193    skipsForLocalAtom.clear();
194    skipsForLocalAtom.reserve(nLocal_);
304  
305 <    for (int i = 0; i < nLocal_; i++) {
197 <      int iglob = AtomLocalToGlobal[i];
198 <      for (int j = 0; j < nLocal_; j++) {
199 <        int jglob = AtomLocalToGlobal[j];        
200 <        if (excludes.hasPair(iglob, jglob))
201 <          skipsForLocalAtom[i].push_back(j);      
202 <      }      
203 <    }
305 >    createGtypeCutoffMap();
306  
307 <    toposForLocalAtom.clear();
308 <    toposForLocalAtom.reserve(nLocal_);
309 <    for (int i = 0; i < nLocal_; i++) {
310 <      int iglob = AtomLocalToGlobal[i];
311 <      int nTopos = 0;
312 <      for (int j = 0; j < nLocal_; j++) {
313 <        int jglob = AtomLocalToGlobal[j];        
314 <        if (oneTwo.hasPair(iglob, jglob)) {
315 <          toposForLocalAtom[i].push_back(j);
316 <          topoDistLocal[i][nTopos] = 1;
317 <          nTopos++;
307 >  }
308 >  
309 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 >    
311 >    RealType tol = 1e-6;
312 >    largestRcut_ = 0.0;
313 >    RealType rc;
314 >    int atid;
315 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
316 >    
317 >    map<int, RealType> atypeCutoff;
318 >      
319 >    for (set<AtomType*>::iterator at = atypes.begin();
320 >         at != atypes.end(); ++at){
321 >      atid = (*at)->getIdent();
322 >      if (userChoseCutoff_)
323 >        atypeCutoff[atid] = userCutoff_;
324 >      else
325 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
326 >    }
327 >    
328 >    vector<RealType> gTypeCutoffs;
329 >    // first we do a single loop over the cutoff groups to find the
330 >    // largest cutoff for any atypes present in this group.
331 > #ifdef IS_MPI
332 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
333 >    groupRowToGtype.resize(nGroupsInRow_);
334 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
335 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
336 >      for (vector<int>::iterator ia = atomListRow.begin();
337 >           ia != atomListRow.end(); ++ia) {            
338 >        int atom1 = (*ia);
339 >        atid = identsRow[atom1];
340 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
341 >          groupCutoffRow[cg1] = atypeCutoff[atid];
342          }
343 <        if (oneThree.hasPair(iglob, jglob)) {
344 <          toposForLocalAtom[i].push_back(j);
345 <          topoDistLocal[i][nTopos] = 2;
346 <          nTopos++;
347 <        }
348 <        if (oneFour.hasPair(iglob, jglob)) {
349 <          toposForLocalAtom[i].push_back(j);
350 <          topoDistLocal[i][nTopos] = 3;
351 <          nTopos++;
343 >      }
344 >
345 >      bool gTypeFound = false;
346 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
347 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
348 >          groupRowToGtype[cg1] = gt;
349 >          gTypeFound = true;
350 >        }
351 >      }
352 >      if (!gTypeFound) {
353 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
354 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
355 >      }
356 >      
357 >    }
358 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
359 >    groupColToGtype.resize(nGroupsInCol_);
360 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
361 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
362 >      for (vector<int>::iterator jb = atomListCol.begin();
363 >           jb != atomListCol.end(); ++jb) {            
364 >        int atom2 = (*jb);
365 >        atid = identsCol[atom2];
366 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
367 >          groupCutoffCol[cg2] = atypeCutoff[atid];
368          }
369 +      }
370 +      bool gTypeFound = false;
371 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
372 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
373 +          groupColToGtype[cg2] = gt;
374 +          gTypeFound = true;
375 +        }
376 +      }
377 +      if (!gTypeFound) {
378 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
379 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
380 +      }
381 +    }
382 + #else
383 +
384 +    vector<RealType> groupCutoff(nGroups_, 0.0);
385 +    groupToGtype.resize(nGroups_);
386 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
387 +      groupCutoff[cg1] = 0.0;
388 +      vector<int> atomList = getAtomsInGroupRow(cg1);
389 +      for (vector<int>::iterator ia = atomList.begin();
390 +           ia != atomList.end(); ++ia) {            
391 +        int atom1 = (*ia);
392 +        atid = idents[atom1];
393 +        if (atypeCutoff[atid] > groupCutoff[cg1])
394 +          groupCutoff[cg1] = atypeCutoff[atid];
395 +      }
396 +      
397 +      bool gTypeFound = false;
398 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
399 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
400 +          groupToGtype[cg1] = gt;
401 +          gTypeFound = true;
402 +        }
403 +      }
404 +      if (!gTypeFound) {      
405 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
406 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
407        }      
408      }
409 + #endif
410 +
411 +    // Now we find the maximum group cutoff value present in the simulation
412 +
413 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
414 +                                     gTypeCutoffs.end());
415 +
416 + #ifdef IS_MPI
417 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
418 +                              MPI::MAX);
419 + #endif
420 +    
421 +    RealType tradRcut = groupMax;
422 +
423 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
424 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
425 +        RealType thisRcut;
426 +        switch(cutoffPolicy_) {
427 +        case TRADITIONAL:
428 +          thisRcut = tradRcut;
429 +          break;
430 +        case MIX:
431 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
432 +          break;
433 +        case MAX:
434 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
435 +          break;
436 +        default:
437 +          sprintf(painCave.errMsg,
438 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
439 +                  "hit an unknown cutoff policy!\n");
440 +          painCave.severity = OPENMD_ERROR;
441 +          painCave.isFatal = 1;
442 +          simError();
443 +          break;
444 +        }
445 +
446 +        pair<int,int> key = make_pair(i,j);
447 +        gTypeCutoffMap[key].first = thisRcut;
448 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
449 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
450 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
451 +        // sanity check
452 +        
453 +        if (userChoseCutoff_) {
454 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
455 +            sprintf(painCave.errMsg,
456 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
457 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
458 +            painCave.severity = OPENMD_ERROR;
459 +            painCave.isFatal = 1;
460 +            simError();            
461 +          }
462 +        }
463 +      }
464 +    }
465    }
230  
231  void ForceMatrixDecomposition::zeroWorkArrays() {
466  
467 <    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
468 <      longRangePot_[j] = 0.0;
467 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
468 >    int i, j;  
469 > #ifdef IS_MPI
470 >    i = groupRowToGtype[cg1];
471 >    j = groupColToGtype[cg2];
472 > #else
473 >    i = groupToGtype[cg1];
474 >    j = groupToGtype[cg2];
475 > #endif    
476 >    return gTypeCutoffMap[make_pair(i,j)];
477 >  }
478 >
479 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
480 >    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
481 >      if (toposForAtom[atom1][j] == atom2)
482 >        return topoDist[atom1][j];
483      }
484 +    return 0;
485 +  }
486  
487 +  void ForceMatrixDecomposition::zeroWorkArrays() {
488 +    pairwisePot = 0.0;
489 +    embeddingPot = 0.0;
490 +    excludedPot = 0.0;
491 +
492   #ifdef IS_MPI
493      if (storageLayout_ & DataStorage::dslForce) {
494        fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
# Line 249 | Line 504 | namespace OpenMD {
504           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505  
506      fill(pot_col.begin(), pot_col.end(),
507 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508 +
509 +    fill(expot_row.begin(), expot_row.end(),
510           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
253    
254    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
511  
512 +    fill(expot_col.begin(), expot_col.end(),
513 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 +
515      if (storageLayout_ & DataStorage::dslParticlePot) {    
516 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
517 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
516 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 >           0.0);
518 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 >           0.0);
520      }
521  
522      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 264 | Line 525 | namespace OpenMD {
525      }
526  
527      if (storageLayout_ & DataStorage::dslFunctional) {  
528 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
529 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
528 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 >           0.0);
530 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 >           0.0);
532      }
533  
534      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 275 | Line 538 | namespace OpenMD {
538             atomColData.functionalDerivative.end(), 0.0);
539      }
540  
541 < #else
542 <    
541 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 >      fill(atomRowData.skippedCharge.begin(),
543 >           atomRowData.skippedCharge.end(), 0.0);
544 >      fill(atomColData.skippedCharge.begin(),
545 >           atomColData.skippedCharge.end(), 0.0);
546 >    }
547 >
548 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 >      fill(atomRowData.flucQFrc.begin(),
550 >           atomRowData.flucQFrc.end(), 0.0);
551 >      fill(atomColData.flucQFrc.begin(),
552 >           atomColData.flucQFrc.end(), 0.0);
553 >    }
554 >
555 >    if (storageLayout_ & DataStorage::dslElectricField) {    
556 >      fill(atomRowData.electricField.begin(),
557 >           atomRowData.electricField.end(), V3Zero);
558 >      fill(atomColData.electricField.begin(),
559 >           atomColData.electricField.end(), V3Zero);
560 >    }
561 >
562 >    if (storageLayout_ & DataStorage::dslFlucQForce) {    
563 >      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
564 >           0.0);
565 >      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
566 >           0.0);
567 >    }
568 >
569 > #endif
570 >    // even in parallel, we need to zero out the local arrays:
571 >
572      if (storageLayout_ & DataStorage::dslParticlePot) {      
573        fill(snap_->atomData.particlePot.begin(),
574             snap_->atomData.particlePot.end(), 0.0);
# Line 286 | Line 578 | namespace OpenMD {
578        fill(snap_->atomData.density.begin(),
579             snap_->atomData.density.end(), 0.0);
580      }
581 +
582      if (storageLayout_ & DataStorage::dslFunctional) {
583        fill(snap_->atomData.functional.begin(),
584             snap_->atomData.functional.end(), 0.0);
585      }
586 +
587      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
588        fill(snap_->atomData.functionalDerivative.begin(),
589             snap_->atomData.functionalDerivative.end(), 0.0);
590      }
591 < #endif
592 <    
591 >
592 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
593 >      fill(snap_->atomData.skippedCharge.begin(),
594 >           snap_->atomData.skippedCharge.end(), 0.0);
595 >    }
596 >
597 >    if (storageLayout_ & DataStorage::dslElectricField) {      
598 >      fill(snap_->atomData.electricField.begin(),
599 >           snap_->atomData.electricField.end(), V3Zero);
600 >    }
601    }
602  
603  
# Line 305 | Line 607 | namespace OpenMD {
607   #ifdef IS_MPI
608      
609      // gather up the atomic positions
610 <    AtomCommVectorRow->gather(snap_->atomData.position,
610 >    AtomPlanVectorRow->gather(snap_->atomData.position,
611                                atomRowData.position);
612 <    AtomCommVectorColumn->gather(snap_->atomData.position,
612 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
613                                   atomColData.position);
614      
615      // gather up the cutoff group positions
616 <    cgCommVectorRow->gather(snap_->cgData.position,
616 >
617 >    cgPlanVectorRow->gather(snap_->cgData.position,
618                              cgRowData.position);
619 <    cgCommVectorColumn->gather(snap_->cgData.position,
619 >
620 >    cgPlanVectorColumn->gather(snap_->cgData.position,
621                                 cgColData.position);
622 +
623 +
624 +
625 +    if (needVelocities_) {
626 +      // gather up the atomic velocities
627 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
628 +                                   atomColData.velocity);
629 +      
630 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
631 +                                 cgColData.velocity);
632 +    }
633 +
634      
635      // if needed, gather the atomic rotation matrices
636      if (storageLayout_ & DataStorage::dslAmat) {
637 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
637 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
638                                  atomRowData.aMat);
639 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
639 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
640                                     atomColData.aMat);
641      }
642      
643      // if needed, gather the atomic eletrostatic frames
644      if (storageLayout_ & DataStorage::dslElectroFrame) {
645 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
645 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
646                                  atomRowData.electroFrame);
647 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
647 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
648                                     atomColData.electroFrame);
649      }
650 +
651 +    // if needed, gather the atomic fluctuating charge values
652 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 +                              atomRowData.flucQPos);
655 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 +                                 atomColData.flucQPos);
657 +    }
658 +
659   #endif      
660    }
661    
# Line 344 | Line 669 | namespace OpenMD {
669      
670      if (storageLayout_ & DataStorage::dslDensity) {
671        
672 <      AtomCommRealRow->scatter(atomRowData.density,
672 >      AtomPlanRealRow->scatter(atomRowData.density,
673                                 snap_->atomData.density);
674        
675        int n = snap_->atomData.density.size();
676        vector<RealType> rho_tmp(n, 0.0);
677 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
677 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678        for (int i = 0; i < n; i++)
679          snap_->atomData.density[i] += rho_tmp[i];
680      }
681 +
682 +    if (storageLayout_ & DataStorage::dslElectricField) {
683 +      
684 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
685 +                                 snap_->atomData.electricField);
686 +      
687 +      int n = snap_->atomData.electricField.size();
688 +      vector<Vector3d> field_tmp(n, V3Zero);
689 +      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
690 +      for (int i = 0; i < n; i++)
691 +        snap_->atomData.electricField[i] += field_tmp[i];
692 +    }
693   #endif
694    }
695  
# Line 365 | Line 702 | namespace OpenMD {
702      storageLayout_ = sman_->getStorageLayout();
703   #ifdef IS_MPI
704      if (storageLayout_ & DataStorage::dslFunctional) {
705 <      AtomCommRealRow->gather(snap_->atomData.functional,
705 >      AtomPlanRealRow->gather(snap_->atomData.functional,
706                                atomRowData.functional);
707 <      AtomCommRealColumn->gather(snap_->atomData.functional,
707 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
708                                   atomColData.functional);
709      }
710      
711      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
712 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
712 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
713                                atomRowData.functionalDerivative);
714 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
714 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
715                                   atomColData.functionalDerivative);
716      }
717   #endif
# Line 388 | Line 725 | namespace OpenMD {
725      int n = snap_->atomData.force.size();
726      vector<Vector3d> frc_tmp(n, V3Zero);
727      
728 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
728 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
729      for (int i = 0; i < n; i++) {
730        snap_->atomData.force[i] += frc_tmp[i];
731        frc_tmp[i] = 0.0;
732      }
733      
734 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
735 <    for (int i = 0; i < n; i++)
734 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
735 >    for (int i = 0; i < n; i++) {
736        snap_->atomData.force[i] += frc_tmp[i];
737 <    
738 <    
737 >    }
738 >        
739      if (storageLayout_ & DataStorage::dslTorque) {
740  
741 <      int nt = snap_->atomData.force.size();
741 >      int nt = snap_->atomData.torque.size();
742        vector<Vector3d> trq_tmp(nt, V3Zero);
743  
744 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
745 <      for (int i = 0; i < n; i++) {
744 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
745 >      for (int i = 0; i < nt; i++) {
746          snap_->atomData.torque[i] += trq_tmp[i];
747          trq_tmp[i] = 0.0;
748        }
749        
750 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
751 <      for (int i = 0; i < n; i++)
750 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
751 >      for (int i = 0; i < nt; i++)
752          snap_->atomData.torque[i] += trq_tmp[i];
753      }
754 +
755 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
756 +
757 +      int ns = snap_->atomData.skippedCharge.size();
758 +      vector<RealType> skch_tmp(ns, 0.0);
759 +
760 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
761 +      for (int i = 0; i < ns; i++) {
762 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
763 +        skch_tmp[i] = 0.0;
764 +      }
765 +      
766 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
767 +      for (int i = 0; i < ns; i++)
768 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
769 +            
770 +    }
771      
772 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
773 +
774 +      int nq = snap_->atomData.flucQFrc.size();
775 +      vector<RealType> fqfrc_tmp(nq, 0.0);
776 +
777 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
778 +      for (int i = 0; i < nq; i++) {
779 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
780 +        fqfrc_tmp[i] = 0.0;
781 +      }
782 +      
783 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
784 +      for (int i = 0; i < nq; i++)
785 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
786 +            
787 +    }
788 +
789      nLocal_ = snap_->getNumberOfAtoms();
790  
791      vector<potVec> pot_temp(nLocal_,
792                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
793 +    vector<potVec> expot_temp(nLocal_,
794 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
795  
796      // scatter/gather pot_row into the members of my column
797            
798 <    AtomCommPotRow->scatter(pot_row, pot_temp);
798 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
799 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
800  
801 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
802 <      pot_local += pot_temp[ii];
803 <    
801 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
802 >      pairwisePot += pot_temp[ii];
803 >
804 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
805 >      excludedPot += expot_temp[ii];
806 >        
807 >    if (storageLayout_ & DataStorage::dslParticlePot) {
808 >      // This is the pairwise contribution to the particle pot.  The
809 >      // embedding contribution is added in each of the low level
810 >      // non-bonded routines.  In single processor, this is done in
811 >      // unpackInteractionData, not in collectData.
812 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
813 >        for (int i = 0; i < nLocal_; i++) {
814 >          // factor of two is because the total potential terms are divided
815 >          // by 2 in parallel due to row/ column scatter      
816 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
817 >        }
818 >      }
819 >    }
820 >
821      fill(pot_temp.begin(), pot_temp.end(),
822           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
823 +    fill(expot_temp.begin(), expot_temp.end(),
824 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
825        
826 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
826 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
827 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
828      
829      for (int ii = 0;  ii < pot_temp.size(); ii++ )
830 <      pot_local += pot_temp[ii];
830 >      pairwisePot += pot_temp[ii];    
831 >
832 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
833 >      excludedPot += expot_temp[ii];    
834 >
835 >    if (storageLayout_ & DataStorage::dslParticlePot) {
836 >      // This is the pairwise contribution to the particle pot.  The
837 >      // embedding contribution is added in each of the low level
838 >      // non-bonded routines.  In single processor, this is done in
839 >      // unpackInteractionData, not in collectData.
840 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
841 >        for (int i = 0; i < nLocal_; i++) {
842 >          // factor of two is because the total potential terms are divided
843 >          // by 2 in parallel due to row/ column scatter      
844 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
845 >        }
846 >      }
847 >    }
848      
849 +    if (storageLayout_ & DataStorage::dslParticlePot) {
850 +      int npp = snap_->atomData.particlePot.size();
851 +      vector<RealType> ppot_temp(npp, 0.0);
852 +
853 +      // This is the direct or embedding contribution to the particle
854 +      // pot.
855 +      
856 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
857 +      for (int i = 0; i < npp; i++) {
858 +        snap_->atomData.particlePot[i] += ppot_temp[i];
859 +      }
860 +
861 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
862 +      
863 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
864 +      for (int i = 0; i < npp; i++) {
865 +        snap_->atomData.particlePot[i] += ppot_temp[i];
866 +      }
867 +    }
868 +
869 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
870 +      RealType ploc1 = pairwisePot[ii];
871 +      RealType ploc2 = 0.0;
872 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
873 +      pairwisePot[ii] = ploc2;
874 +    }
875 +
876 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
877 +      RealType ploc1 = excludedPot[ii];
878 +      RealType ploc2 = 0.0;
879 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
880 +      excludedPot[ii] = ploc2;
881 +    }
882 +
883 +    // Here be dragons.
884 +    MPI::Intracomm col = colComm.getComm();
885 +
886 +    col.Allreduce(MPI::IN_PLACE,
887 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
888 +                  MPI::REALTYPE, MPI::SUM);
889 +
890 +
891   #endif
892 +
893    }
894  
895 +  /**
896 +   * Collects information obtained during the post-pair (and embedding
897 +   * functional) loops onto local data structures.
898 +   */
899 +  void ForceMatrixDecomposition::collectSelfData() {
900 +    snap_ = sman_->getCurrentSnapshot();
901 +    storageLayout_ = sman_->getStorageLayout();
902 +
903 + #ifdef IS_MPI
904 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
905 +      RealType ploc1 = embeddingPot[ii];
906 +      RealType ploc2 = 0.0;
907 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
908 +      embeddingPot[ii] = ploc2;
909 +    }    
910 + #endif
911 +    
912 +  }
913 +
914 +
915 +
916    int ForceMatrixDecomposition::getNAtomsInRow() {  
917   #ifdef IS_MPI
918      return nAtomsInRow_;
# Line 478 | Line 953 | namespace OpenMD {
953      return d;    
954    }
955  
956 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
957 + #ifdef IS_MPI
958 +    return cgColData.velocity[cg2];
959 + #else
960 +    return snap_->cgData.velocity[cg2];
961 + #endif
962 +  }
963  
964 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
965 + #ifdef IS_MPI
966 +    return atomColData.velocity[atom2];
967 + #else
968 +    return snap_->atomData.velocity[atom2];
969 + #endif
970 +  }
971 +
972 +
973    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
974  
975      Vector3d d;
# Line 510 | Line 1001 | namespace OpenMD {
1001   #ifdef IS_MPI
1002      return massFactorsRow[atom1];
1003   #else
1004 <    return massFactorsLocal[atom1];
1004 >    return massFactors[atom1];
1005   #endif
1006    }
1007  
# Line 518 | Line 1009 | namespace OpenMD {
1009   #ifdef IS_MPI
1010      return massFactorsCol[atom2];
1011   #else
1012 <    return massFactorsLocal[atom2];
1012 >    return massFactors[atom2];
1013   #endif
1014  
1015    }
# Line 536 | Line 1027 | namespace OpenMD {
1027      return d;    
1028    }
1029  
1030 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
1031 < #ifdef IS_MPI
541 <    return skipsForRowAtom[atom1];
542 < #else
543 <    return skipsForLocalAtom[atom1];
544 < #endif
1030 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1031 >    return excludesForAtom[atom1];
1032    }
1033  
1034    /**
1035 <   * There are a number of reasons to skip a pair or a
549 <   * particle. Mostly we do this to exclude atoms who are involved in
550 <   * short range interactions (bonds, bends, torsions), but we also
551 <   * need to exclude some overcounted interactions that result from
1035 >   * We need to exclude some overcounted interactions that result from
1036     * the parallel decomposition.
1037     */
1038 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1039 <    int unique_id_1, unique_id_2;
1040 <
1038 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1039 >    int unique_id_1, unique_id_2, group1, group2;
1040 >        
1041   #ifdef IS_MPI
1042      // in MPI, we have to look up the unique IDs for each atom
1043      unique_id_1 = AtomRowToGlobal[atom1];
1044      unique_id_2 = AtomColToGlobal[atom2];
1045 +    group1 = cgRowToGlobal[cg1];
1046 +    group2 = cgColToGlobal[cg2];
1047 + #else
1048 +    unique_id_1 = AtomLocalToGlobal[atom1];
1049 +    unique_id_2 = AtomLocalToGlobal[atom2];
1050 +    group1 = cgLocalToGlobal[cg1];
1051 +    group2 = cgLocalToGlobal[cg2];
1052 + #endif  
1053  
562    // this situation should only arise in MPI simulations
1054      if (unique_id_1 == unique_id_2) return true;
1055 <    
1055 >
1056 > #ifdef IS_MPI
1057      // this prevents us from doing the pair on multiple processors
1058      if (unique_id_1 < unique_id_2) {
1059        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1060      } else {
1061 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1061 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1062      }
1063 < #else
1064 <    // in the normal loop, the atom numbers are unique
1065 <    unique_id_1 = atom1;
1066 <    unique_id_2 = atom2;
1067 < #endif
1068 <    
577 < #ifdef IS_MPI
578 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
579 <         i != skipsForRowAtom[atom1].end(); ++i) {
580 <      if ( (*i) == unique_id_2 ) return true;
581 <    }    
582 < #else
583 <    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
584 <         i != skipsForLocalAtom[atom1].end(); ++i) {
585 <      if ( (*i) == unique_id_2 ) return true;
586 <    }    
1063 > #endif    
1064 >
1065 > #ifndef IS_MPI
1066 >    if (group1 == group2) {
1067 >      if (unique_id_1 < unique_id_2) return true;
1068 >    }
1069   #endif
1070 +    
1071 +    return false;
1072    }
1073  
1074 <  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
1074 >  /**
1075 >   * We need to handle the interactions for atoms who are involved in
1076 >   * the same rigid body as well as some short range interactions
1077 >   * (bonds, bends, torsions) differently from other interactions.
1078 >   * We'll still visit the pairwise routines, but with a flag that
1079 >   * tells those routines to exclude the pair from direct long range
1080 >   * interactions.  Some indirect interactions (notably reaction
1081 >   * field) must still be handled for these pairs.
1082 >   */
1083 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1084 >
1085 >    // excludesForAtom was constructed to use row/column indices in the MPI
1086 >    // version, and to use local IDs in the non-MPI version:
1087      
1088 < #ifdef IS_MPI
1089 <    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
1090 <      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
1088 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1089 >         i != excludesForAtom[atom1].end(); ++i) {
1090 >      if ( (*i) == atom2 ) return true;
1091      }
596 #else
597    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
598      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
599    }
600 #endif
1092  
1093 <    // zero is default for unconnected (i.e. normal) pair interactions
603 <    return 0;
1093 >    return false;
1094    }
1095  
1096 +
1097    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1098   #ifdef IS_MPI
1099      atomRowData.force[atom1] += fg;
# Line 620 | Line 1111 | namespace OpenMD {
1111    }
1112  
1113      // filling interaction blocks with pointers
1114 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1115 <    InteractionData idat;
1114 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1115 >                                                     int atom1, int atom2) {
1116  
1117 +    idat.excluded = excludeAtomPair(atom1, atom2);
1118 +  
1119   #ifdef IS_MPI
1120 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1121 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1122 +    //                         ff_->getAtomType(identsCol[atom2]) );
1123      
628    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
629                             ff_->getAtomType(identsCol[atom2]) );
630
631    
1124      if (storageLayout_ & DataStorage::dslAmat) {
1125        idat.A1 = &(atomRowData.aMat[atom1]);
1126        idat.A2 = &(atomColData.aMat[atom2]);
# Line 664 | Line 1156 | namespace OpenMD {
1156        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1157      }
1158  
1159 < #else
1159 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1160 >      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1161 >      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1162 >    }
1163  
1164 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
1165 <                             ff_->getAtomType(identsLocal[atom2]) );
1164 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1165 >      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1166 >      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1167 >    }
1168  
1169 + #else
1170 +    
1171 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1172 +
1173      if (storageLayout_ & DataStorage::dslAmat) {
1174        idat.A1 = &(snap_->atomData.aMat[atom1]);
1175        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 684 | Line 1185 | namespace OpenMD {
1185        idat.t2 = &(snap_->atomData.torque[atom2]);
1186      }
1187  
1188 <    if (storageLayout_ & DataStorage::dslDensity) {
1188 >    if (storageLayout_ & DataStorage::dslDensity) {    
1189        idat.rho1 = &(snap_->atomData.density[atom1]);
1190        idat.rho2 = &(snap_->atomData.density[atom2]);
1191      }
# Line 704 | Line 1205 | namespace OpenMD {
1205        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1206      }
1207  
1208 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1209 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1210 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1211 +    }
1212 +
1213 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1214 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1215 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1216 +    }
1217 +
1218   #endif
708    return idat;
1219    }
1220  
1221    
1222 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
1222 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1223   #ifdef IS_MPI
1224 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1225 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1224 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1225 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1226 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1227 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1228  
1229      atomRowData.force[atom1] += *(idat.f1);
1230      atomColData.force[atom2] -= *(idat.f1);
719 #else
720    longRangePot_ += *(idat.pot);
721    
722    snap_->atomData.force[atom1] += *(idat.f1);
723    snap_->atomData.force[atom2] -= *(idat.f1);
724 #endif
1231  
1232 <  }
1232 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1233 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1234 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1235 >    }
1236  
1237 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1238 +      atomRowData.electricField[atom1] += *(idat.eField1);
1239 +      atomColData.electricField[atom2] += *(idat.eField2);
1240 +    }
1241  
1242 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1242 > #else
1243 >    pairwisePot += *(idat.pot);
1244 >    excludedPot += *(idat.excludedPot);
1245  
1246 <    InteractionData idat;
1247 < #ifdef IS_MPI
733 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
734 <                             ff_->getAtomType(identsCol[atom2]) );
1246 >    snap_->atomData.force[atom1] += *(idat.f1);
1247 >    snap_->atomData.force[atom2] -= *(idat.f1);
1248  
1249 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1250 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1251 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1249 >    if (idat.doParticlePot) {
1250 >      // This is the pairwise contribution to the particle pot.  The
1251 >      // embedding contribution is added in each of the low level
1252 >      // non-bonded routines.  In parallel, this calculation is done
1253 >      // in collectData, not in unpackInteractionData.
1254 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1255 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1256      }
1257 <    if (storageLayout_ & DataStorage::dslTorque) {
1258 <      idat.t1 = &(atomRowData.torque[atom1]);
1259 <      idat.t2 = &(atomColData.torque[atom2]);
1257 >    
1258 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1259 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1260 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1261      }
744 #else
745    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
746                             ff_->getAtomType(identsLocal[atom2]) );
1262  
1263 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1264 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1265 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1263 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1264 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1265 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1266      }
1267 <    if (storageLayout_ & DataStorage::dslTorque) {
1268 <      idat.t1 = &(snap_->atomData.torque[atom1]);
1269 <      idat.t2 = &(snap_->atomData.torque[atom2]);
755 <    }
756 < #endif    
1267 >
1268 > #endif
1269 >    
1270    }
1271  
1272    /*
# Line 765 | Line 1278 | namespace OpenMD {
1278    vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1279        
1280      vector<pair<int, int> > neighborList;
1281 +    groupCutoffs cuts;
1282 +    bool doAllPairs = false;
1283 +
1284   #ifdef IS_MPI
1285      cellListRow_.clear();
1286      cellListCol_.clear();
# Line 772 | Line 1288 | namespace OpenMD {
1288      cellList_.clear();
1289   #endif
1290  
1291 <    // dangerous to not do error checking.
776 <    RealType rCut_;
777 <
778 <    RealType rList_ = (rCut_ + skinThickness_);
1291 >    RealType rList_ = (largestRcut_ + skinThickness_);
1292      RealType rl2 = rList_ * rList_;
1293      Snapshot* snap_ = sman_->getCurrentSnapshot();
1294      Mat3x3d Hmat = snap_->getHmat();
# Line 787 | Line 1300 | namespace OpenMD {
1300      nCells_.y() = (int) ( Hy.length() )/ rList_;
1301      nCells_.z() = (int) ( Hz.length() )/ rList_;
1302  
1303 +    // handle small boxes where the cell offsets can end up repeating cells
1304 +    
1305 +    if (nCells_.x() < 3) doAllPairs = true;
1306 +    if (nCells_.y() < 3) doAllPairs = true;
1307 +    if (nCells_.z() < 3) doAllPairs = true;
1308 +
1309      Mat3x3d invHmat = snap_->getInvHmat();
1310      Vector3d rs, scaled, dr;
1311      Vector3i whichCell;
1312      int cellIndex;
1313 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1314  
1315   #ifdef IS_MPI
1316 <    for (int i = 0; i < nGroupsInRow_; i++) {
1317 <      rs = cgRowData.position[i];
1318 <      // scaled positions relative to the box vectors
1319 <      scaled = invHmat * rs;
1320 <      // wrap the vector back into the unit box by subtracting integer box
801 <      // numbers
802 <      for (int j = 0; j < 3; j++)
803 <        scaled[j] -= roundMe(scaled[j]);
804 <    
805 <      // find xyz-indices of cell that cutoffGroup is in.
806 <      whichCell.x() = nCells_.x() * scaled.x();
807 <      whichCell.y() = nCells_.y() * scaled.y();
808 <      whichCell.z() = nCells_.z() * scaled.z();
1316 >    cellListRow_.resize(nCtot);
1317 >    cellListCol_.resize(nCtot);
1318 > #else
1319 >    cellList_.resize(nCtot);
1320 > #endif
1321  
1322 <      // find single index of this cell:
1323 <      cellIndex = Vlinear(whichCell, nCells_);
812 <      // add this cutoff group to the list of groups in this cell;
813 <      cellListRow_[cellIndex].push_back(i);
814 <    }
1322 >    if (!doAllPairs) {
1323 > #ifdef IS_MPI
1324  
1325 <    for (int i = 0; i < nGroupsInCol_; i++) {
1326 <      rs = cgColData.position[i];
1327 <      // scaled positions relative to the box vectors
1328 <      scaled = invHmat * rs;
1329 <      // wrap the vector back into the unit box by subtracting integer box
1330 <      // numbers
1331 <      for (int j = 0; j < 3; j++)
1332 <        scaled[j] -= roundMe(scaled[j]);
1333 <
1334 <      // find xyz-indices of cell that cutoffGroup is in.
1335 <      whichCell.x() = nCells_.x() * scaled.x();
1336 <      whichCell.y() = nCells_.y() * scaled.y();
1337 <      whichCell.z() = nCells_.z() * scaled.z();
1338 <
1339 <      // find single index of this cell:
1340 <      cellIndex = Vlinear(whichCell, nCells_);
1341 <      // add this cutoff group to the list of groups in this cell;
1342 <      cellListCol_[cellIndex].push_back(i);
1343 <    }
1325 >      for (int i = 0; i < nGroupsInRow_; i++) {
1326 >        rs = cgRowData.position[i];
1327 >        
1328 >        // scaled positions relative to the box vectors
1329 >        scaled = invHmat * rs;
1330 >        
1331 >        // wrap the vector back into the unit box by subtracting integer box
1332 >        // numbers
1333 >        for (int j = 0; j < 3; j++) {
1334 >          scaled[j] -= roundMe(scaled[j]);
1335 >          scaled[j] += 0.5;
1336 >        }
1337 >        
1338 >        // find xyz-indices of cell that cutoffGroup is in.
1339 >        whichCell.x() = nCells_.x() * scaled.x();
1340 >        whichCell.y() = nCells_.y() * scaled.y();
1341 >        whichCell.z() = nCells_.z() * scaled.z();
1342 >        
1343 >        // find single index of this cell:
1344 >        cellIndex = Vlinear(whichCell, nCells_);
1345 >        
1346 >        // add this cutoff group to the list of groups in this cell;
1347 >        cellListRow_[cellIndex].push_back(i);
1348 >      }
1349 >      for (int i = 0; i < nGroupsInCol_; i++) {
1350 >        rs = cgColData.position[i];
1351 >        
1352 >        // scaled positions relative to the box vectors
1353 >        scaled = invHmat * rs;
1354 >        
1355 >        // wrap the vector back into the unit box by subtracting integer box
1356 >        // numbers
1357 >        for (int j = 0; j < 3; j++) {
1358 >          scaled[j] -= roundMe(scaled[j]);
1359 >          scaled[j] += 0.5;
1360 >        }
1361 >        
1362 >        // find xyz-indices of cell that cutoffGroup is in.
1363 >        whichCell.x() = nCells_.x() * scaled.x();
1364 >        whichCell.y() = nCells_.y() * scaled.y();
1365 >        whichCell.z() = nCells_.z() * scaled.z();
1366 >        
1367 >        // find single index of this cell:
1368 >        cellIndex = Vlinear(whichCell, nCells_);
1369 >        
1370 >        // add this cutoff group to the list of groups in this cell;
1371 >        cellListCol_[cellIndex].push_back(i);
1372 >      }
1373 >    
1374   #else
1375 <    for (int i = 0; i < nGroups_; i++) {
1376 <      rs = snap_->cgData.position[i];
1377 <      // scaled positions relative to the box vectors
1378 <      scaled = invHmat * rs;
1379 <      // wrap the vector back into the unit box by subtracting integer box
1380 <      // numbers
1381 <      for (int j = 0; j < 3; j++)
1382 <        scaled[j] -= roundMe(scaled[j]);
1375 >      for (int i = 0; i < nGroups_; i++) {
1376 >        rs = snap_->cgData.position[i];
1377 >        
1378 >        // scaled positions relative to the box vectors
1379 >        scaled = invHmat * rs;
1380 >        
1381 >        // wrap the vector back into the unit box by subtracting integer box
1382 >        // numbers
1383 >        for (int j = 0; j < 3; j++) {
1384 >          scaled[j] -= roundMe(scaled[j]);
1385 >          scaled[j] += 0.5;
1386 >        }
1387 >        
1388 >        // find xyz-indices of cell that cutoffGroup is in.
1389 >        whichCell.x() = nCells_.x() * scaled.x();
1390 >        whichCell.y() = nCells_.y() * scaled.y();
1391 >        whichCell.z() = nCells_.z() * scaled.z();
1392 >        
1393 >        // find single index of this cell:
1394 >        cellIndex = Vlinear(whichCell, nCells_);
1395 >        
1396 >        // add this cutoff group to the list of groups in this cell;
1397 >        cellList_[cellIndex].push_back(i);
1398 >      }
1399  
845      // find xyz-indices of cell that cutoffGroup is in.
846      whichCell.x() = nCells_.x() * scaled.x();
847      whichCell.y() = nCells_.y() * scaled.y();
848      whichCell.z() = nCells_.z() * scaled.z();
849
850      // find single index of this cell:
851      cellIndex = Vlinear(whichCell, nCells_);
852      // add this cutoff group to the list of groups in this cell;
853      cellList_[cellIndex].push_back(i);
854    }
1400   #endif
1401  
1402 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1403 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1404 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1405 <          Vector3i m1v(m1x, m1y, m1z);
1406 <          int m1 = Vlinear(m1v, nCells_);
862 <
863 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
864 <               os != cellOffsets_.end(); ++os) {
1402 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1403 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1404 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1405 >            Vector3i m1v(m1x, m1y, m1z);
1406 >            int m1 = Vlinear(m1v, nCells_);
1407              
1408 <            Vector3i m2v = m1v + (*os);
1409 <            
1410 <            if (m2v.x() >= nCells_.x()) {
1411 <              m2v.x() = 0;          
1412 <            } else if (m2v.x() < 0) {
871 <              m2v.x() = nCells_.x() - 1;
872 <            }
873 <            
874 <            if (m2v.y() >= nCells_.y()) {
875 <              m2v.y() = 0;          
876 <            } else if (m2v.y() < 0) {
877 <              m2v.y() = nCells_.y() - 1;
878 <            }
879 <            
880 <            if (m2v.z() >= nCells_.z()) {
881 <              m2v.z() = 0;          
882 <            } else if (m2v.z() < 0) {
883 <              m2v.z() = nCells_.z() - 1;
884 <            }
885 <            
886 <            int m2 = Vlinear (m2v, nCells_);
1408 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1409 >                 os != cellOffsets_.end(); ++os) {
1410 >              
1411 >              Vector3i m2v = m1v + (*os);
1412 >            
1413  
1414 < #ifdef IS_MPI
1415 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1416 <                 j1 != cellListRow_[m1].end(); ++j1) {
1417 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1418 <                   j2 != cellListCol_[m2].end(); ++j2) {
1419 <                              
1420 <                // Always do this if we're in different cells or if
1421 <                // we're in the same cell and the global index of the
1422 <                // j2 cutoff group is less than the j1 cutoff group
1414 >              if (m2v.x() >= nCells_.x()) {
1415 >                m2v.x() = 0;          
1416 >              } else if (m2v.x() < 0) {
1417 >                m2v.x() = nCells_.x() - 1;
1418 >              }
1419 >              
1420 >              if (m2v.y() >= nCells_.y()) {
1421 >                m2v.y() = 0;          
1422 >              } else if (m2v.y() < 0) {
1423 >                m2v.y() = nCells_.y() - 1;
1424 >              }
1425 >              
1426 >              if (m2v.z() >= nCells_.z()) {
1427 >                m2v.z() = 0;          
1428 >              } else if (m2v.z() < 0) {
1429 >                m2v.z() = nCells_.z() - 1;
1430 >              }
1431  
1432 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1432 >              int m2 = Vlinear (m2v, nCells_);
1433 >              
1434 > #ifdef IS_MPI
1435 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1436 >                   j1 != cellListRow_[m1].end(); ++j1) {
1437 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1438 >                     j2 != cellListCol_[m2].end(); ++j2) {
1439 >                  
1440 >                  // In parallel, we need to visit *all* pairs of row
1441 >                  // & column indicies and will divide labor in the
1442 >                  // force evaluation later.
1443                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1444                    snap_->wrapVector(dr);
1445 <                  if (dr.lengthSquare() < rl2) {
1445 >                  cuts = getGroupCutoffs( (*j1), (*j2) );
1446 >                  if (dr.lengthSquare() < cuts.third) {
1447                      neighborList.push_back(make_pair((*j1), (*j2)));
1448 <                  }
1448 >                  }                  
1449                  }
1450                }
906            }
1451   #else
1452 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1453 <                 j1 != cellList_[m1].end(); ++j1) {
1454 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1455 <                   j2 != cellList_[m2].end(); ++j2) {
1456 <                              
1457 <                // Always do this if we're in different cells or if
1458 <                // we're in the same cell and the global index of the
1459 <                // j2 cutoff group is less than the j1 cutoff group
1452 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1453 >                   j1 != cellList_[m1].end(); ++j1) {
1454 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1455 >                     j2 != cellList_[m2].end(); ++j2) {
1456 >    
1457 >                  // Always do this if we're in different cells or if
1458 >                  // we're in the same cell and the global index of
1459 >                  // the j2 cutoff group is greater than or equal to
1460 >                  // the j1 cutoff group.  Note that Rappaport's code
1461 >                  // has a "less than" conditional here, but that
1462 >                  // deals with atom-by-atom computation.  OpenMD
1463 >                  // allows atoms within a single cutoff group to
1464 >                  // interact with each other.
1465  
1466 <                if (m2 != m1 || (*j2) < (*j1)) {
1467 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1468 <                  snap_->wrapVector(dr);
1469 <                  if (dr.lengthSquare() < rl2) {
1470 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1466 >
1467 >
1468 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1469 >
1470 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1471 >                    snap_->wrapVector(dr);
1472 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1473 >                    if (dr.lengthSquare() < cuts.third) {
1474 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1475 >                    }
1476                    }
1477                  }
1478                }
925            }
1479   #endif
1480 +            }
1481            }
1482          }
1483        }
1484 +    } else {
1485 +      // branch to do all cutoff group pairs
1486 + #ifdef IS_MPI
1487 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1488 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1489 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1490 +          snap_->wrapVector(dr);
1491 +          cuts = getGroupCutoffs( j1, j2 );
1492 +          if (dr.lengthSquare() < cuts.third) {
1493 +            neighborList.push_back(make_pair(j1, j2));
1494 +          }
1495 +        }
1496 +      }      
1497 + #else
1498 +      // include all groups here.
1499 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1500 +        // include self group interactions j2 == j1
1501 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1502 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1503 +          snap_->wrapVector(dr);
1504 +          cuts = getGroupCutoffs( j1, j2 );
1505 +          if (dr.lengthSquare() < cuts.third) {
1506 +            neighborList.push_back(make_pair(j1, j2));
1507 +          }
1508 +        }    
1509 +      }
1510 + #endif
1511      }
1512 <
1512 >      
1513      // save the local cutoff group positions for the check that is
1514      // done on each loop:
1515      saved_CG_positions_.clear();
1516      for (int i = 0; i < nGroups_; i++)
1517        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1518 <
1518 >    
1519      return neighborList;
1520    }
1521   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines