ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1575 by gezelter, Fri Jun 3 21:39:49 2011 UTC vs.
Revision 1592 by gezelter, Tue Jul 12 20:33:14 2011 UTC

# Line 57 | Line 57 | namespace OpenMD {
57      storageLayout_ = sman_->getStorageLayout();
58      ff_ = info_->getForceField();
59      nLocal_ = snap_->getNumberOfAtoms();
60 <    nGroups_ = snap_->getNumberOfCutoffGroups();
61 <
60 >    
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62      // gather the information for atomtype IDs (atids):
63 <    identsLocal = info_->getIdentArray();
63 >    idents = info_->getIdentArray();
64      AtomLocalToGlobal = info_->getGlobalAtomIndices();
65      cgLocalToGlobal = info_->getGlobalGroupIndices();
66      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67    vector<RealType> massFactorsLocal = info_->getMassFactors();
68    PairList excludes = info_->getExcludedInteractions();
69    PairList oneTwo = info_->getOneTwoInteractions();
70    PairList oneThree = info_->getOneThreeInteractions();
71    PairList oneFour = info_->getOneFourInteractions();
67  
68 +    massFactors = info_->getMassFactors();
69 +
70 +    PairList* excludes = info_->getExcludedInteractions();
71 +    PairList* oneTwo = info_->getOneTwoInteractions();
72 +    PairList* oneThree = info_->getOneThreeInteractions();
73 +    PairList* oneFour = info_->getOneFourInteractions();
74 +
75   #ifdef IS_MPI
76  
77      AtomCommIntRow = new Communicator<Row,int>(nLocal_);
# Line 104 | Line 106 | namespace OpenMD {
106      cgColData.resize(nGroupsInCol_);
107      cgColData.setStorageLayout(DataStorage::dslPosition);
108          
109 <    identsRow.reserve(nAtomsInRow_);
110 <    identsCol.reserve(nAtomsInCol_);
109 >    identsRow.resize(nAtomsInRow_);
110 >    identsCol.resize(nAtomsInCol_);
111      
112 <    AtomCommIntRow->gather(identsLocal, identsRow);
113 <    AtomCommIntColumn->gather(identsLocal, identsCol);
112 >    AtomCommIntRow->gather(idents, identsRow);
113 >    AtomCommIntColumn->gather(idents, identsCol);
114      
115 +    // allocate memory for the parallel objects
116 +    atypesRow.resize(nAtomsInRow_);
117 +    atypesCol.resize(nAtomsInCol_);
118 +
119 +    for (int i = 0; i < nAtomsInRow_; i++)
120 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
121 +    for (int i = 0; i < nAtomsInCol_; i++)
122 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
123 +
124 +    pot_row.resize(nAtomsInRow_);
125 +    pot_col.resize(nAtomsInCol_);
126 +
127 +    AtomRowToGlobal.resize(nAtomsInRow_);
128 +    AtomColToGlobal.resize(nAtomsInCol_);
129      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
130      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
131      
132 +    cgRowToGlobal.resize(nGroupsInRow_);
133 +    cgColToGlobal.resize(nGroupsInCol_);
134      cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
135      cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
136  
137 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
138 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
137 >    massFactorsRow.resize(nAtomsInRow_);
138 >    massFactorsCol.resize(nAtomsInCol_);
139 >    AtomCommRealRow->gather(massFactors, massFactorsRow);
140 >    AtomCommRealColumn->gather(massFactors, massFactorsCol);
141  
142      groupListRow_.clear();
143 <    groupListRow_.reserve(nGroupsInRow_);
143 >    groupListRow_.resize(nGroupsInRow_);
144      for (int i = 0; i < nGroupsInRow_; i++) {
145        int gid = cgRowToGlobal[i];
146        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 131 | Line 151 | namespace OpenMD {
151      }
152  
153      groupListCol_.clear();
154 <    groupListCol_.reserve(nGroupsInCol_);
154 >    groupListCol_.resize(nGroupsInCol_);
155      for (int i = 0; i < nGroupsInCol_; i++) {
156        int gid = cgColToGlobal[i];
157        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 141 | Line 161 | namespace OpenMD {
161        }      
162      }
163  
164 <    skipsForRowAtom.clear();
165 <    skipsForRowAtom.reserve(nAtomsInRow_);
164 >    excludesForAtom.clear();
165 >    excludesForAtom.resize(nAtomsInRow_);
166 >    toposForAtom.clear();
167 >    toposForAtom.resize(nAtomsInRow_);
168 >    topoDist.clear();
169 >    topoDist.resize(nAtomsInRow_);
170      for (int i = 0; i < nAtomsInRow_; i++) {
171        int iglob = AtomRowToGlobal[i];
148      for (int j = 0; j < nAtomsInCol_; j++) {
149        int jglob = AtomColToGlobal[j];        
150        if (excludes.hasPair(iglob, jglob))
151          skipsForRowAtom[i].push_back(j);      
152      }      
153    }
172  
155    toposForRowAtom.clear();
156    toposForRowAtom.reserve(nAtomsInRow_);
157    for (int i = 0; i < nAtomsInRow_; i++) {
158      int iglob = AtomRowToGlobal[i];
159      int nTopos = 0;
173        for (int j = 0; j < nAtomsInCol_; j++) {
174 <        int jglob = AtomColToGlobal[j];        
175 <        if (oneTwo.hasPair(iglob, jglob)) {
176 <          toposForRowAtom[i].push_back(j);
177 <          topoDistRow[i][nTopos] = 1;
178 <          nTopos++;
174 >        int jglob = AtomColToGlobal[j];
175 >
176 >        if (excludes->hasPair(iglob, jglob))
177 >          excludesForAtom[i].push_back(j);      
178 >        
179 >        if (oneTwo->hasPair(iglob, jglob)) {
180 >          toposForAtom[i].push_back(j);
181 >          topoDist[i].push_back(1);
182 >        } else {
183 >          if (oneThree->hasPair(iglob, jglob)) {
184 >            toposForAtom[i].push_back(j);
185 >            topoDist[i].push_back(2);
186 >          } else {
187 >            if (oneFour->hasPair(iglob, jglob)) {
188 >              toposForAtom[i].push_back(j);
189 >              topoDist[i].push_back(3);
190 >            }
191 >          }
192          }
167        if (oneThree.hasPair(iglob, jglob)) {
168          toposForRowAtom[i].push_back(j);
169          topoDistRow[i][nTopos] = 2;
170          nTopos++;
171        }
172        if (oneFour.hasPair(iglob, jglob)) {
173          toposForRowAtom[i].push_back(j);
174          topoDistRow[i][nTopos] = 3;
175          nTopos++;
176        }
193        }      
194      }
195  
196   #endif
197  
198 +    // allocate memory for the parallel objects
199 +    atypesLocal.resize(nLocal_);
200 +
201 +    for (int i = 0; i < nLocal_; i++)
202 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
203 +
204      groupList_.clear();
205 <    groupList_.reserve(nGroups_);
205 >    groupList_.resize(nGroups_);
206      for (int i = 0; i < nGroups_; i++) {
207        int gid = cgLocalToGlobal[i];
208        for (int j = 0; j < nLocal_; j++) {
209          int aid = AtomLocalToGlobal[j];
210 <        if (globalGroupMembership[aid] == gid)
210 >        if (globalGroupMembership[aid] == gid) {
211            groupList_[i].push_back(j);
212 +        }
213        }      
214      }
215  
216 <    skipsForLocalAtom.clear();
217 <    skipsForLocalAtom.reserve(nLocal_);
216 >    excludesForAtom.clear();
217 >    excludesForAtom.resize(nLocal_);
218 >    toposForAtom.clear();
219 >    toposForAtom.resize(nLocal_);
220 >    topoDist.clear();
221 >    topoDist.resize(nLocal_);
222  
223      for (int i = 0; i < nLocal_; i++) {
224        int iglob = AtomLocalToGlobal[i];
198      for (int j = 0; j < nLocal_; j++) {
199        int jglob = AtomLocalToGlobal[j];        
200        if (excludes.hasPair(iglob, jglob))
201          skipsForLocalAtom[i].push_back(j);      
202      }      
203    }
225  
205    toposForLocalAtom.clear();
206    toposForLocalAtom.reserve(nLocal_);
207    for (int i = 0; i < nLocal_; i++) {
208      int iglob = AtomLocalToGlobal[i];
209      int nTopos = 0;
226        for (int j = 0; j < nLocal_; j++) {
227 <        int jglob = AtomLocalToGlobal[j];        
228 <        if (oneTwo.hasPair(iglob, jglob)) {
229 <          toposForLocalAtom[i].push_back(j);
230 <          topoDistLocal[i][nTopos] = 1;
231 <          nTopos++;
227 >        int jglob = AtomLocalToGlobal[j];
228 >
229 >        if (excludes->hasPair(iglob, jglob))
230 >          excludesForAtom[i].push_back(j);              
231 >        
232 >        if (oneTwo->hasPair(iglob, jglob)) {
233 >          toposForAtom[i].push_back(j);
234 >          topoDist[i].push_back(1);
235 >        } else {
236 >          if (oneThree->hasPair(iglob, jglob)) {
237 >            toposForAtom[i].push_back(j);
238 >            topoDist[i].push_back(2);
239 >          } else {
240 >            if (oneFour->hasPair(iglob, jglob)) {
241 >              toposForAtom[i].push_back(j);
242 >              topoDist[i].push_back(3);
243 >            }
244 >          }
245          }
217        if (oneThree.hasPair(iglob, jglob)) {
218          toposForLocalAtom[i].push_back(j);
219          topoDistLocal[i][nTopos] = 2;
220          nTopos++;
221        }
222        if (oneFour.hasPair(iglob, jglob)) {
223          toposForLocalAtom[i].push_back(j);
224          topoDistLocal[i][nTopos] = 3;
225          nTopos++;
226        }
246        }      
247      }
248 +    
249 +    createGtypeCutoffMap();
250 +
251    }
252    
253 <  void ForceMatrixDecomposition::zeroWorkArrays() {
253 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
254 >    
255 >    RealType tol = 1e-6;
256 >    largestRcut_ = 0.0;
257 >    RealType rc;
258 >    int atid;
259 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
260 >    
261 >    map<int, RealType> atypeCutoff;
262 >      
263 >    for (set<AtomType*>::iterator at = atypes.begin();
264 >         at != atypes.end(); ++at){
265 >      atid = (*at)->getIdent();
266 >      if (userChoseCutoff_)
267 >        atypeCutoff[atid] = userCutoff_;
268 >      else
269 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
270 >    }
271 >    
272 >    vector<RealType> gTypeCutoffs;
273 >    // first we do a single loop over the cutoff groups to find the
274 >    // largest cutoff for any atypes present in this group.
275 > #ifdef IS_MPI
276 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
277 >    groupRowToGtype.resize(nGroupsInRow_);
278 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
279 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
280 >      for (vector<int>::iterator ia = atomListRow.begin();
281 >           ia != atomListRow.end(); ++ia) {            
282 >        int atom1 = (*ia);
283 >        atid = identsRow[atom1];
284 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
285 >          groupCutoffRow[cg1] = atypeCutoff[atid];
286 >        }
287 >      }
288  
289 <    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
290 <      longRangePot_[j] = 0.0;
289 >      bool gTypeFound = false;
290 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
291 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
292 >          groupRowToGtype[cg1] = gt;
293 >          gTypeFound = true;
294 >        }
295 >      }
296 >      if (!gTypeFound) {
297 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
298 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
299 >      }
300 >      
301 >    }
302 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
303 >    groupColToGtype.resize(nGroupsInCol_);
304 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
305 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
306 >      for (vector<int>::iterator jb = atomListCol.begin();
307 >           jb != atomListCol.end(); ++jb) {            
308 >        int atom2 = (*jb);
309 >        atid = identsCol[atom2];
310 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
311 >          groupCutoffCol[cg2] = atypeCutoff[atid];
312 >        }
313 >      }
314 >      bool gTypeFound = false;
315 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
316 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
317 >          groupColToGtype[cg2] = gt;
318 >          gTypeFound = true;
319 >        }
320 >      }
321 >      if (!gTypeFound) {
322 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
323 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
324 >      }
325 >    }
326 > #else
327 >
328 >    vector<RealType> groupCutoff(nGroups_, 0.0);
329 >    groupToGtype.resize(nGroups_);
330 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
331 >      groupCutoff[cg1] = 0.0;
332 >      vector<int> atomList = getAtomsInGroupRow(cg1);
333 >      for (vector<int>::iterator ia = atomList.begin();
334 >           ia != atomList.end(); ++ia) {            
335 >        int atom1 = (*ia);
336 >        atid = idents[atom1];
337 >        if (atypeCutoff[atid] > groupCutoff[cg1])
338 >          groupCutoff[cg1] = atypeCutoff[atid];
339 >      }
340 >      
341 >      bool gTypeFound = false;
342 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
343 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
344 >          groupToGtype[cg1] = gt;
345 >          gTypeFound = true;
346 >        }
347 >      }
348 >      if (!gTypeFound) {      
349 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
350 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
351 >      }      
352 >    }
353 > #endif
354 >
355 >    // Now we find the maximum group cutoff value present in the simulation
356 >
357 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
358 >                                     gTypeCutoffs.end());
359 >
360 > #ifdef IS_MPI
361 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
362 >                              MPI::MAX);
363 > #endif
364 >    
365 >    RealType tradRcut = groupMax;
366 >
367 >    for (int i = 0; i < gTypeCutoffs.size();  i++) {
368 >      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
369 >        RealType thisRcut;
370 >        switch(cutoffPolicy_) {
371 >        case TRADITIONAL:
372 >          thisRcut = tradRcut;
373 >          break;
374 >        case MIX:
375 >          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
376 >          break;
377 >        case MAX:
378 >          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
379 >          break;
380 >        default:
381 >          sprintf(painCave.errMsg,
382 >                  "ForceMatrixDecomposition::createGtypeCutoffMap "
383 >                  "hit an unknown cutoff policy!\n");
384 >          painCave.severity = OPENMD_ERROR;
385 >          painCave.isFatal = 1;
386 >          simError();
387 >          break;
388 >        }
389 >
390 >        pair<int,int> key = make_pair(i,j);
391 >        gTypeCutoffMap[key].first = thisRcut;
392 >        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
393 >        gTypeCutoffMap[key].second = thisRcut*thisRcut;
394 >        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
395 >        // sanity check
396 >        
397 >        if (userChoseCutoff_) {
398 >          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
399 >            sprintf(painCave.errMsg,
400 >                    "ForceMatrixDecomposition::createGtypeCutoffMap "
401 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
402 >            painCave.severity = OPENMD_ERROR;
403 >            painCave.isFatal = 1;
404 >            simError();            
405 >          }
406 >        }
407 >      }
408 >    }
409 >  }
410 >
411 >
412 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
413 >    int i, j;  
414 > #ifdef IS_MPI
415 >    i = groupRowToGtype[cg1];
416 >    j = groupColToGtype[cg2];
417 > #else
418 >    i = groupToGtype[cg1];
419 >    j = groupToGtype[cg2];
420 > #endif    
421 >    return gTypeCutoffMap[make_pair(i,j)];
422 >  }
423 >
424 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
425 >    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
426 >      if (toposForAtom[atom1][j] == atom2)
427 >        return topoDist[atom1][j];
428      }
429 +    return 0;
430 +  }
431  
432 +  void ForceMatrixDecomposition::zeroWorkArrays() {
433 +    pairwisePot = 0.0;
434 +    embeddingPot = 0.0;
435 +
436   #ifdef IS_MPI
437      if (storageLayout_ & DataStorage::dslForce) {
438        fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
# Line 249 | Line 448 | namespace OpenMD {
448           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
449  
450      fill(pot_col.begin(), pot_col.end(),
451 <         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
253 <    
254 <    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
451 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
452  
453      if (storageLayout_ & DataStorage::dslParticlePot) {    
454 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
455 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
454 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
455 >           0.0);
456 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
457 >           0.0);
458      }
459  
460      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 264 | Line 463 | namespace OpenMD {
463      }
464  
465      if (storageLayout_ & DataStorage::dslFunctional) {  
466 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
467 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
466 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
467 >           0.0);
468 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
469 >           0.0);
470      }
471  
472      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 275 | Line 476 | namespace OpenMD {
476             atomColData.functionalDerivative.end(), 0.0);
477      }
478  
479 < #else
480 <    
479 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
480 >      fill(atomRowData.skippedCharge.begin(),
481 >           atomRowData.skippedCharge.end(), 0.0);
482 >      fill(atomColData.skippedCharge.begin(),
483 >           atomColData.skippedCharge.end(), 0.0);
484 >    }
485 >
486 > #endif
487 >    // even in parallel, we need to zero out the local arrays:
488 >
489      if (storageLayout_ & DataStorage::dslParticlePot) {      
490        fill(snap_->atomData.particlePot.begin(),
491             snap_->atomData.particlePot.end(), 0.0);
# Line 294 | Line 503 | namespace OpenMD {
503        fill(snap_->atomData.functionalDerivative.begin(),
504             snap_->atomData.functionalDerivative.end(), 0.0);
505      }
506 < #endif
506 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
507 >      fill(snap_->atomData.skippedCharge.begin(),
508 >           snap_->atomData.skippedCharge.end(), 0.0);
509 >    }
510      
511    }
512  
# Line 331 | Line 543 | namespace OpenMD {
543        AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
544                                     atomColData.electroFrame);
545      }
546 +
547   #endif      
548    }
549    
# Line 397 | Line 610 | namespace OpenMD {
610      AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
611      for (int i = 0; i < n; i++)
612        snap_->atomData.force[i] += frc_tmp[i];
613 <    
401 <    
613 >        
614      if (storageLayout_ & DataStorage::dslTorque) {
615  
616 <      int nt = snap_->atomData.force.size();
616 >      int nt = snap_->atomData.torque.size();
617        vector<Vector3d> trq_tmp(nt, V3Zero);
618  
619        AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
620 <      for (int i = 0; i < n; i++) {
620 >      for (int i = 0; i < nt; i++) {
621          snap_->atomData.torque[i] += trq_tmp[i];
622          trq_tmp[i] = 0.0;
623        }
624        
625        AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
626 <      for (int i = 0; i < n; i++)
626 >      for (int i = 0; i < nt; i++)
627          snap_->atomData.torque[i] += trq_tmp[i];
628      }
629 +
630 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
631 +
632 +      int ns = snap_->atomData.skippedCharge.size();
633 +      vector<RealType> skch_tmp(ns, 0.0);
634 +
635 +      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
636 +      for (int i = 0; i < ns; i++) {
637 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
638 +        skch_tmp[i] = 0.0;
639 +      }
640 +      
641 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
642 +      for (int i = 0; i < ns; i++)
643 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
644 +    }
645      
646      nLocal_ = snap_->getNumberOfAtoms();
647  
# Line 425 | Line 653 | namespace OpenMD {
653      AtomCommPotRow->scatter(pot_row, pot_temp);
654  
655      for (int ii = 0;  ii < pot_temp.size(); ii++ )
656 <      pot_local += pot_temp[ii];
656 >      pairwisePot += pot_temp[ii];
657      
658      fill(pot_temp.begin(), pot_temp.end(),
659           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
# Line 433 | Line 661 | namespace OpenMD {
661      AtomCommPotColumn->scatter(pot_col, pot_temp);    
662      
663      for (int ii = 0;  ii < pot_temp.size(); ii++ )
664 <      pot_local += pot_temp[ii];
437 <    
664 >      pairwisePot += pot_temp[ii];    
665   #endif
666 +
667    }
668  
669    int ForceMatrixDecomposition::getNAtomsInRow() {  
# Line 510 | Line 738 | namespace OpenMD {
738   #ifdef IS_MPI
739      return massFactorsRow[atom1];
740   #else
741 <    return massFactorsLocal[atom1];
741 >    return massFactors[atom1];
742   #endif
743    }
744  
# Line 518 | Line 746 | namespace OpenMD {
746   #ifdef IS_MPI
747      return massFactorsCol[atom2];
748   #else
749 <    return massFactorsLocal[atom2];
749 >    return massFactors[atom2];
750   #endif
751  
752    }
# Line 536 | Line 764 | namespace OpenMD {
764      return d;    
765    }
766  
767 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
768 < #ifdef IS_MPI
541 <    return skipsForRowAtom[atom1];
542 < #else
543 <    return skipsForLocalAtom[atom1];
544 < #endif
767 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
768 >    return excludesForAtom[atom1];
769    }
770  
771    /**
772 <   * There are a number of reasons to skip a pair or a
549 <   * particle. Mostly we do this to exclude atoms who are involved in
550 <   * short range interactions (bonds, bends, torsions), but we also
551 <   * need to exclude some overcounted interactions that result from
772 >   * We need to exclude some overcounted interactions that result from
773     * the parallel decomposition.
774     */
775    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
# Line 568 | Line 789 | namespace OpenMD {
789      } else {
790        if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
791      }
792 + #endif
793 +    return false;
794 +  }
795 +
796 +  /**
797 +   * We need to handle the interactions for atoms who are involved in
798 +   * the same rigid body as well as some short range interactions
799 +   * (bonds, bends, torsions) differently from other interactions.
800 +   * We'll still visit the pairwise routines, but with a flag that
801 +   * tells those routines to exclude the pair from direct long range
802 +   * interactions.  Some indirect interactions (notably reaction
803 +   * field) must still be handled for these pairs.
804 +   */
805 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
806 +    int unique_id_2;
807 +    
808 + #ifdef IS_MPI
809 +    // in MPI, we have to look up the unique IDs for the row atom.
810 +    unique_id_2 = AtomColToGlobal[atom2];
811   #else
812      // in the normal loop, the atom numbers are unique
573    unique_id_1 = atom1;
813      unique_id_2 = atom2;
814   #endif
815      
816 < #ifdef IS_MPI
817 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
579 <         i != skipsForRowAtom[atom1].end(); ++i) {
816 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
817 >         i != excludesForAtom[atom1].end(); ++i) {
818        if ( (*i) == unique_id_2 ) return true;
581    }    
582 #else
583    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
584         i != skipsForLocalAtom[atom1].end(); ++i) {
585      if ( (*i) == unique_id_2 ) return true;
586    }    
587 #endif
588  }
589
590  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
591    
592 #ifdef IS_MPI
593    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
594      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
819      }
596 #else
597    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
598      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
599    }
600 #endif
820  
821 <    // zero is default for unconnected (i.e. normal) pair interactions
603 <    return 0;
821 >    return false;
822    }
823  
824 +
825    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
826   #ifdef IS_MPI
827      atomRowData.force[atom1] += fg;
# Line 620 | Line 839 | namespace OpenMD {
839    }
840  
841      // filling interaction blocks with pointers
842 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
843 <    InteractionData idat;
842 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
843 >                                                     int atom1, int atom2) {
844  
845 +    idat.excluded = excludeAtomPair(atom1, atom2);
846 +  
847   #ifdef IS_MPI
848 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
849 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
850 +    //                         ff_->getAtomType(identsCol[atom2]) );
851      
628    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
629                             ff_->getAtomType(identsCol[atom2]) );
630
631    
852      if (storageLayout_ & DataStorage::dslAmat) {
853        idat.A1 = &(atomRowData.aMat[atom1]);
854        idat.A2 = &(atomColData.aMat[atom2]);
# Line 664 | Line 884 | namespace OpenMD {
884        idat.particlePot2 = &(atomColData.particlePot[atom2]);
885      }
886  
887 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
888 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
889 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
890 +    }
891 +
892   #else
893  
894 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
895 <                             ff_->getAtomType(identsLocal[atom2]) );
894 >    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
895 >    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
896 >    //                         ff_->getAtomType(idents[atom2]) );
897  
898      if (storageLayout_ & DataStorage::dslAmat) {
899        idat.A1 = &(snap_->atomData.aMat[atom1]);
# Line 684 | Line 910 | namespace OpenMD {
910        idat.t2 = &(snap_->atomData.torque[atom2]);
911      }
912  
913 <    if (storageLayout_ & DataStorage::dslDensity) {
913 >    if (storageLayout_ & DataStorage::dslDensity) {    
914        idat.rho1 = &(snap_->atomData.density[atom1]);
915        idat.rho2 = &(snap_->atomData.density[atom2]);
916      }
# Line 704 | Line 930 | namespace OpenMD {
930        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
931      }
932  
933 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
934 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
935 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
936 +    }
937   #endif
708    return idat;
938    }
939  
940    
941 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
941 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
942   #ifdef IS_MPI
943      pot_row[atom1] += 0.5 *  *(idat.pot);
944      pot_col[atom2] += 0.5 *  *(idat.pot);
# Line 717 | Line 946 | namespace OpenMD {
946      atomRowData.force[atom1] += *(idat.f1);
947      atomColData.force[atom2] -= *(idat.f1);
948   #else
949 <    longRangePot_ += *(idat.pot);
950 <    
949 >    pairwisePot += *(idat.pot);
950 >
951      snap_->atomData.force[atom1] += *(idat.f1);
952      snap_->atomData.force[atom2] -= *(idat.f1);
953   #endif
954 <
726 <  }
727 <
728 <
729 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
730 <
731 <    InteractionData idat;
732 < #ifdef IS_MPI
733 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
734 <                             ff_->getAtomType(identsCol[atom2]) );
735 <
736 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
737 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
738 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
739 <    }
740 <    if (storageLayout_ & DataStorage::dslTorque) {
741 <      idat.t1 = &(atomRowData.torque[atom1]);
742 <      idat.t2 = &(atomColData.torque[atom2]);
743 <    }
744 < #else
745 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
746 <                             ff_->getAtomType(identsLocal[atom2]) );
747 <
748 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
749 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
750 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
751 <    }
752 <    if (storageLayout_ & DataStorage::dslTorque) {
753 <      idat.t1 = &(snap_->atomData.torque[atom1]);
754 <      idat.t2 = &(snap_->atomData.torque[atom2]);
755 <    }
756 < #endif    
954 >    
955    }
956  
957    /*
# Line 765 | Line 963 | namespace OpenMD {
963    vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
964        
965      vector<pair<int, int> > neighborList;
966 +    groupCutoffs cuts;
967 +    bool doAllPairs = false;
968 +
969   #ifdef IS_MPI
970      cellListRow_.clear();
971      cellListCol_.clear();
# Line 772 | Line 973 | namespace OpenMD {
973      cellList_.clear();
974   #endif
975  
976 <    // dangerous to not do error checking.
776 <    RealType rCut_;
777 <
778 <    RealType rList_ = (rCut_ + skinThickness_);
976 >    RealType rList_ = (largestRcut_ + skinThickness_);
977      RealType rl2 = rList_ * rList_;
978      Snapshot* snap_ = sman_->getCurrentSnapshot();
979      Mat3x3d Hmat = snap_->getHmat();
# Line 787 | Line 985 | namespace OpenMD {
985      nCells_.y() = (int) ( Hy.length() )/ rList_;
986      nCells_.z() = (int) ( Hz.length() )/ rList_;
987  
988 +    // handle small boxes where the cell offsets can end up repeating cells
989 +    
990 +    if (nCells_.x() < 3) doAllPairs = true;
991 +    if (nCells_.y() < 3) doAllPairs = true;
992 +    if (nCells_.z() < 3) doAllPairs = true;
993 +
994      Mat3x3d invHmat = snap_->getInvHmat();
995      Vector3d rs, scaled, dr;
996      Vector3i whichCell;
997      int cellIndex;
998 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
999  
1000   #ifdef IS_MPI
1001 <    for (int i = 0; i < nGroupsInRow_; i++) {
1002 <      rs = cgRowData.position[i];
798 <      // scaled positions relative to the box vectors
799 <      scaled = invHmat * rs;
800 <      // wrap the vector back into the unit box by subtracting integer box
801 <      // numbers
802 <      for (int j = 0; j < 3; j++)
803 <        scaled[j] -= roundMe(scaled[j]);
804 <    
805 <      // find xyz-indices of cell that cutoffGroup is in.
806 <      whichCell.x() = nCells_.x() * scaled.x();
807 <      whichCell.y() = nCells_.y() * scaled.y();
808 <      whichCell.z() = nCells_.z() * scaled.z();
809 <
810 <      // find single index of this cell:
811 <      cellIndex = Vlinear(whichCell, nCells_);
812 <      // add this cutoff group to the list of groups in this cell;
813 <      cellListRow_[cellIndex].push_back(i);
814 <    }
815 <
816 <    for (int i = 0; i < nGroupsInCol_; i++) {
817 <      rs = cgColData.position[i];
818 <      // scaled positions relative to the box vectors
819 <      scaled = invHmat * rs;
820 <      // wrap the vector back into the unit box by subtracting integer box
821 <      // numbers
822 <      for (int j = 0; j < 3; j++)
823 <        scaled[j] -= roundMe(scaled[j]);
824 <
825 <      // find xyz-indices of cell that cutoffGroup is in.
826 <      whichCell.x() = nCells_.x() * scaled.x();
827 <      whichCell.y() = nCells_.y() * scaled.y();
828 <      whichCell.z() = nCells_.z() * scaled.z();
829 <
830 <      // find single index of this cell:
831 <      cellIndex = Vlinear(whichCell, nCells_);
832 <      // add this cutoff group to the list of groups in this cell;
833 <      cellListCol_[cellIndex].push_back(i);
834 <    }
1001 >    cellListRow_.resize(nCtot);
1002 >    cellListCol_.resize(nCtot);
1003   #else
1004 <    for (int i = 0; i < nGroups_; i++) {
837 <      rs = snap_->cgData.position[i];
838 <      // scaled positions relative to the box vectors
839 <      scaled = invHmat * rs;
840 <      // wrap the vector back into the unit box by subtracting integer box
841 <      // numbers
842 <      for (int j = 0; j < 3; j++)
843 <        scaled[j] -= roundMe(scaled[j]);
844 <
845 <      // find xyz-indices of cell that cutoffGroup is in.
846 <      whichCell.x() = nCells_.x() * scaled.x();
847 <      whichCell.y() = nCells_.y() * scaled.y();
848 <      whichCell.z() = nCells_.z() * scaled.z();
849 <
850 <      // find single index of this cell:
851 <      cellIndex = Vlinear(whichCell, nCells_);
852 <      // add this cutoff group to the list of groups in this cell;
853 <      cellList_[cellIndex].push_back(i);
854 <    }
1004 >    cellList_.resize(nCtot);
1005   #endif
1006  
1007 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1008 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
859 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
860 <          Vector3i m1v(m1x, m1y, m1z);
861 <          int m1 = Vlinear(m1v, nCells_);
1007 >    if (!doAllPairs) {
1008 > #ifdef IS_MPI
1009  
1010 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1011 <               os != cellOffsets_.end(); ++os) {
1012 <            
1013 <            Vector3i m2v = m1v + (*os);
1014 <            
1015 <            if (m2v.x() >= nCells_.x()) {
1016 <              m2v.x() = 0;          
1017 <            } else if (m2v.x() < 0) {
1018 <              m2v.x() = nCells_.x() - 1;
1019 <            }
1020 <            
1021 <            if (m2v.y() >= nCells_.y()) {
1022 <              m2v.y() = 0;          
1023 <            } else if (m2v.y() < 0) {
1024 <              m2v.y() = nCells_.y() - 1;
1025 <            }
1026 <            
1027 <            if (m2v.z() >= nCells_.z()) {
1028 <              m2v.z() = 0;          
1029 <            } else if (m2v.z() < 0) {
1030 <              m2v.z() = nCells_.z() - 1;
1031 <            }
1032 <            
1033 <            int m2 = Vlinear (m2v, nCells_);
1010 >      for (int i = 0; i < nGroupsInRow_; i++) {
1011 >        rs = cgRowData.position[i];
1012 >        
1013 >        // scaled positions relative to the box vectors
1014 >        scaled = invHmat * rs;
1015 >        
1016 >        // wrap the vector back into the unit box by subtracting integer box
1017 >        // numbers
1018 >        for (int j = 0; j < 3; j++) {
1019 >          scaled[j] -= roundMe(scaled[j]);
1020 >          scaled[j] += 0.5;
1021 >        }
1022 >        
1023 >        // find xyz-indices of cell that cutoffGroup is in.
1024 >        whichCell.x() = nCells_.x() * scaled.x();
1025 >        whichCell.y() = nCells_.y() * scaled.y();
1026 >        whichCell.z() = nCells_.z() * scaled.z();
1027 >        
1028 >        // find single index of this cell:
1029 >        cellIndex = Vlinear(whichCell, nCells_);
1030 >        
1031 >        // add this cutoff group to the list of groups in this cell;
1032 >        cellListRow_[cellIndex].push_back(i);
1033 >      }
1034 >      
1035 >      for (int i = 0; i < nGroupsInCol_; i++) {
1036 >        rs = cgColData.position[i];
1037 >        
1038 >        // scaled positions relative to the box vectors
1039 >        scaled = invHmat * rs;
1040 >        
1041 >        // wrap the vector back into the unit box by subtracting integer box
1042 >        // numbers
1043 >        for (int j = 0; j < 3; j++) {
1044 >          scaled[j] -= roundMe(scaled[j]);
1045 >          scaled[j] += 0.5;
1046 >        }
1047 >        
1048 >        // find xyz-indices of cell that cutoffGroup is in.
1049 >        whichCell.x() = nCells_.x() * scaled.x();
1050 >        whichCell.y() = nCells_.y() * scaled.y();
1051 >        whichCell.z() = nCells_.z() * scaled.z();
1052 >        
1053 >        // find single index of this cell:
1054 >        cellIndex = Vlinear(whichCell, nCells_);
1055 >        
1056 >        // add this cutoff group to the list of groups in this cell;
1057 >        cellListCol_[cellIndex].push_back(i);
1058 >      }
1059 > #else
1060 >      for (int i = 0; i < nGroups_; i++) {
1061 >        rs = snap_->cgData.position[i];
1062 >        
1063 >        // scaled positions relative to the box vectors
1064 >        scaled = invHmat * rs;
1065 >        
1066 >        // wrap the vector back into the unit box by subtracting integer box
1067 >        // numbers
1068 >        for (int j = 0; j < 3; j++) {
1069 >          scaled[j] -= roundMe(scaled[j]);
1070 >          scaled[j] += 0.5;
1071 >        }
1072 >        
1073 >        // find xyz-indices of cell that cutoffGroup is in.
1074 >        whichCell.x() = nCells_.x() * scaled.x();
1075 >        whichCell.y() = nCells_.y() * scaled.y();
1076 >        whichCell.z() = nCells_.z() * scaled.z();
1077 >        
1078 >        // find single index of this cell:
1079 >        cellIndex = Vlinear(whichCell, nCells_);      
1080 >        
1081 >        // add this cutoff group to the list of groups in this cell;
1082 >        cellList_[cellIndex].push_back(i);
1083 >      }
1084 > #endif
1085  
1086 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1087 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1088 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1089 +            Vector3i m1v(m1x, m1y, m1z);
1090 +            int m1 = Vlinear(m1v, nCells_);
1091 +            
1092 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1093 +                 os != cellOffsets_.end(); ++os) {
1094 +              
1095 +              Vector3i m2v = m1v + (*os);
1096 +              
1097 +              if (m2v.x() >= nCells_.x()) {
1098 +                m2v.x() = 0;          
1099 +              } else if (m2v.x() < 0) {
1100 +                m2v.x() = nCells_.x() - 1;
1101 +              }
1102 +              
1103 +              if (m2v.y() >= nCells_.y()) {
1104 +                m2v.y() = 0;          
1105 +              } else if (m2v.y() < 0) {
1106 +                m2v.y() = nCells_.y() - 1;
1107 +              }
1108 +              
1109 +              if (m2v.z() >= nCells_.z()) {
1110 +                m2v.z() = 0;          
1111 +              } else if (m2v.z() < 0) {
1112 +                m2v.z() = nCells_.z() - 1;
1113 +              }
1114 +              
1115 +              int m2 = Vlinear (m2v, nCells_);
1116 +              
1117   #ifdef IS_MPI
1118 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1119 <                 j1 != cellListRow_[m1].end(); ++j1) {
1120 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1121 <                   j2 != cellListCol_[m2].end(); ++j2) {
1122 <                              
1123 <                // Always do this if we're in different cells or if
1124 <                // we're in the same cell and the global index of the
1125 <                // j2 cutoff group is less than the j1 cutoff group
1126 <
1127 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1128 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1129 <                  snap_->wrapVector(dr);
1130 <                  if (dr.lengthSquare() < rl2) {
1131 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1118 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1119 >                   j1 != cellListRow_[m1].end(); ++j1) {
1120 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1121 >                     j2 != cellListCol_[m2].end(); ++j2) {
1122 >                  
1123 >                  // Always do this if we're in different cells or if
1124 >                  // we're in the same cell and the global index of the
1125 >                  // j2 cutoff group is less than the j1 cutoff group
1126 >                  
1127 >                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1128 >                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1129 >                    snap_->wrapVector(dr);
1130 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1131 >                    if (dr.lengthSquare() < cuts.third) {
1132 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1133 >                    }
1134                    }
1135                  }
1136                }
906            }
1137   #else
1138 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1139 <                 j1 != cellList_[m1].end(); ++j1) {
1140 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1141 <                   j2 != cellList_[m2].end(); ++j2) {
1142 <                              
1143 <                // Always do this if we're in different cells or if
1144 <                // we're in the same cell and the global index of the
1145 <                // j2 cutoff group is less than the j1 cutoff group
1146 <
1147 <                if (m2 != m1 || (*j2) < (*j1)) {
1148 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1149 <                  snap_->wrapVector(dr);
1150 <                  if (dr.lengthSquare() < rl2) {
1151 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1138 >              
1139 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1140 >                   j1 != cellList_[m1].end(); ++j1) {
1141 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1142 >                     j2 != cellList_[m2].end(); ++j2) {
1143 >                  
1144 >                  // Always do this if we're in different cells or if
1145 >                  // we're in the same cell and the global index of the
1146 >                  // j2 cutoff group is less than the j1 cutoff group
1147 >                  
1148 >                  if (m2 != m1 || (*j2) < (*j1)) {
1149 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1150 >                    snap_->wrapVector(dr);
1151 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1152 >                    if (dr.lengthSquare() < cuts.third) {
1153 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1154 >                    }
1155                    }
1156                  }
1157                }
925            }
1158   #endif
1159 +            }
1160            }
1161          }
1162        }
1163 +    } else {
1164 +      // branch to do all cutoff group pairs
1165 + #ifdef IS_MPI
1166 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1167 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1168 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1169 +          snap_->wrapVector(dr);
1170 +          cuts = getGroupCutoffs( j1, j2 );
1171 +          if (dr.lengthSquare() < cuts.third) {
1172 +            neighborList.push_back(make_pair(j1, j2));
1173 +          }
1174 +        }
1175 +      }
1176 + #else
1177 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1178 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1179 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1180 +          snap_->wrapVector(dr);
1181 +          cuts = getGroupCutoffs( j1, j2 );
1182 +          if (dr.lengthSquare() < cuts.third) {
1183 +            neighborList.push_back(make_pair(j1, j2));
1184 +          }
1185 +        }
1186 +      }        
1187 + #endif
1188      }
1189 <
1189 >      
1190      // save the local cutoff group positions for the check that is
1191      // done on each loop:
1192      saved_CG_positions_.clear();
1193      for (int i = 0; i < nGroups_; i++)
1194        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1195 <
1195 >    
1196      return neighborList;
1197    }
1198   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines