1 |
< |
/** |
2 |
< |
* @file ForceDecomposition.cpp |
3 |
< |
* @author Charles Vardeman <cvardema.at.nd.edu> |
4 |
< |
* @date 08/18/2010 |
5 |
< |
* @time 11:56am |
6 |
< |
* @version 1.0 |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
8 |
– |
* @section LICENSE |
9 |
– |
* Copyright (c) 2010 The University of Notre Dame. All Rights Reserved. |
10 |
– |
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
* redistribute this software in source and binary code form, provided |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
+ |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
+ |
#include "math/SquareMatrix3.hpp" |
43 |
+ |
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
+ |
#include "brains/SnapshotManager.hpp" |
45 |
+ |
#include "brains/PairList.hpp" |
46 |
|
|
47 |
+ |
using namespace std; |
48 |
+ |
namespace OpenMD { |
49 |
|
|
50 |
+ |
/** |
51 |
+ |
* distributeInitialData is essentially a copy of the older fortran |
52 |
+ |
* SimulationSetup |
53 |
+ |
*/ |
54 |
+ |
|
55 |
+ |
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
57 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
58 |
+ |
ff_ = info_->getForceField(); |
59 |
+ |
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
|
|
61 |
< |
/* -*- c++ -*- */ |
62 |
< |
#include "config.h" |
63 |
< |
#include <stdlib.h> |
61 |
> |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
> |
// gather the information for atomtype IDs (atids): |
63 |
> |
idents = info_->getIdentArray(); |
64 |
> |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
> |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
> |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
> |
|
68 |
> |
massFactors = info_->getMassFactors(); |
69 |
> |
|
70 |
> |
PairList excludes = info_->getExcludedInteractions(); |
71 |
> |
PairList oneTwo = info_->getOneTwoInteractions(); |
72 |
> |
PairList oneThree = info_->getOneThreeInteractions(); |
73 |
> |
PairList oneFour = info_->getOneFourInteractions(); |
74 |
> |
|
75 |
|
#ifdef IS_MPI |
76 |
< |
#include <mpi.h> |
77 |
< |
#endif |
76 |
> |
|
77 |
> |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 |
> |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
> |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
> |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
> |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 |
|
|
83 |
< |
#include <iostream> |
84 |
< |
#include <vector> |
85 |
< |
#include <algorithm> |
86 |
< |
#include <cmath> |
87 |
< |
#include "parallel/ForceDecomposition.hpp" |
83 |
> |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 |
> |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 |
> |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 |
> |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 |
> |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 |
|
|
89 |
+ |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 |
+ |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
91 |
+ |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
92 |
+ |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
93 |
|
|
94 |
< |
using namespace std; |
95 |
< |
using namespace OpenMD; |
94 |
> |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
95 |
> |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
96 |
> |
nGroupsInRow_ = cgCommIntRow->getSize(); |
97 |
> |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
98 |
|
|
99 |
< |
//__static |
100 |
< |
#ifdef IS_MPI |
101 |
< |
static vector<MPI:Comm> communictors; |
102 |
< |
#endif |
99 |
> |
// Modify the data storage objects with the correct layouts and sizes: |
100 |
> |
atomRowData.resize(nAtomsInRow_); |
101 |
> |
atomRowData.setStorageLayout(storageLayout_); |
102 |
> |
atomColData.resize(nAtomsInCol_); |
103 |
> |
atomColData.setStorageLayout(storageLayout_); |
104 |
> |
cgRowData.resize(nGroupsInRow_); |
105 |
> |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 |
> |
cgColData.resize(nGroupsInCol_); |
107 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
108 |
> |
|
109 |
> |
identsRow.resize(nAtomsInRow_); |
110 |
> |
identsCol.resize(nAtomsInCol_); |
111 |
> |
|
112 |
> |
AtomCommIntRow->gather(idents, identsRow); |
113 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
114 |
> |
|
115 |
> |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
116 |
> |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
117 |
> |
|
118 |
> |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
119 |
> |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
120 |
|
|
121 |
< |
//____ MPITypeTraits |
122 |
< |
template<typename T> |
75 |
< |
struct MPITypeTraits; |
121 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
122 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
123 |
|
|
124 |
< |
#ifdef IS_MPI |
125 |
< |
template<> |
126 |
< |
struct MPITypeTraits<RealType> { |
127 |
< |
static const MPI::Datatype datatype; |
128 |
< |
}; |
129 |
< |
const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL; |
124 |
> |
groupListRow_.clear(); |
125 |
> |
groupListRow_.resize(nGroupsInRow_); |
126 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
127 |
> |
int gid = cgRowToGlobal[i]; |
128 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
129 |
> |
int aid = AtomRowToGlobal[j]; |
130 |
> |
if (globalGroupMembership[aid] == gid) |
131 |
> |
groupListRow_[i].push_back(j); |
132 |
> |
} |
133 |
> |
} |
134 |
|
|
135 |
< |
template<> |
136 |
< |
struct MPITypeTraits<int> { |
137 |
< |
static const MPI::Datatype datatype; |
138 |
< |
}; |
139 |
< |
const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT; |
140 |
< |
#endif |
135 |
> |
groupListCol_.clear(); |
136 |
> |
groupListCol_.resize(nGroupsInCol_); |
137 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
138 |
> |
int gid = cgColToGlobal[i]; |
139 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
140 |
> |
int aid = AtomColToGlobal[j]; |
141 |
> |
if (globalGroupMembership[aid] == gid) |
142 |
> |
groupListCol_[i].push_back(j); |
143 |
> |
} |
144 |
> |
} |
145 |
|
|
146 |
< |
/** |
147 |
< |
* Constructor for ForceDecomposition Parallel Decomposition Method |
148 |
< |
* Will try to construct a symmetric grid of processors. Ideally, the |
149 |
< |
* number of processors will be a square ex: 4, 9, 16, 25. |
150 |
< |
* |
151 |
< |
*/ |
146 |
> |
skipsForAtom.clear(); |
147 |
> |
skipsForAtom.resize(nAtomsInRow_); |
148 |
> |
toposForAtom.clear(); |
149 |
> |
toposForAtom.resize(nAtomsInRow_); |
150 |
> |
topoDist.clear(); |
151 |
> |
topoDist.resize(nAtomsInRow_); |
152 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
153 |
> |
int iglob = AtomRowToGlobal[i]; |
154 |
|
|
155 |
< |
ForceDecomposition::ForceDecomposition() { |
155 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
156 |
> |
int jglob = AtomColToGlobal[j]; |
157 |
|
|
158 |
< |
#ifdef IS_MPI |
159 |
< |
int nProcs = MPI::COMM_WORLD.Get_size(); |
160 |
< |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
158 |
> |
if (excludes.hasPair(iglob, jglob)) |
159 |
> |
skipsForAtom[i].push_back(j); |
160 |
> |
|
161 |
> |
if (oneTwo.hasPair(iglob, jglob)) { |
162 |
> |
toposForAtom[i].push_back(j); |
163 |
> |
topoDist[i].push_back(1); |
164 |
> |
} else { |
165 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
166 |
> |
toposForAtom[i].push_back(j); |
167 |
> |
topoDist[i].push_back(2); |
168 |
> |
} else { |
169 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
170 |
> |
toposForAtom[i].push_back(j); |
171 |
> |
topoDist[i].push_back(3); |
172 |
> |
} |
173 |
> |
} |
174 |
> |
} |
175 |
> |
} |
176 |
> |
} |
177 |
> |
|
178 |
|
#endif |
179 |
|
|
180 |
< |
// First time through, construct column stride. |
181 |
< |
if (communicators.size() == 0) |
182 |
< |
{ |
183 |
< |
int nColumnsMax = (int) round(sqrt((float) nProcs)); |
184 |
< |
for (int i = 0; i < nProcs; ++i) |
185 |
< |
{ |
186 |
< |
if (nProcs%i==0) nColumns=i; |
180 |
> |
groupList_.clear(); |
181 |
> |
groupList_.resize(nGroups_); |
182 |
> |
for (int i = 0; i < nGroups_; i++) { |
183 |
> |
int gid = cgLocalToGlobal[i]; |
184 |
> |
for (int j = 0; j < nLocal_; j++) { |
185 |
> |
int aid = AtomLocalToGlobal[j]; |
186 |
> |
if (globalGroupMembership[aid] == gid) { |
187 |
> |
groupList_[i].push_back(j); |
188 |
> |
} |
189 |
> |
} |
190 |
|
} |
191 |
|
|
192 |
< |
int nRows = nProcs/nColumns; |
193 |
< |
myRank_ = (int) worldRank%nColumns; |
192 |
> |
skipsForAtom.clear(); |
193 |
> |
skipsForAtom.resize(nLocal_); |
194 |
> |
toposForAtom.clear(); |
195 |
> |
toposForAtom.resize(nLocal_); |
196 |
> |
topoDist.clear(); |
197 |
> |
topoDist.resize(nLocal_); |
198 |
> |
|
199 |
> |
for (int i = 0; i < nLocal_; i++) { |
200 |
> |
int iglob = AtomLocalToGlobal[i]; |
201 |
> |
|
202 |
> |
for (int j = 0; j < nLocal_; j++) { |
203 |
> |
int jglob = AtomLocalToGlobal[j]; |
204 |
> |
|
205 |
> |
if (excludes.hasPair(iglob, jglob)) |
206 |
> |
skipsForAtom[i].push_back(j); |
207 |
> |
|
208 |
> |
if (oneTwo.hasPair(iglob, jglob)) { |
209 |
> |
toposForAtom[i].push_back(j); |
210 |
> |
topoDist[i].push_back(1); |
211 |
> |
} else { |
212 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
213 |
> |
toposForAtom[i].push_back(j); |
214 |
> |
topoDist[i].push_back(2); |
215 |
> |
} else { |
216 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
217 |
> |
toposForAtom[i].push_back(j); |
218 |
> |
topoDist[i].push_back(3); |
219 |
> |
} |
220 |
> |
} |
221 |
> |
} |
222 |
> |
} |
223 |
> |
} |
224 |
> |
|
225 |
> |
createGtypeCutoffMap(); |
226 |
|
} |
227 |
< |
else |
228 |
< |
{ |
229 |
< |
myRank_ = myRank/nColumns; |
230 |
< |
} |
231 |
< |
MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0); |
232 |
< |
|
233 |
< |
isColumn_ = false; |
234 |
< |
|
235 |
< |
} |
227 |
> |
|
228 |
> |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
229 |
> |
|
230 |
> |
RealType tol = 1e-6; |
231 |
> |
RealType rc; |
232 |
> |
int atid; |
233 |
> |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
234 |
> |
vector<RealType> atypeCutoff; |
235 |
> |
atypeCutoff.resize( atypes.size() ); |
236 |
> |
|
237 |
> |
for (set<AtomType*>::iterator at = atypes.begin(); |
238 |
> |
at != atypes.end(); ++at){ |
239 |
> |
atid = (*at)->getIdent(); |
240 |
|
|
241 |
< |
ForceDecomposition::gather(sendbuf, receivebuf){ |
242 |
< |
communicators(myIndex_).Allgatherv(); |
243 |
< |
} |
241 |
> |
if (userChoseCutoff_) |
242 |
> |
atypeCutoff[atid] = userCutoff_; |
243 |
> |
else |
244 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
245 |
> |
} |
246 |
|
|
247 |
+ |
vector<RealType> gTypeCutoffs; |
248 |
|
|
249 |
+ |
// first we do a single loop over the cutoff groups to find the |
250 |
+ |
// largest cutoff for any atypes present in this group. |
251 |
+ |
#ifdef IS_MPI |
252 |
+ |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
253 |
+ |
groupRowToGtype.resize(nGroupsInRow_); |
254 |
+ |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
255 |
+ |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
256 |
+ |
for (vector<int>::iterator ia = atomListRow.begin(); |
257 |
+ |
ia != atomListRow.end(); ++ia) { |
258 |
+ |
int atom1 = (*ia); |
259 |
+ |
atid = identsRow[atom1]; |
260 |
+ |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
261 |
+ |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
262 |
+ |
} |
263 |
+ |
} |
264 |
|
|
265 |
< |
ForceDecomposition::scatter(sbuffer, rbuffer){ |
266 |
< |
communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM); |
267 |
< |
} |
265 |
> |
bool gTypeFound = false; |
266 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
267 |
> |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
268 |
> |
groupRowToGtype[cg1] = gt; |
269 |
> |
gTypeFound = true; |
270 |
> |
} |
271 |
> |
} |
272 |
> |
if (!gTypeFound) { |
273 |
> |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
274 |
> |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
275 |
> |
} |
276 |
> |
|
277 |
> |
} |
278 |
> |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
279 |
> |
groupColToGtype.resize(nGroupsInCol_); |
280 |
> |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
281 |
> |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
282 |
> |
for (vector<int>::iterator jb = atomListCol.begin(); |
283 |
> |
jb != atomListCol.end(); ++jb) { |
284 |
> |
int atom2 = (*jb); |
285 |
> |
atid = identsCol[atom2]; |
286 |
> |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
287 |
> |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
288 |
> |
} |
289 |
> |
} |
290 |
> |
bool gTypeFound = false; |
291 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
292 |
> |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
293 |
> |
groupColToGtype[cg2] = gt; |
294 |
> |
gTypeFound = true; |
295 |
> |
} |
296 |
> |
} |
297 |
> |
if (!gTypeFound) { |
298 |
> |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
299 |
> |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
300 |
> |
} |
301 |
> |
} |
302 |
> |
#else |
303 |
|
|
304 |
+ |
vector<RealType> groupCutoff(nGroups_, 0.0); |
305 |
+ |
groupToGtype.resize(nGroups_); |
306 |
|
|
307 |
+ |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
308 |
+ |
|
309 |
+ |
groupCutoff[cg1] = 0.0; |
310 |
+ |
vector<int> atomList = getAtomsInGroupRow(cg1); |
311 |
+ |
|
312 |
+ |
for (vector<int>::iterator ia = atomList.begin(); |
313 |
+ |
ia != atomList.end(); ++ia) { |
314 |
+ |
int atom1 = (*ia); |
315 |
+ |
atid = idents[atom1]; |
316 |
+ |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
317 |
+ |
groupCutoff[cg1] = atypeCutoff[atid]; |
318 |
+ |
} |
319 |
+ |
} |
320 |
+ |
|
321 |
+ |
bool gTypeFound = false; |
322 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
323 |
+ |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
324 |
+ |
groupToGtype[cg1] = gt; |
325 |
+ |
gTypeFound = true; |
326 |
+ |
} |
327 |
+ |
} |
328 |
+ |
if (!gTypeFound) { |
329 |
+ |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
330 |
+ |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
331 |
+ |
} |
332 |
+ |
} |
333 |
+ |
#endif |
334 |
+ |
|
335 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
336 |
+ |
|
337 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
338 |
+ |
|
339 |
+ |
#ifdef IS_MPI |
340 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
341 |
+ |
#endif |
342 |
+ |
|
343 |
+ |
RealType tradRcut = groupMax; |
344 |
+ |
|
345 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
346 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
347 |
+ |
RealType thisRcut; |
348 |
+ |
switch(cutoffPolicy_) { |
349 |
+ |
case TRADITIONAL: |
350 |
+ |
thisRcut = tradRcut; |
351 |
+ |
break; |
352 |
+ |
case MIX: |
353 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
354 |
+ |
break; |
355 |
+ |
case MAX: |
356 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
357 |
+ |
break; |
358 |
+ |
default: |
359 |
+ |
sprintf(painCave.errMsg, |
360 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
361 |
+ |
"hit an unknown cutoff policy!\n"); |
362 |
+ |
painCave.severity = OPENMD_ERROR; |
363 |
+ |
painCave.isFatal = 1; |
364 |
+ |
simError(); |
365 |
+ |
break; |
366 |
+ |
} |
367 |
+ |
|
368 |
+ |
pair<int,int> key = make_pair(i,j); |
369 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
370 |
+ |
|
371 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
372 |
+ |
|
373 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
374 |
+ |
|
375 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
376 |
+ |
|
377 |
+ |
// sanity check |
378 |
+ |
|
379 |
+ |
if (userChoseCutoff_) { |
380 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
381 |
+ |
sprintf(painCave.errMsg, |
382 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
383 |
+ |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
384 |
+ |
painCave.severity = OPENMD_ERROR; |
385 |
+ |
painCave.isFatal = 1; |
386 |
+ |
simError(); |
387 |
+ |
} |
388 |
+ |
} |
389 |
+ |
} |
390 |
+ |
} |
391 |
+ |
} |
392 |
+ |
|
393 |
+ |
|
394 |
+ |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
395 |
+ |
int i, j; |
396 |
+ |
#ifdef IS_MPI |
397 |
+ |
i = groupRowToGtype[cg1]; |
398 |
+ |
j = groupColToGtype[cg2]; |
399 |
+ |
#else |
400 |
+ |
i = groupToGtype[cg1]; |
401 |
+ |
j = groupToGtype[cg2]; |
402 |
+ |
#endif |
403 |
+ |
return gTypeCutoffMap[make_pair(i,j)]; |
404 |
+ |
} |
405 |
+ |
|
406 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
407 |
+ |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
408 |
+ |
if (toposForAtom[atom1][j] == atom2) |
409 |
+ |
return topoDist[atom1][j]; |
410 |
+ |
} |
411 |
+ |
return 0; |
412 |
+ |
} |
413 |
+ |
|
414 |
+ |
void ForceMatrixDecomposition::zeroWorkArrays() { |
415 |
+ |
pairwisePot = 0.0; |
416 |
+ |
embeddingPot = 0.0; |
417 |
+ |
|
418 |
+ |
#ifdef IS_MPI |
419 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
420 |
+ |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
421 |
+ |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
422 |
+ |
} |
423 |
+ |
|
424 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
425 |
+ |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
426 |
+ |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
427 |
+ |
} |
428 |
+ |
|
429 |
+ |
fill(pot_row.begin(), pot_row.end(), |
430 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
431 |
+ |
|
432 |
+ |
fill(pot_col.begin(), pot_col.end(), |
433 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
434 |
+ |
|
435 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
436 |
+ |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
437 |
+ |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
438 |
+ |
} |
439 |
+ |
|
440 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
441 |
+ |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
442 |
+ |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
443 |
+ |
} |
444 |
+ |
|
445 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
446 |
+ |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
447 |
+ |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
448 |
+ |
} |
449 |
+ |
|
450 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
451 |
+ |
fill(atomRowData.functionalDerivative.begin(), |
452 |
+ |
atomRowData.functionalDerivative.end(), 0.0); |
453 |
+ |
fill(atomColData.functionalDerivative.begin(), |
454 |
+ |
atomColData.functionalDerivative.end(), 0.0); |
455 |
+ |
} |
456 |
+ |
|
457 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
458 |
+ |
fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0); |
459 |
+ |
fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0); |
460 |
+ |
} |
461 |
+ |
|
462 |
+ |
#else |
463 |
+ |
|
464 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
465 |
+ |
fill(snap_->atomData.particlePot.begin(), |
466 |
+ |
snap_->atomData.particlePot.end(), 0.0); |
467 |
+ |
} |
468 |
+ |
|
469 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
470 |
+ |
fill(snap_->atomData.density.begin(), |
471 |
+ |
snap_->atomData.density.end(), 0.0); |
472 |
+ |
} |
473 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
474 |
+ |
fill(snap_->atomData.functional.begin(), |
475 |
+ |
snap_->atomData.functional.end(), 0.0); |
476 |
+ |
} |
477 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
478 |
+ |
fill(snap_->atomData.functionalDerivative.begin(), |
479 |
+ |
snap_->atomData.functionalDerivative.end(), 0.0); |
480 |
+ |
} |
481 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
482 |
+ |
fill(snap_->atomData.skippedCharge.begin(), |
483 |
+ |
snap_->atomData.skippedCharge.end(), 0.0); |
484 |
+ |
} |
485 |
+ |
#endif |
486 |
+ |
|
487 |
+ |
} |
488 |
+ |
|
489 |
+ |
|
490 |
+ |
void ForceMatrixDecomposition::distributeData() { |
491 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
492 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
493 |
+ |
#ifdef IS_MPI |
494 |
+ |
|
495 |
+ |
// gather up the atomic positions |
496 |
+ |
AtomCommVectorRow->gather(snap_->atomData.position, |
497 |
+ |
atomRowData.position); |
498 |
+ |
AtomCommVectorColumn->gather(snap_->atomData.position, |
499 |
+ |
atomColData.position); |
500 |
+ |
|
501 |
+ |
// gather up the cutoff group positions |
502 |
+ |
cgCommVectorRow->gather(snap_->cgData.position, |
503 |
+ |
cgRowData.position); |
504 |
+ |
cgCommVectorColumn->gather(snap_->cgData.position, |
505 |
+ |
cgColData.position); |
506 |
+ |
|
507 |
+ |
// if needed, gather the atomic rotation matrices |
508 |
+ |
if (storageLayout_ & DataStorage::dslAmat) { |
509 |
+ |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
510 |
+ |
atomRowData.aMat); |
511 |
+ |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
512 |
+ |
atomColData.aMat); |
513 |
+ |
} |
514 |
+ |
|
515 |
+ |
// if needed, gather the atomic eletrostatic frames |
516 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
517 |
+ |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
518 |
+ |
atomRowData.electroFrame); |
519 |
+ |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
520 |
+ |
atomColData.electroFrame); |
521 |
+ |
} |
522 |
+ |
#endif |
523 |
+ |
} |
524 |
+ |
|
525 |
+ |
/* collects information obtained during the pre-pair loop onto local |
526 |
+ |
* data structures. |
527 |
+ |
*/ |
528 |
+ |
void ForceMatrixDecomposition::collectIntermediateData() { |
529 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
530 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
531 |
+ |
#ifdef IS_MPI |
532 |
+ |
|
533 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
534 |
+ |
|
535 |
+ |
AtomCommRealRow->scatter(atomRowData.density, |
536 |
+ |
snap_->atomData.density); |
537 |
+ |
|
538 |
+ |
int n = snap_->atomData.density.size(); |
539 |
+ |
vector<RealType> rho_tmp(n, 0.0); |
540 |
+ |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
541 |
+ |
for (int i = 0; i < n; i++) |
542 |
+ |
snap_->atomData.density[i] += rho_tmp[i]; |
543 |
+ |
} |
544 |
+ |
#endif |
545 |
+ |
} |
546 |
+ |
|
547 |
+ |
/* |
548 |
+ |
* redistributes information obtained during the pre-pair loop out to |
549 |
+ |
* row and column-indexed data structures |
550 |
+ |
*/ |
551 |
+ |
void ForceMatrixDecomposition::distributeIntermediateData() { |
552 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
553 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
554 |
+ |
#ifdef IS_MPI |
555 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
556 |
+ |
AtomCommRealRow->gather(snap_->atomData.functional, |
557 |
+ |
atomRowData.functional); |
558 |
+ |
AtomCommRealColumn->gather(snap_->atomData.functional, |
559 |
+ |
atomColData.functional); |
560 |
+ |
} |
561 |
+ |
|
562 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
563 |
+ |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
564 |
+ |
atomRowData.functionalDerivative); |
565 |
+ |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
566 |
+ |
atomColData.functionalDerivative); |
567 |
+ |
} |
568 |
+ |
#endif |
569 |
+ |
} |
570 |
+ |
|
571 |
+ |
|
572 |
+ |
void ForceMatrixDecomposition::collectData() { |
573 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
574 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
575 |
+ |
#ifdef IS_MPI |
576 |
+ |
int n = snap_->atomData.force.size(); |
577 |
+ |
vector<Vector3d> frc_tmp(n, V3Zero); |
578 |
+ |
|
579 |
+ |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
580 |
+ |
for (int i = 0; i < n; i++) { |
581 |
+ |
snap_->atomData.force[i] += frc_tmp[i]; |
582 |
+ |
frc_tmp[i] = 0.0; |
583 |
+ |
} |
584 |
+ |
|
585 |
+ |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
586 |
+ |
for (int i = 0; i < n; i++) |
587 |
+ |
snap_->atomData.force[i] += frc_tmp[i]; |
588 |
+ |
|
589 |
+ |
|
590 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
591 |
+ |
|
592 |
+ |
int nt = snap_->atomData.force.size(); |
593 |
+ |
vector<Vector3d> trq_tmp(nt, V3Zero); |
594 |
+ |
|
595 |
+ |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
596 |
+ |
for (int i = 0; i < n; i++) { |
597 |
+ |
snap_->atomData.torque[i] += trq_tmp[i]; |
598 |
+ |
trq_tmp[i] = 0.0; |
599 |
+ |
} |
600 |
+ |
|
601 |
+ |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
602 |
+ |
for (int i = 0; i < n; i++) |
603 |
+ |
snap_->atomData.torque[i] += trq_tmp[i]; |
604 |
+ |
} |
605 |
+ |
|
606 |
+ |
nLocal_ = snap_->getNumberOfAtoms(); |
607 |
+ |
|
608 |
+ |
vector<potVec> pot_temp(nLocal_, |
609 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
610 |
+ |
|
611 |
+ |
// scatter/gather pot_row into the members of my column |
612 |
+ |
|
613 |
+ |
AtomCommPotRow->scatter(pot_row, pot_temp); |
614 |
+ |
|
615 |
+ |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
616 |
+ |
pairwisePot += pot_temp[ii]; |
617 |
+ |
|
618 |
+ |
fill(pot_temp.begin(), pot_temp.end(), |
619 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
620 |
+ |
|
621 |
+ |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
622 |
+ |
|
623 |
+ |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
624 |
+ |
pairwisePot += pot_temp[ii]; |
625 |
+ |
#endif |
626 |
+ |
|
627 |
+ |
} |
628 |
+ |
|
629 |
+ |
int ForceMatrixDecomposition::getNAtomsInRow() { |
630 |
+ |
#ifdef IS_MPI |
631 |
+ |
return nAtomsInRow_; |
632 |
+ |
#else |
633 |
+ |
return nLocal_; |
634 |
+ |
#endif |
635 |
+ |
} |
636 |
+ |
|
637 |
+ |
/** |
638 |
+ |
* returns the list of atoms belonging to this group. |
639 |
+ |
*/ |
640 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
641 |
+ |
#ifdef IS_MPI |
642 |
+ |
return groupListRow_[cg1]; |
643 |
+ |
#else |
644 |
+ |
return groupList_[cg1]; |
645 |
+ |
#endif |
646 |
+ |
} |
647 |
+ |
|
648 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
649 |
+ |
#ifdef IS_MPI |
650 |
+ |
return groupListCol_[cg2]; |
651 |
+ |
#else |
652 |
+ |
return groupList_[cg2]; |
653 |
+ |
#endif |
654 |
+ |
} |
655 |
+ |
|
656 |
+ |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
657 |
+ |
Vector3d d; |
658 |
+ |
|
659 |
+ |
#ifdef IS_MPI |
660 |
+ |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
661 |
+ |
#else |
662 |
+ |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
663 |
+ |
#endif |
664 |
+ |
|
665 |
+ |
snap_->wrapVector(d); |
666 |
+ |
return d; |
667 |
+ |
} |
668 |
+ |
|
669 |
+ |
|
670 |
+ |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
671 |
+ |
|
672 |
+ |
Vector3d d; |
673 |
+ |
|
674 |
+ |
#ifdef IS_MPI |
675 |
+ |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
676 |
+ |
#else |
677 |
+ |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
678 |
+ |
#endif |
679 |
+ |
|
680 |
+ |
snap_->wrapVector(d); |
681 |
+ |
return d; |
682 |
+ |
} |
683 |
+ |
|
684 |
+ |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
685 |
+ |
Vector3d d; |
686 |
+ |
|
687 |
+ |
#ifdef IS_MPI |
688 |
+ |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
689 |
+ |
#else |
690 |
+ |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
691 |
+ |
#endif |
692 |
+ |
|
693 |
+ |
snap_->wrapVector(d); |
694 |
+ |
return d; |
695 |
+ |
} |
696 |
+ |
|
697 |
+ |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
698 |
+ |
#ifdef IS_MPI |
699 |
+ |
return massFactorsRow[atom1]; |
700 |
+ |
#else |
701 |
+ |
return massFactors[atom1]; |
702 |
+ |
#endif |
703 |
+ |
} |
704 |
+ |
|
705 |
+ |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
706 |
+ |
#ifdef IS_MPI |
707 |
+ |
return massFactorsCol[atom2]; |
708 |
+ |
#else |
709 |
+ |
return massFactors[atom2]; |
710 |
+ |
#endif |
711 |
+ |
|
712 |
+ |
} |
713 |
+ |
|
714 |
+ |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
715 |
+ |
Vector3d d; |
716 |
+ |
|
717 |
+ |
#ifdef IS_MPI |
718 |
+ |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
719 |
+ |
#else |
720 |
+ |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
721 |
+ |
#endif |
722 |
+ |
|
723 |
+ |
snap_->wrapVector(d); |
724 |
+ |
return d; |
725 |
+ |
} |
726 |
+ |
|
727 |
+ |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
728 |
+ |
return skipsForAtom[atom1]; |
729 |
+ |
} |
730 |
+ |
|
731 |
+ |
/** |
732 |
+ |
* There are a number of reasons to skip a pair or a |
733 |
+ |
* particle. Mostly we do this to exclude atoms who are involved in |
734 |
+ |
* short range interactions (bonds, bends, torsions), but we also |
735 |
+ |
* need to exclude some overcounted interactions that result from |
736 |
+ |
* the parallel decomposition. |
737 |
+ |
*/ |
738 |
+ |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
739 |
+ |
int unique_id_1, unique_id_2; |
740 |
+ |
|
741 |
+ |
#ifdef IS_MPI |
742 |
+ |
// in MPI, we have to look up the unique IDs for each atom |
743 |
+ |
unique_id_1 = AtomRowToGlobal[atom1]; |
744 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
745 |
+ |
|
746 |
+ |
// this situation should only arise in MPI simulations |
747 |
+ |
if (unique_id_1 == unique_id_2) return true; |
748 |
+ |
|
749 |
+ |
// this prevents us from doing the pair on multiple processors |
750 |
+ |
if (unique_id_1 < unique_id_2) { |
751 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
752 |
+ |
} else { |
753 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
754 |
+ |
} |
755 |
+ |
#else |
756 |
+ |
// in the normal loop, the atom numbers are unique |
757 |
+ |
unique_id_1 = atom1; |
758 |
+ |
unique_id_2 = atom2; |
759 |
+ |
#endif |
760 |
+ |
|
761 |
+ |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
762 |
+ |
i != skipsForAtom[atom1].end(); ++i) { |
763 |
+ |
if ( (*i) == unique_id_2 ) return true; |
764 |
+ |
} |
765 |
+ |
|
766 |
+ |
return false; |
767 |
+ |
} |
768 |
+ |
|
769 |
+ |
|
770 |
+ |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
771 |
+ |
#ifdef IS_MPI |
772 |
+ |
atomRowData.force[atom1] += fg; |
773 |
+ |
#else |
774 |
+ |
snap_->atomData.force[atom1] += fg; |
775 |
+ |
#endif |
776 |
+ |
} |
777 |
+ |
|
778 |
+ |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
779 |
+ |
#ifdef IS_MPI |
780 |
+ |
atomColData.force[atom2] += fg; |
781 |
+ |
#else |
782 |
+ |
snap_->atomData.force[atom2] += fg; |
783 |
+ |
#endif |
784 |
+ |
} |
785 |
+ |
|
786 |
+ |
// filling interaction blocks with pointers |
787 |
+ |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
788 |
+ |
int atom1, int atom2) { |
789 |
+ |
#ifdef IS_MPI |
790 |
+ |
|
791 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
792 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
793 |
+ |
|
794 |
+ |
if (storageLayout_ & DataStorage::dslAmat) { |
795 |
+ |
idat.A1 = &(atomRowData.aMat[atom1]); |
796 |
+ |
idat.A2 = &(atomColData.aMat[atom2]); |
797 |
+ |
} |
798 |
+ |
|
799 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
800 |
+ |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
801 |
+ |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
802 |
+ |
} |
803 |
+ |
|
804 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
805 |
+ |
idat.t1 = &(atomRowData.torque[atom1]); |
806 |
+ |
idat.t2 = &(atomColData.torque[atom2]); |
807 |
+ |
} |
808 |
+ |
|
809 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
810 |
+ |
idat.rho1 = &(atomRowData.density[atom1]); |
811 |
+ |
idat.rho2 = &(atomColData.density[atom2]); |
812 |
+ |
} |
813 |
+ |
|
814 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
815 |
+ |
idat.frho1 = &(atomRowData.functional[atom1]); |
816 |
+ |
idat.frho2 = &(atomColData.functional[atom2]); |
817 |
+ |
} |
818 |
+ |
|
819 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
820 |
+ |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
821 |
+ |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
822 |
+ |
} |
823 |
+ |
|
824 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
825 |
+ |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
826 |
+ |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
827 |
+ |
} |
828 |
+ |
|
829 |
+ |
#else |
830 |
+ |
|
831 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
832 |
+ |
ff_->getAtomType(idents[atom2]) ); |
833 |
+ |
|
834 |
+ |
if (storageLayout_ & DataStorage::dslAmat) { |
835 |
+ |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
836 |
+ |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
837 |
+ |
} |
838 |
+ |
|
839 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
840 |
+ |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
841 |
+ |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
842 |
+ |
} |
843 |
+ |
|
844 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
845 |
+ |
idat.t1 = &(snap_->atomData.torque[atom1]); |
846 |
+ |
idat.t2 = &(snap_->atomData.torque[atom2]); |
847 |
+ |
} |
848 |
+ |
|
849 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
850 |
+ |
idat.rho1 = &(snap_->atomData.density[atom1]); |
851 |
+ |
idat.rho2 = &(snap_->atomData.density[atom2]); |
852 |
+ |
} |
853 |
+ |
|
854 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
855 |
+ |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
856 |
+ |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
857 |
+ |
} |
858 |
+ |
|
859 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
860 |
+ |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
861 |
+ |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
862 |
+ |
} |
863 |
+ |
|
864 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
865 |
+ |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
866 |
+ |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
867 |
+ |
} |
868 |
+ |
|
869 |
+ |
#endif |
870 |
+ |
} |
871 |
+ |
|
872 |
+ |
|
873 |
+ |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
874 |
+ |
#ifdef IS_MPI |
875 |
+ |
pot_row[atom1] += 0.5 * *(idat.pot); |
876 |
+ |
pot_col[atom2] += 0.5 * *(idat.pot); |
877 |
+ |
|
878 |
+ |
atomRowData.force[atom1] += *(idat.f1); |
879 |
+ |
atomColData.force[atom2] -= *(idat.f1); |
880 |
+ |
#else |
881 |
+ |
pairwisePot += *(idat.pot); |
882 |
+ |
|
883 |
+ |
snap_->atomData.force[atom1] += *(idat.f1); |
884 |
+ |
snap_->atomData.force[atom2] -= *(idat.f1); |
885 |
+ |
#endif |
886 |
+ |
|
887 |
+ |
} |
888 |
+ |
|
889 |
+ |
|
890 |
+ |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
891 |
+ |
int atom1, int atom2) { |
892 |
+ |
#ifdef IS_MPI |
893 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
894 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
895 |
+ |
|
896 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
897 |
+ |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
898 |
+ |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
899 |
+ |
} |
900 |
+ |
|
901 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
902 |
+ |
idat.t1 = &(atomRowData.torque[atom1]); |
903 |
+ |
idat.t2 = &(atomColData.torque[atom2]); |
904 |
+ |
} |
905 |
+ |
|
906 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
907 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
908 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
909 |
+ |
} |
910 |
+ |
#else |
911 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
912 |
+ |
ff_->getAtomType(idents[atom2]) ); |
913 |
+ |
|
914 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
915 |
+ |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
916 |
+ |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
917 |
+ |
} |
918 |
+ |
|
919 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
920 |
+ |
idat.t1 = &(snap_->atomData.torque[atom1]); |
921 |
+ |
idat.t2 = &(snap_->atomData.torque[atom2]); |
922 |
+ |
} |
923 |
+ |
|
924 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
925 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
926 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
927 |
+ |
} |
928 |
+ |
#endif |
929 |
+ |
} |
930 |
+ |
|
931 |
+ |
|
932 |
+ |
void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
933 |
+ |
#ifdef IS_MPI |
934 |
+ |
pot_row[atom1] += 0.5 * *(idat.pot); |
935 |
+ |
pot_col[atom2] += 0.5 * *(idat.pot); |
936 |
+ |
#else |
937 |
+ |
pairwisePot += *(idat.pot); |
938 |
+ |
#endif |
939 |
+ |
|
940 |
+ |
} |
941 |
+ |
|
942 |
+ |
|
943 |
+ |
/* |
944 |
+ |
* buildNeighborList |
945 |
+ |
* |
946 |
+ |
* first element of pair is row-indexed CutoffGroup |
947 |
+ |
* second element of pair is column-indexed CutoffGroup |
948 |
+ |
*/ |
949 |
+ |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
950 |
+ |
|
951 |
+ |
vector<pair<int, int> > neighborList; |
952 |
+ |
groupCutoffs cuts; |
953 |
+ |
#ifdef IS_MPI |
954 |
+ |
cellListRow_.clear(); |
955 |
+ |
cellListCol_.clear(); |
956 |
+ |
#else |
957 |
+ |
cellList_.clear(); |
958 |
+ |
#endif |
959 |
+ |
|
960 |
+ |
RealType rList_ = (largestRcut_ + skinThickness_); |
961 |
+ |
RealType rl2 = rList_ * rList_; |
962 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
963 |
+ |
Mat3x3d Hmat = snap_->getHmat(); |
964 |
+ |
Vector3d Hx = Hmat.getColumn(0); |
965 |
+ |
Vector3d Hy = Hmat.getColumn(1); |
966 |
+ |
Vector3d Hz = Hmat.getColumn(2); |
967 |
+ |
|
968 |
+ |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
969 |
+ |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
970 |
+ |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
971 |
+ |
|
972 |
+ |
Mat3x3d invHmat = snap_->getInvHmat(); |
973 |
+ |
Vector3d rs, scaled, dr; |
974 |
+ |
Vector3i whichCell; |
975 |
+ |
int cellIndex; |
976 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
977 |
+ |
|
978 |
+ |
#ifdef IS_MPI |
979 |
+ |
cellListRow_.resize(nCtot); |
980 |
+ |
cellListCol_.resize(nCtot); |
981 |
+ |
#else |
982 |
+ |
cellList_.resize(nCtot); |
983 |
+ |
#endif |
984 |
+ |
|
985 |
+ |
#ifdef IS_MPI |
986 |
+ |
for (int i = 0; i < nGroupsInRow_; i++) { |
987 |
+ |
rs = cgRowData.position[i]; |
988 |
+ |
|
989 |
+ |
// scaled positions relative to the box vectors |
990 |
+ |
scaled = invHmat * rs; |
991 |
+ |
|
992 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
993 |
+ |
// numbers |
994 |
+ |
for (int j = 0; j < 3; j++) { |
995 |
+ |
scaled[j] -= roundMe(scaled[j]); |
996 |
+ |
scaled[j] += 0.5; |
997 |
+ |
} |
998 |
+ |
|
999 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
1000 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
1001 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
1002 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
1003 |
+ |
|
1004 |
+ |
// find single index of this cell: |
1005 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
1006 |
+ |
|
1007 |
+ |
// add this cutoff group to the list of groups in this cell; |
1008 |
+ |
cellListRow_[cellIndex].push_back(i); |
1009 |
+ |
} |
1010 |
+ |
|
1011 |
+ |
for (int i = 0; i < nGroupsInCol_; i++) { |
1012 |
+ |
rs = cgColData.position[i]; |
1013 |
+ |
|
1014 |
+ |
// scaled positions relative to the box vectors |
1015 |
+ |
scaled = invHmat * rs; |
1016 |
+ |
|
1017 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
1018 |
+ |
// numbers |
1019 |
+ |
for (int j = 0; j < 3; j++) { |
1020 |
+ |
scaled[j] -= roundMe(scaled[j]); |
1021 |
+ |
scaled[j] += 0.5; |
1022 |
+ |
} |
1023 |
+ |
|
1024 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
1025 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
1026 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
1027 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
1028 |
+ |
|
1029 |
+ |
// find single index of this cell: |
1030 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
1031 |
+ |
|
1032 |
+ |
// add this cutoff group to the list of groups in this cell; |
1033 |
+ |
cellListCol_[cellIndex].push_back(i); |
1034 |
+ |
} |
1035 |
+ |
#else |
1036 |
+ |
for (int i = 0; i < nGroups_; i++) { |
1037 |
+ |
rs = snap_->cgData.position[i]; |
1038 |
+ |
|
1039 |
+ |
// scaled positions relative to the box vectors |
1040 |
+ |
scaled = invHmat * rs; |
1041 |
+ |
|
1042 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
1043 |
+ |
// numbers |
1044 |
+ |
for (int j = 0; j < 3; j++) { |
1045 |
+ |
scaled[j] -= roundMe(scaled[j]); |
1046 |
+ |
scaled[j] += 0.5; |
1047 |
+ |
} |
1048 |
+ |
|
1049 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
1050 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
1051 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
1052 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
1053 |
+ |
|
1054 |
+ |
// find single index of this cell: |
1055 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
1056 |
+ |
|
1057 |
+ |
// add this cutoff group to the list of groups in this cell; |
1058 |
+ |
cellList_[cellIndex].push_back(i); |
1059 |
+ |
} |
1060 |
+ |
#endif |
1061 |
+ |
|
1062 |
+ |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1063 |
+ |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1064 |
+ |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1065 |
+ |
Vector3i m1v(m1x, m1y, m1z); |
1066 |
+ |
int m1 = Vlinear(m1v, nCells_); |
1067 |
+ |
|
1068 |
+ |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1069 |
+ |
os != cellOffsets_.end(); ++os) { |
1070 |
+ |
|
1071 |
+ |
Vector3i m2v = m1v + (*os); |
1072 |
+ |
|
1073 |
+ |
if (m2v.x() >= nCells_.x()) { |
1074 |
+ |
m2v.x() = 0; |
1075 |
+ |
} else if (m2v.x() < 0) { |
1076 |
+ |
m2v.x() = nCells_.x() - 1; |
1077 |
+ |
} |
1078 |
+ |
|
1079 |
+ |
if (m2v.y() >= nCells_.y()) { |
1080 |
+ |
m2v.y() = 0; |
1081 |
+ |
} else if (m2v.y() < 0) { |
1082 |
+ |
m2v.y() = nCells_.y() - 1; |
1083 |
+ |
} |
1084 |
+ |
|
1085 |
+ |
if (m2v.z() >= nCells_.z()) { |
1086 |
+ |
m2v.z() = 0; |
1087 |
+ |
} else if (m2v.z() < 0) { |
1088 |
+ |
m2v.z() = nCells_.z() - 1; |
1089 |
+ |
} |
1090 |
+ |
|
1091 |
+ |
int m2 = Vlinear (m2v, nCells_); |
1092 |
+ |
|
1093 |
+ |
#ifdef IS_MPI |
1094 |
+ |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1095 |
+ |
j1 != cellListRow_[m1].end(); ++j1) { |
1096 |
+ |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1097 |
+ |
j2 != cellListCol_[m2].end(); ++j2) { |
1098 |
+ |
|
1099 |
+ |
// Always do this if we're in different cells or if |
1100 |
+ |
// we're in the same cell and the global index of the |
1101 |
+ |
// j2 cutoff group is less than the j1 cutoff group |
1102 |
+ |
|
1103 |
+ |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1104 |
+ |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1105 |
+ |
snap_->wrapVector(dr); |
1106 |
+ |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1107 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1108 |
+ |
neighborList.push_back(make_pair((*j1), (*j2))); |
1109 |
+ |
} |
1110 |
+ |
} |
1111 |
+ |
} |
1112 |
+ |
} |
1113 |
+ |
#else |
1114 |
+ |
|
1115 |
+ |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1116 |
+ |
j1 != cellList_[m1].end(); ++j1) { |
1117 |
+ |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1118 |
+ |
j2 != cellList_[m2].end(); ++j2) { |
1119 |
+ |
|
1120 |
+ |
// Always do this if we're in different cells or if |
1121 |
+ |
// we're in the same cell and the global index of the |
1122 |
+ |
// j2 cutoff group is less than the j1 cutoff group |
1123 |
+ |
|
1124 |
+ |
if (m2 != m1 || (*j2) < (*j1)) { |
1125 |
+ |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1126 |
+ |
snap_->wrapVector(dr); |
1127 |
+ |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1128 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1129 |
+ |
neighborList.push_back(make_pair((*j1), (*j2))); |
1130 |
+ |
} |
1131 |
+ |
} |
1132 |
+ |
} |
1133 |
+ |
} |
1134 |
+ |
#endif |
1135 |
+ |
} |
1136 |
+ |
} |
1137 |
+ |
} |
1138 |
+ |
} |
1139 |
+ |
|
1140 |
+ |
// save the local cutoff group positions for the check that is |
1141 |
+ |
// done on each loop: |
1142 |
+ |
saved_CG_positions_.clear(); |
1143 |
+ |
for (int i = 0; i < nGroups_; i++) |
1144 |
+ |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1145 |
+ |
|
1146 |
+ |
return neighborList; |
1147 |
+ |
} |
1148 |
+ |
} //end namespace OpenMD |