35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
102 |
+ |
regions = info_->getRegions(); |
103 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
104 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
105 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
164 |
|
|
165 |
|
AtomPlanIntRow->gather(idents, identsRow); |
166 |
|
AtomPlanIntColumn->gather(idents, identsCol); |
167 |
+ |
|
168 |
+ |
regionsRow.resize(nAtomsInRow_); |
169 |
+ |
regionsCol.resize(nAtomsInCol_); |
170 |
|
|
171 |
+ |
AtomPlanIntRow->gather(regions, regionsRow); |
172 |
+ |
AtomPlanIntColumn->gather(regions, regionsCol); |
173 |
+ |
|
174 |
|
// allocate memory for the parallel objects |
175 |
|
atypesRow.resize(nAtomsInRow_); |
176 |
|
atypesCol.resize(nAtomsInCol_); |
315 |
|
|
316 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
317 |
|
|
318 |
+ |
GrCut.clear(); |
319 |
+ |
GrCutSq.clear(); |
320 |
+ |
GrlistSq.clear(); |
321 |
+ |
|
322 |
|
RealType tol = 1e-6; |
323 |
|
largestRcut_ = 0.0; |
313 |
– |
RealType rc; |
324 |
|
int atid; |
325 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
326 |
|
|
405 |
|
} |
406 |
|
|
407 |
|
bool gTypeFound = false; |
408 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
408 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
409 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
410 |
|
groupToGtype[cg1] = gt; |
411 |
|
gTypeFound = true; |
430 |
|
|
431 |
|
RealType tradRcut = groupMax; |
432 |
|
|
433 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
434 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
433 |
> |
GrCut.resize( gTypeCutoffs.size() ); |
434 |
> |
GrCutSq.resize( gTypeCutoffs.size() ); |
435 |
> |
GrlistSq.resize( gTypeCutoffs.size() ); |
436 |
> |
|
437 |
> |
|
438 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
439 |
> |
GrCut[i].resize( gTypeCutoffs.size() , 0.0); |
440 |
> |
GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
441 |
> |
GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
442 |
> |
|
443 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
444 |
|
RealType thisRcut; |
445 |
|
switch(cutoffPolicy_) { |
446 |
|
case TRADITIONAL: |
462 |
|
break; |
463 |
|
} |
464 |
|
|
465 |
< |
pair<int,int> key = make_pair(i,j); |
447 |
< |
gTypeCutoffMap[key].first = thisRcut; |
465 |
> |
GrCut[i][j] = thisRcut; |
466 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
467 |
< |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
468 |
< |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
467 |
> |
GrCutSq[i][j] = thisRcut * thisRcut; |
468 |
> |
GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); |
469 |
> |
|
470 |
> |
// pair<int,int> key = make_pair(i,j); |
471 |
> |
// gTypeCutoffMap[key].first = thisRcut; |
472 |
> |
// gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
473 |
|
// sanity check |
474 |
|
|
475 |
|
if (userChoseCutoff_) { |
476 |
< |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
476 |
> |
if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { |
477 |
|
sprintf(painCave.errMsg, |
478 |
|
"ForceMatrixDecomposition::createGtypeCutoffMap " |
479 |
|
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
486 |
|
} |
487 |
|
} |
488 |
|
|
489 |
< |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
489 |
> |
void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { |
490 |
|
int i, j; |
491 |
|
#ifdef IS_MPI |
492 |
|
i = groupRowToGtype[cg1]; |
495 |
|
i = groupToGtype[cg1]; |
496 |
|
j = groupToGtype[cg2]; |
497 |
|
#endif |
498 |
< |
return gTypeCutoffMap[make_pair(i,j)]; |
498 |
> |
rcut = GrCut[i][j]; |
499 |
> |
rcutsq = GrCutSq[i][j]; |
500 |
> |
rlistsq = GrlistSq[i][j]; |
501 |
> |
return; |
502 |
> |
//return gTypeCutoffMap[make_pair(i,j)]; |
503 |
|
} |
504 |
|
|
505 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
506 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
506 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
507 |
|
if (toposForAtom[atom1][j] == atom2) |
508 |
|
return topoDist[atom1][j]; |
509 |
< |
} |
509 |
> |
} |
510 |
|
return 0; |
511 |
|
} |
512 |
|
|
514 |
|
pairwisePot = 0.0; |
515 |
|
embeddingPot = 0.0; |
516 |
|
excludedPot = 0.0; |
517 |
+ |
excludedSelfPot = 0.0; |
518 |
|
|
519 |
|
#ifdef IS_MPI |
520 |
|
if (storageLayout_ & DataStorage::dslForce) { |
586 |
|
atomColData.electricField.end(), V3Zero); |
587 |
|
} |
588 |
|
|
562 |
– |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 |
– |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 |
– |
0.0); |
565 |
– |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 |
– |
0.0); |
567 |
– |
} |
568 |
– |
|
589 |
|
#endif |
590 |
|
// even in parallel, we need to zero out the local arrays: |
591 |
|
|
659 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
660 |
|
atomColData.aMat); |
661 |
|
} |
662 |
< |
|
663 |
< |
// if needed, gather the atomic eletrostatic frames |
664 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
665 |
< |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
666 |
< |
atomRowData.electroFrame); |
667 |
< |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
668 |
< |
atomColData.electroFrame); |
662 |
> |
|
663 |
> |
// if needed, gather the atomic eletrostatic information |
664 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
665 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
666 |
> |
atomRowData.dipole); |
667 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
668 |
> |
atomColData.dipole); |
669 |
|
} |
670 |
|
|
671 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
672 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
673 |
+ |
atomRowData.quadrupole); |
674 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
675 |
+ |
atomColData.quadrupole); |
676 |
+ |
} |
677 |
+ |
|
678 |
|
// if needed, gather the atomic fluctuating charge values |
679 |
|
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
680 |
|
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
706 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
707 |
|
} |
708 |
|
|
709 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
710 |
+ |
// we'll leave it here for now. |
711 |
|
if (storageLayout_ & DataStorage::dslElectricField) { |
712 |
|
|
713 |
|
AtomPlanVectorRow->scatter(atomRowData.electricField, |
715 |
|
|
716 |
|
int n = snap_->atomData.electricField.size(); |
717 |
|
vector<Vector3d> field_tmp(n, V3Zero); |
718 |
< |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
718 |
> |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
719 |
> |
field_tmp); |
720 |
|
for (int i = 0; i < n; i++) |
721 |
|
snap_->atomData.electricField[i] += field_tmp[i]; |
722 |
|
} |
814 |
|
for (int i = 0; i < nq; i++) |
815 |
|
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
816 |
|
|
817 |
+ |
} |
818 |
+ |
|
819 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
820 |
+ |
|
821 |
+ |
int nef = snap_->atomData.electricField.size(); |
822 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
823 |
+ |
|
824 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
825 |
+ |
for (int i = 0; i < nef; i++) { |
826 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
827 |
+ |
efield_tmp[i] = 0.0; |
828 |
+ |
} |
829 |
+ |
|
830 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
831 |
+ |
for (int i = 0; i < nef; i++) |
832 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
833 |
|
} |
834 |
|
|
835 |
+ |
|
836 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
837 |
|
|
838 |
|
vector<potVec> pot_temp(nLocal_, |
954 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
955 |
|
embeddingPot[ii] = ploc2; |
956 |
|
} |
957 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
958 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
959 |
+ |
RealType ploc2 = 0.0; |
960 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
961 |
+ |
excludedSelfPot[ii] = ploc2; |
962 |
+ |
} |
963 |
|
#endif |
964 |
|
|
965 |
|
} |
966 |
|
|
967 |
|
|
968 |
|
|
969 |
< |
int ForceMatrixDecomposition::getNAtomsInRow() { |
969 |
> |
int& ForceMatrixDecomposition::getNAtomsInRow() { |
970 |
|
#ifdef IS_MPI |
971 |
|
return nAtomsInRow_; |
972 |
|
#else |
977 |
|
/** |
978 |
|
* returns the list of atoms belonging to this group. |
979 |
|
*/ |
980 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
980 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
981 |
|
#ifdef IS_MPI |
982 |
|
return groupListRow_[cg1]; |
983 |
|
#else |
985 |
|
#endif |
986 |
|
} |
987 |
|
|
988 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
988 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
989 |
|
#ifdef IS_MPI |
990 |
|
return groupListCol_[cg2]; |
991 |
|
#else |
1002 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
1003 |
|
#endif |
1004 |
|
|
1005 |
< |
snap_->wrapVector(d); |
1005 |
> |
if (usePeriodicBoundaryConditions_) { |
1006 |
> |
snap_->wrapVector(d); |
1007 |
> |
} |
1008 |
|
return d; |
1009 |
|
} |
1010 |
|
|
1011 |
< |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
1011 |
> |
Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
1012 |
|
#ifdef IS_MPI |
1013 |
|
return cgColData.velocity[cg2]; |
1014 |
|
#else |
1016 |
|
#endif |
1017 |
|
} |
1018 |
|
|
1019 |
< |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
1019 |
> |
Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
1020 |
|
#ifdef IS_MPI |
1021 |
|
return atomColData.velocity[atom2]; |
1022 |
|
#else |
1034 |
|
#else |
1035 |
|
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
1036 |
|
#endif |
1037 |
< |
|
1038 |
< |
snap_->wrapVector(d); |
1037 |
> |
if (usePeriodicBoundaryConditions_) { |
1038 |
> |
snap_->wrapVector(d); |
1039 |
> |
} |
1040 |
|
return d; |
1041 |
|
} |
1042 |
|
|
1048 |
|
#else |
1049 |
|
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
1050 |
|
#endif |
1051 |
< |
|
1052 |
< |
snap_->wrapVector(d); |
1051 |
> |
if (usePeriodicBoundaryConditions_) { |
1052 |
> |
snap_->wrapVector(d); |
1053 |
> |
} |
1054 |
|
return d; |
1055 |
|
} |
1056 |
|
|
1057 |
< |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1057 |
> |
RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1058 |
|
#ifdef IS_MPI |
1059 |
|
return massFactorsRow[atom1]; |
1060 |
|
#else |
1062 |
|
#endif |
1063 |
|
} |
1064 |
|
|
1065 |
< |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1065 |
> |
RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1066 |
|
#ifdef IS_MPI |
1067 |
|
return massFactorsCol[atom2]; |
1068 |
|
#else |
1079 |
|
#else |
1080 |
|
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
1081 |
|
#endif |
1082 |
< |
|
1083 |
< |
snap_->wrapVector(d); |
1082 |
> |
if (usePeriodicBoundaryConditions_) { |
1083 |
> |
snap_->wrapVector(d); |
1084 |
> |
} |
1085 |
|
return d; |
1086 |
|
} |
1087 |
|
|
1088 |
< |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1088 |
> |
vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1089 |
|
return excludesForAtom[atom1]; |
1090 |
|
} |
1091 |
|
|
1094 |
|
* the parallel decomposition. |
1095 |
|
*/ |
1096 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1097 |
< |
int unique_id_1, unique_id_2, group1, group2; |
1097 |
> |
int unique_id_1, unique_id_2; |
1098 |
|
|
1099 |
|
#ifdef IS_MPI |
1100 |
|
// in MPI, we have to look up the unique IDs for each atom |
1101 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1102 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1103 |
< |
group1 = cgRowToGlobal[cg1]; |
1104 |
< |
group2 = cgColToGlobal[cg2]; |
1103 |
> |
// group1 = cgRowToGlobal[cg1]; |
1104 |
> |
// group2 = cgColToGlobal[cg2]; |
1105 |
|
#else |
1106 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
1107 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
1108 |
< |
group1 = cgLocalToGlobal[cg1]; |
1109 |
< |
group2 = cgLocalToGlobal[cg2]; |
1108 |
> |
int group1 = cgLocalToGlobal[cg1]; |
1109 |
> |
int group2 = cgLocalToGlobal[cg2]; |
1110 |
|
#endif |
1111 |
|
|
1112 |
|
if (unique_id_1 == unique_id_2) return true; |
1175 |
|
idat.excluded = excludeAtomPair(atom1, atom2); |
1176 |
|
|
1177 |
|
#ifdef IS_MPI |
1178 |
< |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1179 |
< |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1180 |
< |
// ff_->getAtomType(identsCol[atom2]) ); |
1181 |
< |
|
1178 |
> |
//idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1179 |
> |
idat.atid1 = identsRow[atom1]; |
1180 |
> |
idat.atid2 = identsCol[atom2]; |
1181 |
> |
|
1182 |
> |
if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { |
1183 |
> |
idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); |
1184 |
> |
} else { |
1185 |
> |
idat.sameRegion = false; |
1186 |
> |
} |
1187 |
> |
|
1188 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1189 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
1190 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
1191 |
|
} |
1192 |
|
|
1129 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1130 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1131 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1132 |
– |
} |
1133 |
– |
|
1193 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1194 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
1195 |
|
idat.t2 = &(atomColData.torque[atom2]); |
1196 |
|
} |
1197 |
|
|
1198 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1199 |
+ |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
1200 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
1201 |
+ |
} |
1202 |
+ |
|
1203 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1204 |
+ |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1205 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1206 |
+ |
} |
1207 |
+ |
|
1208 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1209 |
|
idat.rho1 = &(atomRowData.density[atom1]); |
1210 |
|
idat.rho2 = &(atomColData.density[atom2]); |
1237 |
|
|
1238 |
|
#else |
1239 |
|
|
1240 |
< |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1240 |
> |
//idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1241 |
> |
idat.atid1 = idents[atom1]; |
1242 |
> |
idat.atid2 = idents[atom2]; |
1243 |
|
|
1244 |
+ |
if (regions[atom1] >= 0 && regions[atom2] >= 0) { |
1245 |
+ |
idat.sameRegion = (regions[atom1] == regions[atom2]); |
1246 |
+ |
} else { |
1247 |
+ |
idat.sameRegion = false; |
1248 |
+ |
} |
1249 |
+ |
|
1250 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1251 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1252 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1253 |
|
} |
1254 |
|
|
1178 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1179 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1180 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1181 |
– |
} |
1182 |
– |
|
1255 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1256 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
1257 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
1258 |
|
} |
1259 |
|
|
1260 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1261 |
+ |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1262 |
+ |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1263 |
+ |
} |
1264 |
+ |
|
1265 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1266 |
+ |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1267 |
+ |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1268 |
+ |
} |
1269 |
+ |
|
1270 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1271 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
1272 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
1357 |
|
* first element of pair is row-indexed CutoffGroup |
1358 |
|
* second element of pair is column-indexed CutoffGroup |
1359 |
|
*/ |
1360 |
< |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1361 |
< |
|
1362 |
< |
vector<pair<int, int> > neighborList; |
1360 |
> |
void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1361 |
> |
|
1362 |
> |
neighborList.clear(); |
1363 |
|
groupCutoffs cuts; |
1364 |
|
bool doAllPairs = false; |
1365 |
|
|
1366 |
+ |
RealType rList_ = (largestRcut_ + skinThickness_); |
1367 |
+ |
RealType rcut, rcutsq, rlistsq; |
1368 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1369 |
+ |
Mat3x3d box; |
1370 |
+ |
Mat3x3d invBox; |
1371 |
+ |
|
1372 |
+ |
Vector3d rs, scaled, dr; |
1373 |
+ |
Vector3i whichCell; |
1374 |
+ |
int cellIndex; |
1375 |
+ |
|
1376 |
|
#ifdef IS_MPI |
1377 |
|
cellListRow_.clear(); |
1378 |
|
cellListCol_.clear(); |
1379 |
|
#else |
1380 |
|
cellList_.clear(); |
1381 |
|
#endif |
1382 |
< |
|
1383 |
< |
RealType rList_ = (largestRcut_ + skinThickness_); |
1384 |
< |
RealType rl2 = rList_ * rList_; |
1385 |
< |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1386 |
< |
Mat3x3d Hmat = snap_->getHmat(); |
1387 |
< |
Vector3d Hx = Hmat.getColumn(0); |
1388 |
< |
Vector3d Hy = Hmat.getColumn(1); |
1389 |
< |
Vector3d Hz = Hmat.getColumn(2); |
1390 |
< |
|
1391 |
< |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1392 |
< |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1393 |
< |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1394 |
< |
|
1382 |
> |
|
1383 |
> |
if (!usePeriodicBoundaryConditions_) { |
1384 |
> |
box = snap_->getBoundingBox(); |
1385 |
> |
invBox = snap_->getInvBoundingBox(); |
1386 |
> |
} else { |
1387 |
> |
box = snap_->getHmat(); |
1388 |
> |
invBox = snap_->getInvHmat(); |
1389 |
> |
} |
1390 |
> |
|
1391 |
> |
Vector3d boxX = box.getColumn(0); |
1392 |
> |
Vector3d boxY = box.getColumn(1); |
1393 |
> |
Vector3d boxZ = box.getColumn(2); |
1394 |
> |
|
1395 |
> |
nCells_.x() = (int) ( boxX.length() )/ rList_; |
1396 |
> |
nCells_.y() = (int) ( boxY.length() )/ rList_; |
1397 |
> |
nCells_.z() = (int) ( boxZ.length() )/ rList_; |
1398 |
> |
|
1399 |
|
// handle small boxes where the cell offsets can end up repeating cells |
1400 |
|
|
1401 |
|
if (nCells_.x() < 3) doAllPairs = true; |
1402 |
|
if (nCells_.y() < 3) doAllPairs = true; |
1403 |
|
if (nCells_.z() < 3) doAllPairs = true; |
1404 |
< |
|
1309 |
< |
Mat3x3d invHmat = snap_->getInvHmat(); |
1310 |
< |
Vector3d rs, scaled, dr; |
1311 |
< |
Vector3i whichCell; |
1312 |
< |
int cellIndex; |
1404 |
> |
|
1405 |
|
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1406 |
< |
|
1406 |
> |
|
1407 |
|
#ifdef IS_MPI |
1408 |
|
cellListRow_.resize(nCtot); |
1409 |
|
cellListCol_.resize(nCtot); |
1410 |
|
#else |
1411 |
|
cellList_.resize(nCtot); |
1412 |
|
#endif |
1413 |
< |
|
1413 |
> |
|
1414 |
|
if (!doAllPairs) { |
1415 |
|
#ifdef IS_MPI |
1416 |
< |
|
1416 |
> |
|
1417 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
1418 |
|
rs = cgRowData.position[i]; |
1419 |
|
|
1420 |
|
// scaled positions relative to the box vectors |
1421 |
< |
scaled = invHmat * rs; |
1421 |
> |
scaled = invBox * rs; |
1422 |
|
|
1423 |
|
// wrap the vector back into the unit box by subtracting integer box |
1424 |
|
// numbers |
1425 |
|
for (int j = 0; j < 3; j++) { |
1426 |
|
scaled[j] -= roundMe(scaled[j]); |
1427 |
|
scaled[j] += 0.5; |
1428 |
+ |
// Handle the special case when an object is exactly on the |
1429 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1430 |
+ |
// scaled coordinate of 0.0) |
1431 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1432 |
|
} |
1433 |
|
|
1434 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1446 |
|
rs = cgColData.position[i]; |
1447 |
|
|
1448 |
|
// scaled positions relative to the box vectors |
1449 |
< |
scaled = invHmat * rs; |
1449 |
> |
scaled = invBox * rs; |
1450 |
|
|
1451 |
|
// wrap the vector back into the unit box by subtracting integer box |
1452 |
|
// numbers |
1453 |
|
for (int j = 0; j < 3; j++) { |
1454 |
|
scaled[j] -= roundMe(scaled[j]); |
1455 |
|
scaled[j] += 0.5; |
1456 |
+ |
// Handle the special case when an object is exactly on the |
1457 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1458 |
+ |
// scaled coordinate of 0.0) |
1459 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1460 |
|
} |
1461 |
|
|
1462 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1470 |
|
// add this cutoff group to the list of groups in this cell; |
1471 |
|
cellListCol_[cellIndex].push_back(i); |
1472 |
|
} |
1473 |
< |
|
1473 |
> |
|
1474 |
|
#else |
1475 |
|
for (int i = 0; i < nGroups_; i++) { |
1476 |
|
rs = snap_->cgData.position[i]; |
1477 |
|
|
1478 |
|
// scaled positions relative to the box vectors |
1479 |
< |
scaled = invHmat * rs; |
1479 |
> |
scaled = invBox * rs; |
1480 |
|
|
1481 |
|
// wrap the vector back into the unit box by subtracting integer box |
1482 |
|
// numbers |
1483 |
|
for (int j = 0; j < 3; j++) { |
1484 |
|
scaled[j] -= roundMe(scaled[j]); |
1485 |
|
scaled[j] += 0.5; |
1486 |
+ |
// Handle the special case when an object is exactly on the |
1487 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1488 |
+ |
// scaled coordinate of 0.0) |
1489 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1490 |
|
} |
1491 |
|
|
1492 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1545 |
|
// & column indicies and will divide labor in the |
1546 |
|
// force evaluation later. |
1547 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1548 |
< |
snap_->wrapVector(dr); |
1549 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1550 |
< |
if (dr.lengthSquare() < cuts.third) { |
1548 |
> |
if (usePeriodicBoundaryConditions_) { |
1549 |
> |
snap_->wrapVector(dr); |
1550 |
> |
} |
1551 |
> |
getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1552 |
> |
if (dr.lengthSquare() < rlistsq) { |
1553 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1554 |
|
} |
1555 |
|
} |
1569 |
|
// allows atoms within a single cutoff group to |
1570 |
|
// interact with each other. |
1571 |
|
|
1466 |
– |
|
1467 |
– |
|
1572 |
|
if (m2 != m1 || (*j2) >= (*j1) ) { |
1573 |
|
|
1574 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1575 |
< |
snap_->wrapVector(dr); |
1576 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1577 |
< |
if (dr.lengthSquare() < cuts.third) { |
1575 |
> |
if (usePeriodicBoundaryConditions_) { |
1576 |
> |
snap_->wrapVector(dr); |
1577 |
> |
} |
1578 |
> |
getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1579 |
> |
if (dr.lengthSquare() < rlistsq) { |
1580 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1581 |
|
} |
1582 |
|
} |
1593 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1594 |
|
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1595 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1596 |
< |
snap_->wrapVector(dr); |
1597 |
< |
cuts = getGroupCutoffs( j1, j2 ); |
1598 |
< |
if (dr.lengthSquare() < cuts.third) { |
1596 |
> |
if (usePeriodicBoundaryConditions_) { |
1597 |
> |
snap_->wrapVector(dr); |
1598 |
> |
} |
1599 |
> |
getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); |
1600 |
> |
if (dr.lengthSquare() < rlistsq) { |
1601 |
|
neighborList.push_back(make_pair(j1, j2)); |
1602 |
|
} |
1603 |
|
} |
1608 |
|
// include self group interactions j2 == j1 |
1609 |
|
for (int j2 = j1; j2 < nGroups_; j2++) { |
1610 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1611 |
< |
snap_->wrapVector(dr); |
1612 |
< |
cuts = getGroupCutoffs( j1, j2 ); |
1613 |
< |
if (dr.lengthSquare() < cuts.third) { |
1611 |
> |
if (usePeriodicBoundaryConditions_) { |
1612 |
> |
snap_->wrapVector(dr); |
1613 |
> |
} |
1614 |
> |
getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); |
1615 |
> |
if (dr.lengthSquare() < rlistsq) { |
1616 |
|
neighborList.push_back(make_pair(j1, j2)); |
1617 |
|
} |
1618 |
|
} |
1625 |
|
saved_CG_positions_.clear(); |
1626 |
|
for (int i = 0; i < nGroups_; i++) |
1627 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1518 |
– |
|
1519 |
– |
return neighborList; |
1628 |
|
} |
1629 |
|
} //end namespace OpenMD |