35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
< |
|
112 |
> |
|
113 |
> |
if (needVelocities_) |
114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
> |
DataStorage::dslVelocity); |
116 |
> |
else |
117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
> |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
|
MPI::Intracomm row = rowComm.getComm(); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
176 |
|
pot_row.resize(nAtomsInRow_); |
177 |
|
pot_col.resize(nAtomsInCol_); |
178 |
|
|
179 |
+ |
expot_row.resize(nAtomsInRow_); |
180 |
+ |
expot_col.resize(nAtomsInCol_); |
181 |
+ |
|
182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
184 |
|
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
310 |
|
|
311 |
|
RealType tol = 1e-6; |
312 |
|
largestRcut_ = 0.0; |
299 |
– |
RealType rc; |
313 |
|
int atid; |
314 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
315 |
|
|
394 |
|
} |
395 |
|
|
396 |
|
bool gTypeFound = false; |
397 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
397 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
399 |
|
groupToGtype[cg1] = gt; |
400 |
|
gTypeFound = true; |
419 |
|
|
420 |
|
RealType tradRcut = groupMax; |
421 |
|
|
422 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
423 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 |
|
RealType thisRcut; |
425 |
|
switch(cutoffPolicy_) { |
426 |
|
case TRADITIONAL: |
463 |
|
} |
464 |
|
} |
465 |
|
|
453 |
– |
|
466 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
467 |
|
int i, j; |
468 |
|
#ifdef IS_MPI |
476 |
|
} |
477 |
|
|
478 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
479 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
479 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 |
|
if (toposForAtom[atom1][j] == atom2) |
481 |
|
return topoDist[atom1][j]; |
482 |
< |
} |
482 |
> |
} |
483 |
|
return 0; |
484 |
|
} |
485 |
|
|
486 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
487 |
|
pairwisePot = 0.0; |
488 |
|
embeddingPot = 0.0; |
489 |
+ |
excludedPot = 0.0; |
490 |
+ |
excludedSelfPot = 0.0; |
491 |
|
|
492 |
|
#ifdef IS_MPI |
493 |
|
if (storageLayout_ & DataStorage::dslForce) { |
506 |
|
fill(pot_col.begin(), pot_col.end(), |
507 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
508 |
|
|
509 |
+ |
fill(expot_row.begin(), expot_row.end(), |
510 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 |
+ |
|
512 |
+ |
fill(expot_col.begin(), expot_col.end(), |
513 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 |
+ |
|
515 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
516 |
|
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
517 |
|
0.0); |
559 |
|
atomColData.electricField.end(), V3Zero); |
560 |
|
} |
561 |
|
|
542 |
– |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
543 |
– |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
544 |
– |
0.0); |
545 |
– |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
546 |
– |
0.0); |
547 |
– |
} |
548 |
– |
|
562 |
|
#endif |
563 |
|
// even in parallel, we need to zero out the local arrays: |
564 |
|
|
613 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
614 |
|
cgColData.position); |
615 |
|
|
616 |
+ |
|
617 |
+ |
|
618 |
+ |
if (needVelocities_) { |
619 |
+ |
// gather up the atomic velocities |
620 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
621 |
+ |
atomColData.velocity); |
622 |
+ |
|
623 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
624 |
+ |
cgColData.velocity); |
625 |
+ |
} |
626 |
+ |
|
627 |
|
|
628 |
|
// if needed, gather the atomic rotation matrices |
629 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
632 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
633 |
|
atomColData.aMat); |
634 |
|
} |
635 |
< |
|
636 |
< |
// if needed, gather the atomic eletrostatic frames |
637 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
638 |
< |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
639 |
< |
atomRowData.electroFrame); |
640 |
< |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
641 |
< |
atomColData.electroFrame); |
635 |
> |
|
636 |
> |
// if needed, gather the atomic eletrostatic information |
637 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
638 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
639 |
> |
atomRowData.dipole); |
640 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
641 |
> |
atomColData.dipole); |
642 |
|
} |
643 |
|
|
644 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
645 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
646 |
+ |
atomRowData.quadrupole); |
647 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
648 |
+ |
atomColData.quadrupole); |
649 |
+ |
} |
650 |
+ |
|
651 |
|
// if needed, gather the atomic fluctuating charge values |
652 |
|
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 |
|
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
680 |
|
} |
681 |
|
|
682 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
683 |
+ |
// we'll leave it here for now. |
684 |
|
if (storageLayout_ & DataStorage::dslElectricField) { |
685 |
|
|
686 |
|
AtomPlanVectorRow->scatter(atomRowData.electricField, |
688 |
|
|
689 |
|
int n = snap_->atomData.electricField.size(); |
690 |
|
vector<Vector3d> field_tmp(n, V3Zero); |
691 |
< |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
691 |
> |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
692 |
> |
field_tmp); |
693 |
|
for (int i = 0; i < n; i++) |
694 |
|
snap_->atomData.electricField[i] += field_tmp[i]; |
695 |
|
} |
789 |
|
|
790 |
|
} |
791 |
|
|
792 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
793 |
+ |
|
794 |
+ |
int nef = snap_->atomData.electricField.size(); |
795 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
796 |
+ |
|
797 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
798 |
+ |
for (int i = 0; i < nef; i++) { |
799 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
800 |
+ |
efield_tmp[i] = 0.0; |
801 |
+ |
} |
802 |
+ |
|
803 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
804 |
+ |
for (int i = 0; i < nef; i++) |
805 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
806 |
+ |
} |
807 |
+ |
|
808 |
+ |
|
809 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
810 |
|
|
811 |
|
vector<potVec> pot_temp(nLocal_, |
812 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
813 |
+ |
vector<potVec> expot_temp(nLocal_, |
814 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
815 |
|
|
816 |
|
// scatter/gather pot_row into the members of my column |
817 |
|
|
818 |
|
AtomPlanPotRow->scatter(pot_row, pot_temp); |
819 |
< |
|
820 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
819 |
> |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
820 |
> |
|
821 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
822 |
|
pairwisePot += pot_temp[ii]; |
823 |
< |
|
823 |
> |
|
824 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
825 |
> |
excludedPot += expot_temp[ii]; |
826 |
> |
|
827 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
828 |
> |
// This is the pairwise contribution to the particle pot. The |
829 |
> |
// embedding contribution is added in each of the low level |
830 |
> |
// non-bonded routines. In single processor, this is done in |
831 |
> |
// unpackInteractionData, not in collectData. |
832 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
833 |
> |
for (int i = 0; i < nLocal_; i++) { |
834 |
> |
// factor of two is because the total potential terms are divided |
835 |
> |
// by 2 in parallel due to row/ column scatter |
836 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
837 |
> |
} |
838 |
> |
} |
839 |
> |
} |
840 |
> |
|
841 |
|
fill(pot_temp.begin(), pot_temp.end(), |
842 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
843 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
844 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
845 |
|
|
846 |
|
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
847 |
+ |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
848 |
|
|
849 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
850 |
|
pairwisePot += pot_temp[ii]; |
851 |
+ |
|
852 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
853 |
+ |
excludedPot += expot_temp[ii]; |
854 |
+ |
|
855 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
856 |
+ |
// This is the pairwise contribution to the particle pot. The |
857 |
+ |
// embedding contribution is added in each of the low level |
858 |
+ |
// non-bonded routines. In single processor, this is done in |
859 |
+ |
// unpackInteractionData, not in collectData. |
860 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
861 |
+ |
for (int i = 0; i < nLocal_; i++) { |
862 |
+ |
// factor of two is because the total potential terms are divided |
863 |
+ |
// by 2 in parallel due to row/ column scatter |
864 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
865 |
+ |
} |
866 |
+ |
} |
867 |
+ |
} |
868 |
|
|
869 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
870 |
+ |
int npp = snap_->atomData.particlePot.size(); |
871 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
872 |
+ |
|
873 |
+ |
// This is the direct or embedding contribution to the particle |
874 |
+ |
// pot. |
875 |
+ |
|
876 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
877 |
+ |
for (int i = 0; i < npp; i++) { |
878 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
879 |
+ |
} |
880 |
+ |
|
881 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
882 |
+ |
|
883 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
884 |
+ |
for (int i = 0; i < npp; i++) { |
885 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
886 |
+ |
} |
887 |
+ |
} |
888 |
+ |
|
889 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
890 |
|
RealType ploc1 = pairwisePot[ii]; |
891 |
|
RealType ploc2 = 0.0; |
894 |
|
} |
895 |
|
|
896 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
897 |
< |
RealType ploc1 = embeddingPot[ii]; |
897 |
> |
RealType ploc1 = excludedPot[ii]; |
898 |
|
RealType ploc2 = 0.0; |
899 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
900 |
< |
embeddingPot[ii] = ploc2; |
900 |
> |
excludedPot[ii] = ploc2; |
901 |
|
} |
902 |
|
|
903 |
+ |
// Here be dragons. |
904 |
+ |
MPI::Intracomm col = colComm.getComm(); |
905 |
+ |
|
906 |
+ |
col.Allreduce(MPI::IN_PLACE, |
907 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
908 |
+ |
MPI::REALTYPE, MPI::SUM); |
909 |
+ |
|
910 |
+ |
|
911 |
|
#endif |
912 |
|
|
913 |
|
} |
914 |
|
|
915 |
< |
int ForceMatrixDecomposition::getNAtomsInRow() { |
915 |
> |
/** |
916 |
> |
* Collects information obtained during the post-pair (and embedding |
917 |
> |
* functional) loops onto local data structures. |
918 |
> |
*/ |
919 |
> |
void ForceMatrixDecomposition::collectSelfData() { |
920 |
> |
snap_ = sman_->getCurrentSnapshot(); |
921 |
> |
storageLayout_ = sman_->getStorageLayout(); |
922 |
> |
|
923 |
|
#ifdef IS_MPI |
924 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
925 |
+ |
RealType ploc1 = embeddingPot[ii]; |
926 |
+ |
RealType ploc2 = 0.0; |
927 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
928 |
+ |
embeddingPot[ii] = ploc2; |
929 |
+ |
} |
930 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
931 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
932 |
+ |
RealType ploc2 = 0.0; |
933 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
934 |
+ |
excludedSelfPot[ii] = ploc2; |
935 |
+ |
} |
936 |
+ |
#endif |
937 |
+ |
|
938 |
+ |
} |
939 |
+ |
|
940 |
+ |
|
941 |
+ |
|
942 |
+ |
int& ForceMatrixDecomposition::getNAtomsInRow() { |
943 |
+ |
#ifdef IS_MPI |
944 |
|
return nAtomsInRow_; |
945 |
|
#else |
946 |
|
return nLocal_; |
950 |
|
/** |
951 |
|
* returns the list of atoms belonging to this group. |
952 |
|
*/ |
953 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
953 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
954 |
|
#ifdef IS_MPI |
955 |
|
return groupListRow_[cg1]; |
956 |
|
#else |
958 |
|
#endif |
959 |
|
} |
960 |
|
|
961 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
961 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
962 |
|
#ifdef IS_MPI |
963 |
|
return groupListCol_[cg2]; |
964 |
|
#else |
975 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
976 |
|
#endif |
977 |
|
|
978 |
< |
snap_->wrapVector(d); |
978 |
> |
if (usePeriodicBoundaryConditions_) { |
979 |
> |
snap_->wrapVector(d); |
980 |
> |
} |
981 |
|
return d; |
982 |
|
} |
983 |
|
|
984 |
+ |
Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
985 |
+ |
#ifdef IS_MPI |
986 |
+ |
return cgColData.velocity[cg2]; |
987 |
+ |
#else |
988 |
+ |
return snap_->cgData.velocity[cg2]; |
989 |
+ |
#endif |
990 |
+ |
} |
991 |
|
|
992 |
+ |
Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
993 |
+ |
#ifdef IS_MPI |
994 |
+ |
return atomColData.velocity[atom2]; |
995 |
+ |
#else |
996 |
+ |
return snap_->atomData.velocity[atom2]; |
997 |
+ |
#endif |
998 |
+ |
} |
999 |
+ |
|
1000 |
+ |
|
1001 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
1002 |
|
|
1003 |
|
Vector3d d; |
1007 |
|
#else |
1008 |
|
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
1009 |
|
#endif |
1010 |
< |
|
1011 |
< |
snap_->wrapVector(d); |
1010 |
> |
if (usePeriodicBoundaryConditions_) { |
1011 |
> |
snap_->wrapVector(d); |
1012 |
> |
} |
1013 |
|
return d; |
1014 |
|
} |
1015 |
|
|
1021 |
|
#else |
1022 |
|
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
1023 |
|
#endif |
1024 |
< |
|
1025 |
< |
snap_->wrapVector(d); |
1024 |
> |
if (usePeriodicBoundaryConditions_) { |
1025 |
> |
snap_->wrapVector(d); |
1026 |
> |
} |
1027 |
|
return d; |
1028 |
|
} |
1029 |
|
|
1030 |
< |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1030 |
> |
RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1031 |
|
#ifdef IS_MPI |
1032 |
|
return massFactorsRow[atom1]; |
1033 |
|
#else |
1035 |
|
#endif |
1036 |
|
} |
1037 |
|
|
1038 |
< |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1038 |
> |
RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1039 |
|
#ifdef IS_MPI |
1040 |
|
return massFactorsCol[atom2]; |
1041 |
|
#else |
1052 |
|
#else |
1053 |
|
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
1054 |
|
#endif |
1055 |
< |
|
1056 |
< |
snap_->wrapVector(d); |
1055 |
> |
if (usePeriodicBoundaryConditions_) { |
1056 |
> |
snap_->wrapVector(d); |
1057 |
> |
} |
1058 |
|
return d; |
1059 |
|
} |
1060 |
|
|
1061 |
< |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1061 |
> |
vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1062 |
|
return excludesForAtom[atom1]; |
1063 |
|
} |
1064 |
|
|
1066 |
|
* We need to exclude some overcounted interactions that result from |
1067 |
|
* the parallel decomposition. |
1068 |
|
*/ |
1069 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1069 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1070 |
|
int unique_id_1, unique_id_2; |
1071 |
|
|
1072 |
|
#ifdef IS_MPI |
1073 |
|
// in MPI, we have to look up the unique IDs for each atom |
1074 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1075 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1076 |
+ |
// group1 = cgRowToGlobal[cg1]; |
1077 |
+ |
// group2 = cgColToGlobal[cg2]; |
1078 |
|
#else |
1079 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
1080 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
1081 |
+ |
int group1 = cgLocalToGlobal[cg1]; |
1082 |
+ |
int group2 = cgLocalToGlobal[cg2]; |
1083 |
|
#endif |
1084 |
|
|
1085 |
|
if (unique_id_1 == unique_id_2) return true; |
1091 |
|
} else { |
1092 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1093 |
|
} |
1094 |
+ |
#endif |
1095 |
+ |
|
1096 |
+ |
#ifndef IS_MPI |
1097 |
+ |
if (group1 == group2) { |
1098 |
+ |
if (unique_id_1 < unique_id_2) return true; |
1099 |
+ |
} |
1100 |
|
#endif |
1101 |
|
|
1102 |
|
return false; |
1149 |
|
|
1150 |
|
#ifdef IS_MPI |
1151 |
|
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1152 |
+ |
idat.atid1 = identsRow[atom1]; |
1153 |
+ |
idat.atid2 = identsCol[atom2]; |
1154 |
|
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1155 |
|
// ff_->getAtomType(identsCol[atom2]) ); |
1156 |
|
|
1159 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
1160 |
|
} |
1161 |
|
|
983 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
984 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
985 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
986 |
– |
} |
987 |
– |
|
1162 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1163 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
1164 |
|
idat.t2 = &(atomColData.torque[atom2]); |
1165 |
|
} |
1166 |
|
|
1167 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1168 |
+ |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
1169 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
1170 |
+ |
} |
1171 |
+ |
|
1172 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1173 |
+ |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1174 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1175 |
+ |
} |
1176 |
+ |
|
1177 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1178 |
|
idat.rho1 = &(atomRowData.density[atom1]); |
1179 |
|
idat.rho2 = &(atomColData.density[atom2]); |
1206 |
|
|
1207 |
|
#else |
1208 |
|
|
1025 |
– |
|
1026 |
– |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1027 |
– |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1028 |
– |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1029 |
– |
|
1209 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1210 |
< |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1211 |
< |
// ff_->getAtomType(idents[atom2]) ); |
1210 |
> |
idat.atid1 = idents[atom1]; |
1211 |
> |
idat.atid2 = idents[atom2]; |
1212 |
|
|
1213 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1214 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1215 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1216 |
|
} |
1217 |
|
|
1039 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1040 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1041 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1042 |
– |
} |
1043 |
– |
|
1218 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1219 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
1220 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
1221 |
|
} |
1222 |
|
|
1223 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1224 |
+ |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1225 |
+ |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1226 |
+ |
} |
1227 |
+ |
|
1228 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1229 |
+ |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1230 |
+ |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1231 |
+ |
} |
1232 |
+ |
|
1233 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1234 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
1235 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
1268 |
|
#ifdef IS_MPI |
1269 |
|
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1270 |
|
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1271 |
+ |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1272 |
+ |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1273 |
|
|
1274 |
|
atomRowData.force[atom1] += *(idat.f1); |
1275 |
|
atomColData.force[atom2] -= *(idat.f1); |
1276 |
|
|
1277 |
|
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1278 |
< |
atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1279 |
< |
atomColData.flucQFrc[atom2] += *(idat.dVdFQ2); |
1278 |
> |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1279 |
> |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1280 |
|
} |
1281 |
|
|
1282 |
|
if (storageLayout_ & DataStorage::dslElectricField) { |
1284 |
|
atomColData.electricField[atom2] += *(idat.eField2); |
1285 |
|
} |
1286 |
|
|
1101 |
– |
// should particle pot be done here also? |
1287 |
|
#else |
1288 |
|
pairwisePot += *(idat.pot); |
1289 |
+ |
excludedPot += *(idat.excludedPot); |
1290 |
|
|
1291 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1292 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1293 |
|
|
1294 |
|
if (idat.doParticlePot) { |
1295 |
+ |
// This is the pairwise contribution to the particle pot. The |
1296 |
+ |
// embedding contribution is added in each of the low level |
1297 |
+ |
// non-bonded routines. In parallel, this calculation is done |
1298 |
+ |
// in collectData, not in unpackInteractionData. |
1299 |
|
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1300 |
< |
snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
1300 |
> |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1301 |
|
} |
1302 |
|
|
1303 |
|
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1304 |
< |
snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1304 |
> |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1305 |
|
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1306 |
|
} |
1307 |
|
|
1320 |
|
* first element of pair is row-indexed CutoffGroup |
1321 |
|
* second element of pair is column-indexed CutoffGroup |
1322 |
|
*/ |
1323 |
< |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1324 |
< |
|
1325 |
< |
vector<pair<int, int> > neighborList; |
1323 |
> |
void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1324 |
> |
|
1325 |
> |
neighborList.clear(); |
1326 |
|
groupCutoffs cuts; |
1327 |
|
bool doAllPairs = false; |
1328 |
|
|
1329 |
+ |
RealType rList_ = (largestRcut_ + skinThickness_); |
1330 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1331 |
+ |
Mat3x3d box; |
1332 |
+ |
Mat3x3d invBox; |
1333 |
+ |
|
1334 |
+ |
Vector3d rs, scaled, dr; |
1335 |
+ |
Vector3i whichCell; |
1336 |
+ |
int cellIndex; |
1337 |
+ |
|
1338 |
|
#ifdef IS_MPI |
1339 |
|
cellListRow_.clear(); |
1340 |
|
cellListCol_.clear(); |
1341 |
|
#else |
1342 |
|
cellList_.clear(); |
1343 |
|
#endif |
1344 |
< |
|
1345 |
< |
RealType rList_ = (largestRcut_ + skinThickness_); |
1346 |
< |
RealType rl2 = rList_ * rList_; |
1347 |
< |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1348 |
< |
Mat3x3d Hmat = snap_->getHmat(); |
1349 |
< |
Vector3d Hx = Hmat.getColumn(0); |
1350 |
< |
Vector3d Hy = Hmat.getColumn(1); |
1351 |
< |
Vector3d Hz = Hmat.getColumn(2); |
1352 |
< |
|
1353 |
< |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1354 |
< |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1355 |
< |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1356 |
< |
|
1344 |
> |
|
1345 |
> |
if (!usePeriodicBoundaryConditions_) { |
1346 |
> |
box = snap_->getBoundingBox(); |
1347 |
> |
invBox = snap_->getInvBoundingBox(); |
1348 |
> |
} else { |
1349 |
> |
box = snap_->getHmat(); |
1350 |
> |
invBox = snap_->getInvHmat(); |
1351 |
> |
} |
1352 |
> |
|
1353 |
> |
Vector3d boxX = box.getColumn(0); |
1354 |
> |
Vector3d boxY = box.getColumn(1); |
1355 |
> |
Vector3d boxZ = box.getColumn(2); |
1356 |
> |
|
1357 |
> |
nCells_.x() = (int) ( boxX.length() )/ rList_; |
1358 |
> |
nCells_.y() = (int) ( boxY.length() )/ rList_; |
1359 |
> |
nCells_.z() = (int) ( boxZ.length() )/ rList_; |
1360 |
> |
|
1361 |
|
// handle small boxes where the cell offsets can end up repeating cells |
1362 |
|
|
1363 |
|
if (nCells_.x() < 3) doAllPairs = true; |
1364 |
|
if (nCells_.y() < 3) doAllPairs = true; |
1365 |
|
if (nCells_.z() < 3) doAllPairs = true; |
1366 |
< |
|
1164 |
< |
Mat3x3d invHmat = snap_->getInvHmat(); |
1165 |
< |
Vector3d rs, scaled, dr; |
1166 |
< |
Vector3i whichCell; |
1167 |
< |
int cellIndex; |
1366 |
> |
|
1367 |
|
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1368 |
< |
|
1368 |
> |
|
1369 |
|
#ifdef IS_MPI |
1370 |
|
cellListRow_.resize(nCtot); |
1371 |
|
cellListCol_.resize(nCtot); |
1372 |
|
#else |
1373 |
|
cellList_.resize(nCtot); |
1374 |
|
#endif |
1375 |
< |
|
1375 |
> |
|
1376 |
|
if (!doAllPairs) { |
1377 |
|
#ifdef IS_MPI |
1378 |
< |
|
1378 |
> |
|
1379 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
1380 |
|
rs = cgRowData.position[i]; |
1381 |
|
|
1382 |
|
// scaled positions relative to the box vectors |
1383 |
< |
scaled = invHmat * rs; |
1383 |
> |
scaled = invBox * rs; |
1384 |
|
|
1385 |
|
// wrap the vector back into the unit box by subtracting integer box |
1386 |
|
// numbers |
1387 |
|
for (int j = 0; j < 3; j++) { |
1388 |
|
scaled[j] -= roundMe(scaled[j]); |
1389 |
|
scaled[j] += 0.5; |
1390 |
+ |
// Handle the special case when an object is exactly on the |
1391 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1392 |
+ |
// scaled coordinate of 0.0) |
1393 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1394 |
|
} |
1395 |
|
|
1396 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1408 |
|
rs = cgColData.position[i]; |
1409 |
|
|
1410 |
|
// scaled positions relative to the box vectors |
1411 |
< |
scaled = invHmat * rs; |
1411 |
> |
scaled = invBox * rs; |
1412 |
|
|
1413 |
|
// wrap the vector back into the unit box by subtracting integer box |
1414 |
|
// numbers |
1415 |
|
for (int j = 0; j < 3; j++) { |
1416 |
|
scaled[j] -= roundMe(scaled[j]); |
1417 |
|
scaled[j] += 0.5; |
1418 |
+ |
// Handle the special case when an object is exactly on the |
1419 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1420 |
+ |
// scaled coordinate of 0.0) |
1421 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1422 |
|
} |
1423 |
|
|
1424 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1432 |
|
// add this cutoff group to the list of groups in this cell; |
1433 |
|
cellListCol_[cellIndex].push_back(i); |
1434 |
|
} |
1435 |
< |
|
1435 |
> |
|
1436 |
|
#else |
1437 |
|
for (int i = 0; i < nGroups_; i++) { |
1438 |
|
rs = snap_->cgData.position[i]; |
1439 |
|
|
1440 |
|
// scaled positions relative to the box vectors |
1441 |
< |
scaled = invHmat * rs; |
1441 |
> |
scaled = invBox * rs; |
1442 |
|
|
1443 |
|
// wrap the vector back into the unit box by subtracting integer box |
1444 |
|
// numbers |
1445 |
|
for (int j = 0; j < 3; j++) { |
1446 |
|
scaled[j] -= roundMe(scaled[j]); |
1447 |
|
scaled[j] += 0.5; |
1448 |
+ |
// Handle the special case when an object is exactly on the |
1449 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1450 |
+ |
// scaled coordinate of 0.0) |
1451 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1452 |
|
} |
1453 |
|
|
1454 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1507 |
|
// & column indicies and will divide labor in the |
1508 |
|
// force evaluation later. |
1509 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1510 |
< |
snap_->wrapVector(dr); |
1510 |
> |
if (usePeriodicBoundaryConditions_) { |
1511 |
> |
snap_->wrapVector(dr); |
1512 |
> |
} |
1513 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1514 |
|
if (dr.lengthSquare() < cuts.third) { |
1515 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1531 |
|
// allows atoms within a single cutoff group to |
1532 |
|
// interact with each other. |
1533 |
|
|
1321 |
– |
|
1322 |
– |
|
1534 |
|
if (m2 != m1 || (*j2) >= (*j1) ) { |
1535 |
|
|
1536 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1537 |
< |
snap_->wrapVector(dr); |
1537 |
> |
if (usePeriodicBoundaryConditions_) { |
1538 |
> |
snap_->wrapVector(dr); |
1539 |
> |
} |
1540 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1541 |
|
if (dr.lengthSquare() < cuts.third) { |
1542 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1555 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1556 |
|
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1557 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1558 |
< |
snap_->wrapVector(dr); |
1558 |
> |
if (usePeriodicBoundaryConditions_) { |
1559 |
> |
snap_->wrapVector(dr); |
1560 |
> |
} |
1561 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1562 |
|
if (dr.lengthSquare() < cuts.third) { |
1563 |
|
neighborList.push_back(make_pair(j1, j2)); |
1570 |
|
// include self group interactions j2 == j1 |
1571 |
|
for (int j2 = j1; j2 < nGroups_; j2++) { |
1572 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1573 |
< |
snap_->wrapVector(dr); |
1573 |
> |
if (usePeriodicBoundaryConditions_) { |
1574 |
> |
snap_->wrapVector(dr); |
1575 |
> |
} |
1576 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1577 |
|
if (dr.lengthSquare() < cuts.third) { |
1578 |
|
neighborList.push_back(make_pair(j1, j2)); |
1587 |
|
saved_CG_positions_.clear(); |
1588 |
|
for (int i = 0; i < nGroups_; i++) |
1589 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1373 |
– |
|
1374 |
– |
return neighborList; |
1590 |
|
} |
1591 |
|
} //end namespace OpenMD |