95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
< |
|
112 |
> |
|
113 |
> |
if (needVelocities_) |
114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
> |
DataStorage::dslVelocity); |
116 |
> |
else |
117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
> |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
|
MPI::Intracomm row = rowComm.getComm(); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
176 |
|
pot_row.resize(nAtomsInRow_); |
177 |
|
pot_col.resize(nAtomsInCol_); |
178 |
|
|
179 |
+ |
expot_row.resize(nAtomsInRow_); |
180 |
+ |
expot_col.resize(nAtomsInCol_); |
181 |
+ |
|
182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
184 |
|
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
310 |
|
|
311 |
|
RealType tol = 1e-6; |
312 |
|
largestRcut_ = 0.0; |
299 |
– |
RealType rc; |
313 |
|
int atid; |
314 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
315 |
|
|
394 |
|
} |
395 |
|
|
396 |
|
bool gTypeFound = false; |
397 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
397 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
399 |
|
groupToGtype[cg1] = gt; |
400 |
|
gTypeFound = true; |
419 |
|
|
420 |
|
RealType tradRcut = groupMax; |
421 |
|
|
422 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
423 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 |
|
RealType thisRcut; |
425 |
|
switch(cutoffPolicy_) { |
426 |
|
case TRADITIONAL: |
463 |
|
} |
464 |
|
} |
465 |
|
|
453 |
– |
|
466 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
467 |
|
int i, j; |
468 |
|
#ifdef IS_MPI |
476 |
|
} |
477 |
|
|
478 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
479 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
479 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 |
|
if (toposForAtom[atom1][j] == atom2) |
481 |
|
return topoDist[atom1][j]; |
482 |
|
} |
486 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
487 |
|
pairwisePot = 0.0; |
488 |
|
embeddingPot = 0.0; |
489 |
+ |
excludedPot = 0.0; |
490 |
+ |
excludedSelfPot = 0.0; |
491 |
|
|
492 |
|
#ifdef IS_MPI |
493 |
|
if (storageLayout_ & DataStorage::dslForce) { |
506 |
|
fill(pot_col.begin(), pot_col.end(), |
507 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
508 |
|
|
509 |
+ |
fill(expot_row.begin(), expot_row.end(), |
510 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 |
+ |
|
512 |
+ |
fill(expot_col.begin(), expot_col.end(), |
513 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 |
+ |
|
515 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
516 |
|
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
517 |
|
0.0); |
545 |
|
atomColData.skippedCharge.end(), 0.0); |
546 |
|
} |
547 |
|
|
548 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 |
+ |
fill(atomRowData.flucQFrc.begin(), |
550 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
551 |
+ |
fill(atomColData.flucQFrc.begin(), |
552 |
+ |
atomColData.flucQFrc.end(), 0.0); |
553 |
+ |
} |
554 |
+ |
|
555 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
556 |
+ |
fill(atomRowData.electricField.begin(), |
557 |
+ |
atomRowData.electricField.end(), V3Zero); |
558 |
+ |
fill(atomColData.electricField.begin(), |
559 |
+ |
atomColData.electricField.end(), V3Zero); |
560 |
+ |
} |
561 |
+ |
|
562 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 |
+ |
0.0); |
565 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 |
+ |
0.0); |
567 |
+ |
} |
568 |
+ |
|
569 |
|
#endif |
570 |
|
// even in parallel, we need to zero out the local arrays: |
571 |
|
|
593 |
|
fill(snap_->atomData.skippedCharge.begin(), |
594 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
595 |
|
} |
596 |
+ |
|
597 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
598 |
+ |
fill(snap_->atomData.electricField.begin(), |
599 |
+ |
snap_->atomData.electricField.end(), V3Zero); |
600 |
+ |
} |
601 |
|
} |
602 |
|
|
603 |
|
|
620 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
621 |
|
cgColData.position); |
622 |
|
|
623 |
+ |
|
624 |
+ |
|
625 |
+ |
if (needVelocities_) { |
626 |
+ |
// gather up the atomic velocities |
627 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
628 |
+ |
atomColData.velocity); |
629 |
+ |
|
630 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
631 |
+ |
cgColData.velocity); |
632 |
+ |
} |
633 |
+ |
|
634 |
|
|
635 |
|
// if needed, gather the atomic rotation matrices |
636 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
648 |
|
atomColData.electroFrame); |
649 |
|
} |
650 |
|
|
651 |
+ |
// if needed, gather the atomic fluctuating charge values |
652 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 |
+ |
atomRowData.flucQPos); |
655 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 |
+ |
atomColData.flucQPos); |
657 |
+ |
} |
658 |
+ |
|
659 |
|
#endif |
660 |
|
} |
661 |
|
|
678 |
|
for (int i = 0; i < n; i++) |
679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
680 |
|
} |
681 |
+ |
|
682 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
683 |
+ |
|
684 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
685 |
+ |
snap_->atomData.electricField); |
686 |
+ |
|
687 |
+ |
int n = snap_->atomData.electricField.size(); |
688 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
689 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
690 |
+ |
for (int i = 0; i < n; i++) |
691 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
692 |
+ |
} |
693 |
|
#endif |
694 |
|
} |
695 |
|
|
769 |
|
|
770 |
|
} |
771 |
|
|
772 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
773 |
+ |
|
774 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
775 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
776 |
+ |
|
777 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
778 |
+ |
for (int i = 0; i < nq; i++) { |
779 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
780 |
+ |
fqfrc_tmp[i] = 0.0; |
781 |
+ |
} |
782 |
+ |
|
783 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
784 |
+ |
for (int i = 0; i < nq; i++) |
785 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
786 |
+ |
|
787 |
+ |
} |
788 |
+ |
|
789 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
790 |
|
|
791 |
|
vector<potVec> pot_temp(nLocal_, |
792 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
793 |
+ |
vector<potVec> expot_temp(nLocal_, |
794 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
795 |
|
|
796 |
|
// scatter/gather pot_row into the members of my column |
797 |
|
|
798 |
|
AtomPlanPotRow->scatter(pot_row, pot_temp); |
799 |
+ |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
800 |
|
|
801 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
801 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 |
|
pairwisePot += pot_temp[ii]; |
803 |
< |
|
803 |
> |
|
804 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
805 |
> |
excludedPot += expot_temp[ii]; |
806 |
> |
|
807 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
808 |
> |
// This is the pairwise contribution to the particle pot. The |
809 |
> |
// embedding contribution is added in each of the low level |
810 |
> |
// non-bonded routines. In single processor, this is done in |
811 |
> |
// unpackInteractionData, not in collectData. |
812 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
813 |
> |
for (int i = 0; i < nLocal_; i++) { |
814 |
> |
// factor of two is because the total potential terms are divided |
815 |
> |
// by 2 in parallel due to row/ column scatter |
816 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
817 |
> |
} |
818 |
> |
} |
819 |
> |
} |
820 |
> |
|
821 |
|
fill(pot_temp.begin(), pot_temp.end(), |
822 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
823 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
824 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
825 |
|
|
826 |
|
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
827 |
+ |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
828 |
|
|
829 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
830 |
|
pairwisePot += pot_temp[ii]; |
831 |
+ |
|
832 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
833 |
+ |
excludedPot += expot_temp[ii]; |
834 |
+ |
|
835 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
836 |
+ |
// This is the pairwise contribution to the particle pot. The |
837 |
+ |
// embedding contribution is added in each of the low level |
838 |
+ |
// non-bonded routines. In single processor, this is done in |
839 |
+ |
// unpackInteractionData, not in collectData. |
840 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
841 |
+ |
for (int i = 0; i < nLocal_; i++) { |
842 |
+ |
// factor of two is because the total potential terms are divided |
843 |
+ |
// by 2 in parallel due to row/ column scatter |
844 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
845 |
+ |
} |
846 |
+ |
} |
847 |
+ |
} |
848 |
|
|
849 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
850 |
+ |
int npp = snap_->atomData.particlePot.size(); |
851 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
852 |
+ |
|
853 |
+ |
// This is the direct or embedding contribution to the particle |
854 |
+ |
// pot. |
855 |
+ |
|
856 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
857 |
+ |
for (int i = 0; i < npp; i++) { |
858 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
859 |
+ |
} |
860 |
+ |
|
861 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
862 |
+ |
|
863 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
864 |
+ |
for (int i = 0; i < npp; i++) { |
865 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
866 |
+ |
} |
867 |
+ |
} |
868 |
+ |
|
869 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
870 |
|
RealType ploc1 = pairwisePot[ii]; |
871 |
|
RealType ploc2 = 0.0; |
874 |
|
} |
875 |
|
|
876 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
877 |
< |
RealType ploc1 = embeddingPot[ii]; |
877 |
> |
RealType ploc1 = excludedPot[ii]; |
878 |
|
RealType ploc2 = 0.0; |
879 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
880 |
< |
embeddingPot[ii] = ploc2; |
880 |
> |
excludedPot[ii] = ploc2; |
881 |
|
} |
882 |
|
|
883 |
+ |
// Here be dragons. |
884 |
+ |
MPI::Intracomm col = colComm.getComm(); |
885 |
+ |
|
886 |
+ |
col.Allreduce(MPI::IN_PLACE, |
887 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
888 |
+ |
MPI::REALTYPE, MPI::SUM); |
889 |
+ |
|
890 |
+ |
|
891 |
|
#endif |
892 |
|
|
893 |
|
} |
894 |
|
|
895 |
+ |
/** |
896 |
+ |
* Collects information obtained during the post-pair (and embedding |
897 |
+ |
* functional) loops onto local data structures. |
898 |
+ |
*/ |
899 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
900 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
901 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
902 |
+ |
|
903 |
+ |
#ifdef IS_MPI |
904 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
905 |
+ |
RealType ploc1 = embeddingPot[ii]; |
906 |
+ |
RealType ploc2 = 0.0; |
907 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
908 |
+ |
embeddingPot[ii] = ploc2; |
909 |
+ |
} |
910 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
911 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
912 |
+ |
RealType ploc2 = 0.0; |
913 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
914 |
+ |
excludedSelfPot[ii] = ploc2; |
915 |
+ |
} |
916 |
+ |
#endif |
917 |
+ |
|
918 |
+ |
} |
919 |
+ |
|
920 |
+ |
|
921 |
+ |
|
922 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
923 |
|
#ifdef IS_MPI |
924 |
|
return nAtomsInRow_; |
959 |
|
return d; |
960 |
|
} |
961 |
|
|
962 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
963 |
+ |
#ifdef IS_MPI |
964 |
+ |
return cgColData.velocity[cg2]; |
965 |
+ |
#else |
966 |
+ |
return snap_->cgData.velocity[cg2]; |
967 |
+ |
#endif |
968 |
+ |
} |
969 |
|
|
970 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
971 |
+ |
#ifdef IS_MPI |
972 |
+ |
return atomColData.velocity[atom2]; |
973 |
+ |
#else |
974 |
+ |
return snap_->atomData.velocity[atom2]; |
975 |
+ |
#endif |
976 |
+ |
} |
977 |
+ |
|
978 |
+ |
|
979 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
980 |
|
|
981 |
|
Vector3d d; |
1041 |
|
* We need to exclude some overcounted interactions that result from |
1042 |
|
* the parallel decomposition. |
1043 |
|
*/ |
1044 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1045 |
< |
int unique_id_1, unique_id_2; |
1044 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1045 |
> |
int unique_id_1, unique_id_2, group1, group2; |
1046 |
|
|
1047 |
|
#ifdef IS_MPI |
1048 |
|
// in MPI, we have to look up the unique IDs for each atom |
1049 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1050 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1051 |
+ |
group1 = cgRowToGlobal[cg1]; |
1052 |
+ |
group2 = cgColToGlobal[cg2]; |
1053 |
|
#else |
1054 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
1055 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
1056 |
+ |
group1 = cgLocalToGlobal[cg1]; |
1057 |
+ |
group2 = cgLocalToGlobal[cg2]; |
1058 |
|
#endif |
1059 |
|
|
1060 |
|
if (unique_id_1 == unique_id_2) return true; |
1066 |
|
} else { |
1067 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1068 |
|
} |
1069 |
+ |
#endif |
1070 |
+ |
|
1071 |
+ |
#ifndef IS_MPI |
1072 |
+ |
if (group1 == group2) { |
1073 |
+ |
if (unique_id_1 < unique_id_2) return true; |
1074 |
+ |
} |
1075 |
|
#endif |
1076 |
|
|
1077 |
|
return false; |
1167 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1168 |
|
} |
1169 |
|
|
1170 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1171 |
+ |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1172 |
+ |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1173 |
+ |
} |
1174 |
+ |
|
1175 |
|
#else |
1176 |
|
|
957 |
– |
|
958 |
– |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
959 |
– |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
960 |
– |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
961 |
– |
|
1177 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
963 |
– |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
964 |
– |
// ff_->getAtomType(idents[atom2]) ); |
1178 |
|
|
1179 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1180 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1214 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1215 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1216 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1217 |
+ |
} |
1218 |
+ |
|
1219 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1220 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1221 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1222 |
|
} |
1223 |
+ |
|
1224 |
|
#endif |
1225 |
|
} |
1226 |
|
|
1229 |
|
#ifdef IS_MPI |
1230 |
|
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1231 |
|
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1232 |
+ |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1233 |
+ |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1234 |
|
|
1235 |
|
atomRowData.force[atom1] += *(idat.f1); |
1236 |
|
atomColData.force[atom2] -= *(idat.f1); |
1237 |
+ |
|
1238 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1239 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1240 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1241 |
+ |
} |
1242 |
+ |
|
1243 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1244 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1245 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1246 |
+ |
} |
1247 |
+ |
|
1248 |
|
#else |
1249 |
|
pairwisePot += *(idat.pot); |
1250 |
+ |
excludedPot += *(idat.excludedPot); |
1251 |
|
|
1252 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1253 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1254 |
+ |
|
1255 |
+ |
if (idat.doParticlePot) { |
1256 |
+ |
// This is the pairwise contribution to the particle pot. The |
1257 |
+ |
// embedding contribution is added in each of the low level |
1258 |
+ |
// non-bonded routines. In parallel, this calculation is done |
1259 |
+ |
// in collectData, not in unpackInteractionData. |
1260 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1261 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1262 |
+ |
} |
1263 |
+ |
|
1264 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1265 |
+ |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1266 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1267 |
+ |
} |
1268 |
+ |
|
1269 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1270 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1271 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1272 |
+ |
} |
1273 |
+ |
|
1274 |
|
#endif |
1275 |
|
|
1276 |
|
} |