95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
< |
|
112 |
> |
|
113 |
> |
if (needVelocities_) |
114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
> |
DataStorage::dslVelocity); |
116 |
> |
else |
117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
> |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
|
MPI::Intracomm row = rowComm.getComm(); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
176 |
|
pot_row.resize(nAtomsInRow_); |
177 |
|
pot_col.resize(nAtomsInCol_); |
178 |
|
|
179 |
+ |
expot_row.resize(nAtomsInRow_); |
180 |
+ |
expot_col.resize(nAtomsInCol_); |
181 |
+ |
|
182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
184 |
|
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
464 |
|
} |
465 |
|
} |
466 |
|
|
453 |
– |
|
467 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
468 |
|
int i, j; |
469 |
|
#ifdef IS_MPI |
487 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
488 |
|
pairwisePot = 0.0; |
489 |
|
embeddingPot = 0.0; |
490 |
+ |
excludedPot = 0.0; |
491 |
+ |
excludedSelfPot = 0.0; |
492 |
|
|
493 |
|
#ifdef IS_MPI |
494 |
|
if (storageLayout_ & DataStorage::dslForce) { |
507 |
|
fill(pot_col.begin(), pot_col.end(), |
508 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
509 |
|
|
510 |
+ |
fill(expot_row.begin(), expot_row.end(), |
511 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
512 |
+ |
|
513 |
+ |
fill(expot_col.begin(), expot_col.end(), |
514 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
515 |
+ |
|
516 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
517 |
|
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
518 |
|
0.0); |
546 |
|
atomColData.skippedCharge.end(), 0.0); |
547 |
|
} |
548 |
|
|
549 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
550 |
+ |
fill(atomRowData.flucQFrc.begin(), |
551 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
552 |
+ |
fill(atomColData.flucQFrc.begin(), |
553 |
+ |
atomColData.flucQFrc.end(), 0.0); |
554 |
+ |
} |
555 |
+ |
|
556 |
|
if (storageLayout_ & DataStorage::dslElectricField) { |
557 |
|
fill(atomRowData.electricField.begin(), |
558 |
|
atomRowData.electricField.end(), V3Zero); |
559 |
|
fill(atomColData.electricField.begin(), |
560 |
|
atomColData.electricField.end(), V3Zero); |
561 |
|
} |
562 |
+ |
|
563 |
|
if (storageLayout_ & DataStorage::dslFlucQForce) { |
564 |
|
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
565 |
|
0.0); |
621 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
622 |
|
cgColData.position); |
623 |
|
|
624 |
+ |
|
625 |
+ |
|
626 |
+ |
if (needVelocities_) { |
627 |
+ |
// gather up the atomic velocities |
628 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
629 |
+ |
atomColData.velocity); |
630 |
+ |
|
631 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
632 |
+ |
cgColData.velocity); |
633 |
+ |
} |
634 |
+ |
|
635 |
|
|
636 |
|
// if needed, gather the atomic rotation matrices |
637 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
791 |
|
|
792 |
|
vector<potVec> pot_temp(nLocal_, |
793 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
794 |
+ |
vector<potVec> expot_temp(nLocal_, |
795 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
796 |
|
|
797 |
|
// scatter/gather pot_row into the members of my column |
798 |
|
|
799 |
|
AtomPlanPotRow->scatter(pot_row, pot_temp); |
800 |
+ |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
801 |
|
|
802 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
803 |
|
pairwisePot += pot_temp[ii]; |
804 |
< |
|
804 |
> |
|
805 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
806 |
> |
excludedPot += expot_temp[ii]; |
807 |
> |
|
808 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
809 |
> |
// This is the pairwise contribution to the particle pot. The |
810 |
> |
// embedding contribution is added in each of the low level |
811 |
> |
// non-bonded routines. In single processor, this is done in |
812 |
> |
// unpackInteractionData, not in collectData. |
813 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
814 |
> |
for (int i = 0; i < nLocal_; i++) { |
815 |
> |
// factor of two is because the total potential terms are divided |
816 |
> |
// by 2 in parallel due to row/ column scatter |
817 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
818 |
> |
} |
819 |
> |
} |
820 |
> |
} |
821 |
> |
|
822 |
|
fill(pot_temp.begin(), pot_temp.end(), |
823 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
824 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
825 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
826 |
|
|
827 |
|
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
828 |
+ |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
829 |
|
|
830 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
831 |
|
pairwisePot += pot_temp[ii]; |
832 |
+ |
|
833 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
834 |
+ |
excludedPot += expot_temp[ii]; |
835 |
+ |
|
836 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
837 |
+ |
// This is the pairwise contribution to the particle pot. The |
838 |
+ |
// embedding contribution is added in each of the low level |
839 |
+ |
// non-bonded routines. In single processor, this is done in |
840 |
+ |
// unpackInteractionData, not in collectData. |
841 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
842 |
+ |
for (int i = 0; i < nLocal_; i++) { |
843 |
+ |
// factor of two is because the total potential terms are divided |
844 |
+ |
// by 2 in parallel due to row/ column scatter |
845 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
846 |
+ |
} |
847 |
+ |
} |
848 |
+ |
} |
849 |
|
|
850 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
851 |
+ |
int npp = snap_->atomData.particlePot.size(); |
852 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
853 |
+ |
|
854 |
+ |
// This is the direct or embedding contribution to the particle |
855 |
+ |
// pot. |
856 |
+ |
|
857 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
858 |
+ |
for (int i = 0; i < npp; i++) { |
859 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
860 |
+ |
} |
861 |
+ |
|
862 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
863 |
+ |
|
864 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
865 |
+ |
for (int i = 0; i < npp; i++) { |
866 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
867 |
+ |
} |
868 |
+ |
} |
869 |
+ |
|
870 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
871 |
|
RealType ploc1 = pairwisePot[ii]; |
872 |
|
RealType ploc2 = 0.0; |
875 |
|
} |
876 |
|
|
877 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
878 |
< |
RealType ploc1 = embeddingPot[ii]; |
878 |
> |
RealType ploc1 = excludedPot[ii]; |
879 |
|
RealType ploc2 = 0.0; |
880 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
881 |
< |
embeddingPot[ii] = ploc2; |
881 |
> |
excludedPot[ii] = ploc2; |
882 |
|
} |
883 |
|
|
884 |
+ |
// Here be dragons. |
885 |
+ |
MPI::Intracomm col = colComm.getComm(); |
886 |
+ |
|
887 |
+ |
col.Allreduce(MPI::IN_PLACE, |
888 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
889 |
+ |
MPI::REALTYPE, MPI::SUM); |
890 |
+ |
|
891 |
+ |
|
892 |
|
#endif |
893 |
|
|
894 |
|
} |
895 |
|
|
896 |
+ |
/** |
897 |
+ |
* Collects information obtained during the post-pair (and embedding |
898 |
+ |
* functional) loops onto local data structures. |
899 |
+ |
*/ |
900 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
901 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
902 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
903 |
+ |
|
904 |
+ |
#ifdef IS_MPI |
905 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
906 |
+ |
RealType ploc1 = embeddingPot[ii]; |
907 |
+ |
RealType ploc2 = 0.0; |
908 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
909 |
+ |
embeddingPot[ii] = ploc2; |
910 |
+ |
} |
911 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
912 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
913 |
+ |
RealType ploc2 = 0.0; |
914 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
915 |
+ |
excludedSelfPot[ii] = ploc2; |
916 |
+ |
} |
917 |
+ |
#endif |
918 |
+ |
|
919 |
+ |
} |
920 |
+ |
|
921 |
+ |
|
922 |
+ |
|
923 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
924 |
|
#ifdef IS_MPI |
925 |
|
return nAtomsInRow_; |
960 |
|
return d; |
961 |
|
} |
962 |
|
|
963 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
964 |
+ |
#ifdef IS_MPI |
965 |
+ |
return cgColData.velocity[cg2]; |
966 |
+ |
#else |
967 |
+ |
return snap_->cgData.velocity[cg2]; |
968 |
+ |
#endif |
969 |
+ |
} |
970 |
|
|
971 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
972 |
+ |
#ifdef IS_MPI |
973 |
+ |
return atomColData.velocity[atom2]; |
974 |
+ |
#else |
975 |
+ |
return snap_->atomData.velocity[atom2]; |
976 |
+ |
#endif |
977 |
+ |
} |
978 |
+ |
|
979 |
+ |
|
980 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
981 |
|
|
982 |
|
Vector3d d; |
1042 |
|
* We need to exclude some overcounted interactions that result from |
1043 |
|
* the parallel decomposition. |
1044 |
|
*/ |
1045 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1046 |
< |
int unique_id_1, unique_id_2; |
1045 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1046 |
> |
int unique_id_1, unique_id_2, group1, group2; |
1047 |
|
|
1048 |
|
#ifdef IS_MPI |
1049 |
|
// in MPI, we have to look up the unique IDs for each atom |
1050 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1051 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1052 |
+ |
group1 = cgRowToGlobal[cg1]; |
1053 |
+ |
group2 = cgColToGlobal[cg2]; |
1054 |
|
#else |
1055 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
1056 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
1057 |
+ |
group1 = cgLocalToGlobal[cg1]; |
1058 |
+ |
group2 = cgLocalToGlobal[cg2]; |
1059 |
|
#endif |
1060 |
|
|
1061 |
|
if (unique_id_1 == unique_id_2) return true; |
1067 |
|
} else { |
1068 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1069 |
|
} |
1070 |
+ |
#endif |
1071 |
+ |
|
1072 |
+ |
#ifndef IS_MPI |
1073 |
+ |
if (group1 == group2) { |
1074 |
+ |
if (unique_id_1 < unique_id_2) return true; |
1075 |
+ |
} |
1076 |
|
#endif |
1077 |
|
|
1078 |
|
return false; |
1168 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1169 |
|
} |
1170 |
|
|
1171 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1172 |
+ |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1173 |
+ |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1174 |
+ |
} |
1175 |
+ |
|
1176 |
|
#else |
1177 |
|
|
1012 |
– |
|
1013 |
– |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1014 |
– |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1015 |
– |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1016 |
– |
|
1178 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1018 |
– |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1019 |
– |
// ff_->getAtomType(idents[atom2]) ); |
1179 |
|
|
1180 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1181 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1216 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1217 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1218 |
|
} |
1219 |
+ |
|
1220 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1221 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1222 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1223 |
+ |
} |
1224 |
+ |
|
1225 |
|
#endif |
1226 |
|
} |
1227 |
|
|
1230 |
|
#ifdef IS_MPI |
1231 |
|
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1232 |
|
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1233 |
+ |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1234 |
+ |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1235 |
|
|
1236 |
|
atomRowData.force[atom1] += *(idat.f1); |
1237 |
|
atomColData.force[atom2] -= *(idat.f1); |
1238 |
|
|
1239 |
< |
// should particle pot be done here also? |
1239 |
> |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1240 |
> |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1241 |
> |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1242 |
> |
} |
1243 |
> |
|
1244 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
1245 |
> |
atomRowData.electricField[atom1] += *(idat.eField1); |
1246 |
> |
atomColData.electricField[atom2] += *(idat.eField2); |
1247 |
> |
} |
1248 |
> |
|
1249 |
|
#else |
1250 |
|
pairwisePot += *(idat.pot); |
1251 |
+ |
excludedPot += *(idat.excludedPot); |
1252 |
|
|
1253 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1254 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1255 |
|
|
1256 |
|
if (idat.doParticlePot) { |
1257 |
+ |
// This is the pairwise contribution to the particle pot. The |
1258 |
+ |
// embedding contribution is added in each of the low level |
1259 |
+ |
// non-bonded routines. In parallel, this calculation is done |
1260 |
+ |
// in collectData, not in unpackInteractionData. |
1261 |
|
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1262 |
< |
snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
1262 |
> |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1263 |
|
} |
1264 |
< |
|
1264 |
> |
|
1265 |
> |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1266 |
> |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1267 |
> |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1268 |
> |
} |
1269 |
> |
|
1270 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
1271 |
> |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1272 |
> |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1273 |
> |
} |
1274 |
> |
|
1275 |
|
#endif |
1276 |
|
|
1277 |
|
} |