ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1562 by gezelter, Thu May 12 17:00:14 2011 UTC vs.
Revision 1721 by gezelter, Thu May 24 14:17:42 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
53  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96 < #ifdef IS_MPI    
97 <    int nLocal = snap_->getNumberOfAtoms();
59 <    int nGroups = snap_->getNumberOfCutoffGroups();
96 >    ff_ = info_->getForceField();
97 >    nLocal_ = snap_->getNumberOfAtoms();
98      
99 <    AtomCommIntRow = new Communicator<Row,int>(nLocal);
100 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
101 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
102 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal);
67 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
68 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
69 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
106 >    massFactors = info_->getMassFactors();
107  
108 <    cgCommIntRow = new Communicator<Row,int>(nGroups);
109 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
110 <    cgCommIntColumn = new Communicator<Column,int>(nGroups);
111 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112  
113 <    int nAtomsInRow = AtomCommIntRow->getSize();
114 <    int nAtomsInCol = AtomCommIntColumn->getSize();
115 <    int nGroupsInRow = cgCommIntRow->getSize();
116 <    int nGroupsInCol = cgCommIntColumn->getSize();
113 > #ifdef IS_MPI
114 >
115 >    MPI::Intracomm row = rowComm.getComm();
116 >    MPI::Intracomm col = colComm.getComm();
117  
118 +    AtomPlanIntRow = new Plan<int>(row, nLocal_);
119 +    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120 +    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121 +    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122 +    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123 +
124 +    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125 +    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126 +    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127 +    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128 +    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129 +
130 +    cgPlanIntRow = new Plan<int>(row, nGroups_);
131 +    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132 +    cgPlanIntColumn = new Plan<int>(col, nGroups_);
133 +    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134 +
135 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
136 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
137 +    nGroupsInRow_ = cgPlanIntRow->getSize();
138 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
139 +
140      // Modify the data storage objects with the correct layouts and sizes:
141 <    atomRowData.resize(nAtomsInRow);
141 >    atomRowData.resize(nAtomsInRow_);
142      atomRowData.setStorageLayout(storageLayout_);
143 <    atomColData.resize(nAtomsInCol);
143 >    atomColData.resize(nAtomsInCol_);
144      atomColData.setStorageLayout(storageLayout_);
145 <    cgRowData.resize(nGroupsInRow);
145 >    cgRowData.resize(nGroupsInRow_);
146      cgRowData.setStorageLayout(DataStorage::dslPosition);
147 <    cgColData.resize(nGroupsInCol);
147 >    cgColData.resize(nGroupsInCol_);
148      cgColData.setStorageLayout(DataStorage::dslPosition);
149 +        
150 +    identsRow.resize(nAtomsInRow_);
151 +    identsCol.resize(nAtomsInCol_);
152      
153 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
154 <                                      vector<RealType> (nAtomsInRow, 0.0));
155 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
156 <                                      vector<RealType> (nAtomsInCol, 0.0));
153 >    AtomPlanIntRow->gather(idents, identsRow);
154 >    AtomPlanIntColumn->gather(idents, identsCol);
155 >    
156 >    // allocate memory for the parallel objects
157 >    atypesRow.resize(nAtomsInRow_);
158 >    atypesCol.resize(nAtomsInCol_);
159  
160 +    for (int i = 0; i < nAtomsInRow_; i++)
161 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
162 +    for (int i = 0; i < nAtomsInCol_; i++)
163 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
164  
165 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
165 >    pot_row.resize(nAtomsInRow_);
166 >    pot_col.resize(nAtomsInCol_);
167 >
168 >    AtomRowToGlobal.resize(nAtomsInRow_);
169 >    AtomColToGlobal.resize(nAtomsInCol_);
170 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172 >
173 >    cgRowToGlobal.resize(nGroupsInRow_);
174 >    cgColToGlobal.resize(nGroupsInCol_);
175 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 >
178 >    massFactorsRow.resize(nAtomsInRow_);
179 >    massFactorsCol.resize(nAtomsInCol_);
180 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
181 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182 >
183 >    groupListRow_.clear();
184 >    groupListRow_.resize(nGroupsInRow_);
185 >    for (int i = 0; i < nGroupsInRow_; i++) {
186 >      int gid = cgRowToGlobal[i];
187 >      for (int j = 0; j < nAtomsInRow_; j++) {
188 >        int aid = AtomRowToGlobal[j];
189 >        if (globalGroupMembership[aid] == gid)
190 >          groupListRow_[i].push_back(j);
191 >      }      
192 >    }
193 >
194 >    groupListCol_.clear();
195 >    groupListCol_.resize(nGroupsInCol_);
196 >    for (int i = 0; i < nGroupsInCol_; i++) {
197 >      int gid = cgColToGlobal[i];
198 >      for (int j = 0; j < nAtomsInCol_; j++) {
199 >        int aid = AtomColToGlobal[j];
200 >        if (globalGroupMembership[aid] == gid)
201 >          groupListCol_[i].push_back(j);
202 >      }      
203 >    }
204 >
205 >    excludesForAtom.clear();
206 >    excludesForAtom.resize(nAtomsInRow_);
207 >    toposForAtom.clear();
208 >    toposForAtom.resize(nAtomsInRow_);
209 >    topoDist.clear();
210 >    topoDist.resize(nAtomsInRow_);
211 >    for (int i = 0; i < nAtomsInRow_; i++) {
212 >      int iglob = AtomRowToGlobal[i];
213 >
214 >      for (int j = 0; j < nAtomsInCol_; j++) {
215 >        int jglob = AtomColToGlobal[j];
216 >
217 >        if (excludes->hasPair(iglob, jglob))
218 >          excludesForAtom[i].push_back(j);      
219 >        
220 >        if (oneTwo->hasPair(iglob, jglob)) {
221 >          toposForAtom[i].push_back(j);
222 >          topoDist[i].push_back(1);
223 >        } else {
224 >          if (oneThree->hasPair(iglob, jglob)) {
225 >            toposForAtom[i].push_back(j);
226 >            topoDist[i].push_back(2);
227 >          } else {
228 >            if (oneFour->hasPair(iglob, jglob)) {
229 >              toposForAtom[i].push_back(j);
230 >              topoDist[i].push_back(3);
231 >            }
232 >          }
233 >        }
234 >      }      
235 >    }
236 >
237 > #else
238 >    excludesForAtom.clear();
239 >    excludesForAtom.resize(nLocal_);
240 >    toposForAtom.clear();
241 >    toposForAtom.resize(nLocal_);
242 >    topoDist.clear();
243 >    topoDist.resize(nLocal_);
244 >
245 >    for (int i = 0; i < nLocal_; i++) {
246 >      int iglob = AtomLocalToGlobal[i];
247 >
248 >      for (int j = 0; j < nLocal_; j++) {
249 >        int jglob = AtomLocalToGlobal[j];
250 >
251 >        if (excludes->hasPair(iglob, jglob))
252 >          excludesForAtom[i].push_back(j);              
253 >        
254 >        if (oneTwo->hasPair(iglob, jglob)) {
255 >          toposForAtom[i].push_back(j);
256 >          topoDist[i].push_back(1);
257 >        } else {
258 >          if (oneThree->hasPair(iglob, jglob)) {
259 >            toposForAtom[i].push_back(j);
260 >            topoDist[i].push_back(2);
261 >          } else {
262 >            if (oneFour->hasPair(iglob, jglob)) {
263 >              toposForAtom[i].push_back(j);
264 >              topoDist[i].push_back(3);
265 >            }
266 >          }
267 >        }
268 >      }      
269 >    }
270 > #endif
271 >
272 >    // allocate memory for the parallel objects
273 >    atypesLocal.resize(nLocal_);
274 >
275 >    for (int i = 0; i < nLocal_; i++)
276 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
277 >
278 >    groupList_.clear();
279 >    groupList_.resize(nGroups_);
280 >    for (int i = 0; i < nGroups_; i++) {
281 >      int gid = cgLocalToGlobal[i];
282 >      for (int j = 0; j < nLocal_; j++) {
283 >        int aid = AtomLocalToGlobal[j];
284 >        if (globalGroupMembership[aid] == gid) {
285 >          groupList_[i].push_back(j);
286 >        }
287 >      }      
288 >    }
289 >
290 >
291 >    createGtypeCutoffMap();
292 >
293 >  }
294 >  
295 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
296      
297 <    // gather the information for atomtype IDs (atids):
298 <    vector<int> identsLocal = info_->getIdentArray();
299 <    identsRow.reserve(nAtomsInRow);
300 <    identsCol.reserve(nAtomsInCol);
297 >    RealType tol = 1e-6;
298 >    largestRcut_ = 0.0;
299 >    RealType rc;
300 >    int atid;
301 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302      
303 <    AtomCommIntRow->gather(identsLocal, identsRow);
304 <    AtomCommIntColumn->gather(identsLocal, identsCol);
303 >    map<int, RealType> atypeCutoff;
304 >      
305 >    for (set<AtomType*>::iterator at = atypes.begin();
306 >         at != atypes.end(); ++at){
307 >      atid = (*at)->getIdent();
308 >      if (userChoseCutoff_)
309 >        atypeCutoff[atid] = userCutoff_;
310 >      else
311 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312 >    }
313      
314 <    AtomLocalToGlobal = info_->getGlobalAtomIndices();
315 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
316 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
317 <    
318 <    cgLocalToGlobal = info_->getGlobalGroupIndices();
319 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
320 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
314 >    vector<RealType> gTypeCutoffs;
315 >    // first we do a single loop over the cutoff groups to find the
316 >    // largest cutoff for any atypes present in this group.
317 > #ifdef IS_MPI
318 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 >    groupRowToGtype.resize(nGroupsInRow_);
320 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
322 >      for (vector<int>::iterator ia = atomListRow.begin();
323 >           ia != atomListRow.end(); ++ia) {            
324 >        int atom1 = (*ia);
325 >        atid = identsRow[atom1];
326 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
327 >          groupCutoffRow[cg1] = atypeCutoff[atid];
328 >        }
329 >      }
330  
331 <    // still need:
332 <    // topoDist
333 <    // exclude
331 >      bool gTypeFound = false;
332 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
333 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
334 >          groupRowToGtype[cg1] = gt;
335 >          gTypeFound = true;
336 >        }
337 >      }
338 >      if (!gTypeFound) {
339 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
340 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
341 >      }
342 >      
343 >    }
344 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 >    groupColToGtype.resize(nGroupsInCol_);
346 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348 >      for (vector<int>::iterator jb = atomListCol.begin();
349 >           jb != atomListCol.end(); ++jb) {            
350 >        int atom2 = (*jb);
351 >        atid = identsCol[atom2];
352 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
353 >          groupCutoffCol[cg2] = atypeCutoff[atid];
354 >        }
355 >      }
356 >      bool gTypeFound = false;
357 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
358 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
359 >          groupColToGtype[cg2] = gt;
360 >          gTypeFound = true;
361 >        }
362 >      }
363 >      if (!gTypeFound) {
364 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
365 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
366 >      }
367 >    }
368 > #else
369 >
370 >    vector<RealType> groupCutoff(nGroups_, 0.0);
371 >    groupToGtype.resize(nGroups_);
372 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373 >      groupCutoff[cg1] = 0.0;
374 >      vector<int> atomList = getAtomsInGroupRow(cg1);
375 >      for (vector<int>::iterator ia = atomList.begin();
376 >           ia != atomList.end(); ++ia) {            
377 >        int atom1 = (*ia);
378 >        atid = idents[atom1];
379 >        if (atypeCutoff[atid] > groupCutoff[cg1])
380 >          groupCutoff[cg1] = atypeCutoff[atid];
381 >      }
382 >      
383 >      bool gTypeFound = false;
384 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
386 >          groupToGtype[cg1] = gt;
387 >          gTypeFound = true;
388 >        }
389 >      }
390 >      if (!gTypeFound) {      
391 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
392 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393 >      }      
394 >    }
395   #endif
396 +
397 +    // Now we find the maximum group cutoff value present in the simulation
398 +
399 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 +                                     gTypeCutoffs.end());
401 +
402 + #ifdef IS_MPI
403 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 +                              MPI::MAX);
405 + #endif
406 +    
407 +    RealType tradRcut = groupMax;
408 +
409 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
410 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
411 +        RealType thisRcut;
412 +        switch(cutoffPolicy_) {
413 +        case TRADITIONAL:
414 +          thisRcut = tradRcut;
415 +          break;
416 +        case MIX:
417 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 +          break;
419 +        case MAX:
420 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 +          break;
422 +        default:
423 +          sprintf(painCave.errMsg,
424 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
425 +                  "hit an unknown cutoff policy!\n");
426 +          painCave.severity = OPENMD_ERROR;
427 +          painCave.isFatal = 1;
428 +          simError();
429 +          break;
430 +        }
431 +
432 +        pair<int,int> key = make_pair(i,j);
433 +        gTypeCutoffMap[key].first = thisRcut;
434 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
435 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
436 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
437 +        // sanity check
438 +        
439 +        if (userChoseCutoff_) {
440 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441 +            sprintf(painCave.errMsg,
442 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
443 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444 +            painCave.severity = OPENMD_ERROR;
445 +            painCave.isFatal = 1;
446 +            simError();            
447 +          }
448 +        }
449 +      }
450 +    }
451    }
452 +
453 +
454 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 +    int i, j;  
456 + #ifdef IS_MPI
457 +    i = groupRowToGtype[cg1];
458 +    j = groupColToGtype[cg2];
459 + #else
460 +    i = groupToGtype[cg1];
461 +    j = groupToGtype[cg2];
462 + #endif    
463 +    return gTypeCutoffMap[make_pair(i,j)];
464 +  }
465 +
466 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468 +      if (toposForAtom[atom1][j] == atom2)
469 +        return topoDist[atom1][j];
470 +    }
471 +    return 0;
472 +  }
473 +
474 +  void ForceMatrixDecomposition::zeroWorkArrays() {
475 +    pairwisePot = 0.0;
476 +    embeddingPot = 0.0;
477 +
478 + #ifdef IS_MPI
479 +    if (storageLayout_ & DataStorage::dslForce) {
480 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
481 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
482 +    }
483 +
484 +    if (storageLayout_ & DataStorage::dslTorque) {
485 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
486 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
487 +    }
488      
489 +    fill(pot_row.begin(), pot_row.end(),
490 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491  
492 +    fill(pot_col.begin(), pot_col.end(),
493 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
494  
495 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
496 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 +           0.0);
498 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 +           0.0);
500 +    }
501 +
502 +    if (storageLayout_ & DataStorage::dslDensity) {      
503 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
504 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
505 +    }
506 +
507 +    if (storageLayout_ & DataStorage::dslFunctional) {  
508 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 +           0.0);
510 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
511 +           0.0);
512 +    }
513 +
514 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
515 +      fill(atomRowData.functionalDerivative.begin(),
516 +           atomRowData.functionalDerivative.end(), 0.0);
517 +      fill(atomColData.functionalDerivative.begin(),
518 +           atomColData.functionalDerivative.end(), 0.0);
519 +    }
520 +
521 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
522 +      fill(atomRowData.skippedCharge.begin(),
523 +           atomRowData.skippedCharge.end(), 0.0);
524 +      fill(atomColData.skippedCharge.begin(),
525 +           atomColData.skippedCharge.end(), 0.0);
526 +    }
527 +
528 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
529 +      fill(atomRowData.flucQFrc.begin(),
530 +           atomRowData.flucQFrc.end(), 0.0);
531 +      fill(atomColData.flucQFrc.begin(),
532 +           atomColData.flucQFrc.end(), 0.0);
533 +    }
534 +
535 +    if (storageLayout_ & DataStorage::dslElectricField) {    
536 +      fill(atomRowData.electricField.begin(),
537 +           atomRowData.electricField.end(), V3Zero);
538 +      fill(atomColData.electricField.begin(),
539 +           atomColData.electricField.end(), V3Zero);
540 +    }
541 +
542 +    if (storageLayout_ & DataStorage::dslFlucQForce) {    
543 +      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
544 +           0.0);
545 +      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
546 +           0.0);
547 +    }
548 +
549 + #endif
550 +    // even in parallel, we need to zero out the local arrays:
551 +
552 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
553 +      fill(snap_->atomData.particlePot.begin(),
554 +           snap_->atomData.particlePot.end(), 0.0);
555 +    }
556 +    
557 +    if (storageLayout_ & DataStorage::dslDensity) {      
558 +      fill(snap_->atomData.density.begin(),
559 +           snap_->atomData.density.end(), 0.0);
560 +    }
561 +
562 +    if (storageLayout_ & DataStorage::dslFunctional) {
563 +      fill(snap_->atomData.functional.begin(),
564 +           snap_->atomData.functional.end(), 0.0);
565 +    }
566 +
567 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
568 +      fill(snap_->atomData.functionalDerivative.begin(),
569 +           snap_->atomData.functionalDerivative.end(), 0.0);
570 +    }
571 +
572 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
573 +      fill(snap_->atomData.skippedCharge.begin(),
574 +           snap_->atomData.skippedCharge.end(), 0.0);
575 +    }
576 +
577 +    if (storageLayout_ & DataStorage::dslElectricField) {      
578 +      fill(snap_->atomData.electricField.begin(),
579 +           snap_->atomData.electricField.end(), V3Zero);
580 +    }
581 +  }
582 +
583 +
584    void ForceMatrixDecomposition::distributeData()  {
585      snap_ = sman_->getCurrentSnapshot();
586      storageLayout_ = sman_->getStorageLayout();
587   #ifdef IS_MPI
588      
589      // gather up the atomic positions
590 <    AtomCommVectorRow->gather(snap_->atomData.position,
590 >    AtomPlanVectorRow->gather(snap_->atomData.position,
591                                atomRowData.position);
592 <    AtomCommVectorColumn->gather(snap_->atomData.position,
592 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
593                                   atomColData.position);
594      
595      // gather up the cutoff group positions
596 <    cgCommVectorRow->gather(snap_->cgData.position,
596 >
597 >    cgPlanVectorRow->gather(snap_->cgData.position,
598                              cgRowData.position);
599 <    cgCommVectorColumn->gather(snap_->cgData.position,
599 >
600 >    cgPlanVectorColumn->gather(snap_->cgData.position,
601                                 cgColData.position);
602 +
603      
604      // if needed, gather the atomic rotation matrices
605      if (storageLayout_ & DataStorage::dslAmat) {
606 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
606 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
607                                  atomRowData.aMat);
608 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
608 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
609                                     atomColData.aMat);
610      }
611      
612      // if needed, gather the atomic eletrostatic frames
613      if (storageLayout_ & DataStorage::dslElectroFrame) {
614 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
614 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
615                                  atomRowData.electroFrame);
616 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
616 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
617                                     atomColData.electroFrame);
618      }
619 +
620 +    // if needed, gather the atomic fluctuating charge values
621 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
622 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
623 +                              atomRowData.flucQPos);
624 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
625 +                                 atomColData.flucQPos);
626 +    }
627 +
628   #endif      
629    }
630    
631 +  /* collects information obtained during the pre-pair loop onto local
632 +   * data structures.
633 +   */
634    void ForceMatrixDecomposition::collectIntermediateData() {
635      snap_ = sman_->getCurrentSnapshot();
636      storageLayout_ = sman_->getStorageLayout();
# Line 162 | Line 638 | namespace OpenMD {
638      
639      if (storageLayout_ & DataStorage::dslDensity) {
640        
641 <      AtomCommRealRow->scatter(atomRowData.density,
641 >      AtomPlanRealRow->scatter(atomRowData.density,
642                                 snap_->atomData.density);
643        
644        int n = snap_->atomData.density.size();
645 <      std::vector<RealType> rho_tmp(n, 0.0);
646 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
645 >      vector<RealType> rho_tmp(n, 0.0);
646 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
647        for (int i = 0; i < n; i++)
648          snap_->atomData.density[i] += rho_tmp[i];
649      }
650 +
651 +    if (storageLayout_ & DataStorage::dslElectricField) {
652 +      
653 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
654 +                                 snap_->atomData.electricField);
655 +      
656 +      int n = snap_->atomData.electricField.size();
657 +      vector<Vector3d> field_tmp(n, V3Zero);
658 +      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
659 +      for (int i = 0; i < n; i++)
660 +        snap_->atomData.electricField[i] += field_tmp[i];
661 +    }
662   #endif
663    }
664 <  
664 >
665 >  /*
666 >   * redistributes information obtained during the pre-pair loop out to
667 >   * row and column-indexed data structures
668 >   */
669    void ForceMatrixDecomposition::distributeIntermediateData() {
670      snap_ = sman_->getCurrentSnapshot();
671      storageLayout_ = sman_->getStorageLayout();
672   #ifdef IS_MPI
673      if (storageLayout_ & DataStorage::dslFunctional) {
674 <      AtomCommRealRow->gather(snap_->atomData.functional,
674 >      AtomPlanRealRow->gather(snap_->atomData.functional,
675                                atomRowData.functional);
676 <      AtomCommRealColumn->gather(snap_->atomData.functional,
676 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
677                                   atomColData.functional);
678      }
679      
680      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
681 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
681 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
682                                atomRowData.functionalDerivative);
683 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
683 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
684                                   atomColData.functionalDerivative);
685      }
686   #endif
# Line 202 | Line 694 | namespace OpenMD {
694      int n = snap_->atomData.force.size();
695      vector<Vector3d> frc_tmp(n, V3Zero);
696      
697 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
697 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
698      for (int i = 0; i < n; i++) {
699        snap_->atomData.force[i] += frc_tmp[i];
700        frc_tmp[i] = 0.0;
701      }
702      
703 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
704 <    for (int i = 0; i < n; i++)
703 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
704 >    for (int i = 0; i < n; i++) {
705        snap_->atomData.force[i] += frc_tmp[i];
706 <    
707 <    
706 >    }
707 >        
708      if (storageLayout_ & DataStorage::dslTorque) {
709  
710 <      int nt = snap_->atomData.force.size();
710 >      int nt = snap_->atomData.torque.size();
711        vector<Vector3d> trq_tmp(nt, V3Zero);
712  
713 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
714 <      for (int i = 0; i < n; i++) {
713 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
714 >      for (int i = 0; i < nt; i++) {
715          snap_->atomData.torque[i] += trq_tmp[i];
716          trq_tmp[i] = 0.0;
717        }
718        
719 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
720 <      for (int i = 0; i < n; i++)
719 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
720 >      for (int i = 0; i < nt; i++)
721          snap_->atomData.torque[i] += trq_tmp[i];
722      }
231    
232    int nLocal = snap_->getNumberOfAtoms();
723  
724 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
725 <                                       vector<RealType> (nLocal, 0.0));
724 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
725 >
726 >      int ns = snap_->atomData.skippedCharge.size();
727 >      vector<RealType> skch_tmp(ns, 0.0);
728 >
729 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
730 >      for (int i = 0; i < ns; i++) {
731 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
732 >        skch_tmp[i] = 0.0;
733 >      }
734 >      
735 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
736 >      for (int i = 0; i < ns; i++)
737 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
738 >            
739 >    }
740      
741 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
742 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
743 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
744 <        pot_local[i] += pot_temp[i][ii];
741 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
742 >
743 >      int nq = snap_->atomData.flucQFrc.size();
744 >      vector<RealType> fqfrc_tmp(nq, 0.0);
745 >
746 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
747 >      for (int i = 0; i < nq; i++) {
748 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
749 >        fqfrc_tmp[i] = 0.0;
750        }
751 +      
752 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
753 +      for (int i = 0; i < nq; i++)
754 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
755 +            
756      }
757 +
758 +    nLocal_ = snap_->getNumberOfAtoms();
759 +
760 +    vector<potVec> pot_temp(nLocal_,
761 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
762 +
763 +    // scatter/gather pot_row into the members of my column
764 +          
765 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
766 +
767 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
768 +      pairwisePot += pot_temp[ii];
769 +    
770 +    fill(pot_temp.begin(), pot_temp.end(),
771 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
772 +      
773 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
774 +    
775 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
776 +      pairwisePot += pot_temp[ii];    
777 +    
778 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
779 +      RealType ploc1 = pairwisePot[ii];
780 +      RealType ploc2 = 0.0;
781 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
782 +      pairwisePot[ii] = ploc2;
783 +    }
784 +
785 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
786 +      RealType ploc1 = embeddingPot[ii];
787 +      RealType ploc2 = 0.0;
788 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
789 +      embeddingPot[ii] = ploc2;
790 +    }
791 +
792   #endif
793 +
794    }
795  
796 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
797 + #ifdef IS_MPI
798 +    return nAtomsInRow_;
799 + #else
800 +    return nLocal_;
801 + #endif
802 +  }
803 +
804 +  /**
805 +   * returns the list of atoms belonging to this group.  
806 +   */
807 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
808 + #ifdef IS_MPI
809 +    return groupListRow_[cg1];
810 + #else
811 +    return groupList_[cg1];
812 + #endif
813 +  }
814 +
815 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
816 + #ifdef IS_MPI
817 +    return groupListCol_[cg2];
818 + #else
819 +    return groupList_[cg2];
820 + #endif
821 +  }
822    
823    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
824      Vector3d d;
# Line 284 | Line 860 | namespace OpenMD {
860      snap_->wrapVector(d);
861      return d;    
862    }
863 +
864 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
865 + #ifdef IS_MPI
866 +    return massFactorsRow[atom1];
867 + #else
868 +    return massFactors[atom1];
869 + #endif
870 +  }
871 +
872 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
873 + #ifdef IS_MPI
874 +    return massFactorsCol[atom2];
875 + #else
876 +    return massFactors[atom2];
877 + #endif
878 +
879 +  }
880      
881    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
882      Vector3d d;
# Line 296 | Line 889 | namespace OpenMD {
889  
890      snap_->wrapVector(d);
891      return d;    
892 +  }
893 +
894 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
895 +    return excludesForAtom[atom1];
896 +  }
897 +
898 +  /**
899 +   * We need to exclude some overcounted interactions that result from
900 +   * the parallel decomposition.
901 +   */
902 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
903 +    int unique_id_1, unique_id_2;
904 +        
905 + #ifdef IS_MPI
906 +    // in MPI, we have to look up the unique IDs for each atom
907 +    unique_id_1 = AtomRowToGlobal[atom1];
908 +    unique_id_2 = AtomColToGlobal[atom2];
909 + #else
910 +    unique_id_1 = AtomLocalToGlobal[atom1];
911 +    unique_id_2 = AtomLocalToGlobal[atom2];
912 + #endif  
913 +
914 +    if (unique_id_1 == unique_id_2) return true;
915 +
916 + #ifdef IS_MPI
917 +    // this prevents us from doing the pair on multiple processors
918 +    if (unique_id_1 < unique_id_2) {
919 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
920 +    } else {
921 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
922 +    }
923 + #endif
924 +    
925 +    return false;
926    }
927  
928 +  /**
929 +   * We need to handle the interactions for atoms who are involved in
930 +   * the same rigid body as well as some short range interactions
931 +   * (bonds, bends, torsions) differently from other interactions.
932 +   * We'll still visit the pairwise routines, but with a flag that
933 +   * tells those routines to exclude the pair from direct long range
934 +   * interactions.  Some indirect interactions (notably reaction
935 +   * field) must still be handled for these pairs.
936 +   */
937 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
938 +
939 +    // excludesForAtom was constructed to use row/column indices in the MPI
940 +    // version, and to use local IDs in the non-MPI version:
941 +    
942 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
943 +         i != excludesForAtom[atom1].end(); ++i) {
944 +      if ( (*i) == atom2 ) return true;
945 +    }
946 +
947 +    return false;
948 +  }
949 +
950 +
951    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
952   #ifdef IS_MPI
953      atomRowData.force[atom1] += fg;
# Line 312 | Line 962 | namespace OpenMD {
962   #else
963      snap_->atomData.force[atom2] += fg;
964   #endif
315
965    }
966  
967      // filling interaction blocks with pointers
968 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
968 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
969 >                                                     int atom1, int atom2) {
970  
971 <    InteractionData idat;
971 >    idat.excluded = excludeAtomPair(atom1, atom2);
972 >  
973   #ifdef IS_MPI
974 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
975 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
976 +    //                         ff_->getAtomType(identsCol[atom2]) );
977 +    
978      if (storageLayout_ & DataStorage::dslAmat) {
979        idat.A1 = &(atomRowData.aMat[atom1]);
980        idat.A2 = &(atomColData.aMat[atom2]);
981      }
982 <
982 >    
983      if (storageLayout_ & DataStorage::dslElectroFrame) {
984        idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
985        idat.eFrame2 = &(atomColData.electroFrame[atom2]);
# Line 340 | Line 995 | namespace OpenMD {
995        idat.rho2 = &(atomColData.density[atom2]);
996      }
997  
998 +    if (storageLayout_ & DataStorage::dslFunctional) {
999 +      idat.frho1 = &(atomRowData.functional[atom1]);
1000 +      idat.frho2 = &(atomColData.functional[atom2]);
1001 +    }
1002 +
1003      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1004        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1005        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1006      }
1007 +
1008 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1009 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1010 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1011 +    }
1012 +
1013 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1014 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1015 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1016 +    }
1017 +
1018 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1019 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1020 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1021 +    }
1022 +
1023   #else
1024 +    
1025 +
1026 +    // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
1027 +    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
1028 +    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
1029 +
1030 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1031 +    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1032 +    //                         ff_->getAtomType(idents[atom2]) );
1033 +
1034      if (storageLayout_ & DataStorage::dslAmat) {
1035        idat.A1 = &(snap_->atomData.aMat[atom1]);
1036        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 360 | Line 1046 | namespace OpenMD {
1046        idat.t2 = &(snap_->atomData.torque[atom2]);
1047      }
1048  
1049 <    if (storageLayout_ & DataStorage::dslDensity) {
1049 >    if (storageLayout_ & DataStorage::dslDensity) {    
1050        idat.rho1 = &(snap_->atomData.density[atom1]);
1051        idat.rho2 = &(snap_->atomData.density[atom2]);
1052      }
1053  
1054 +    if (storageLayout_ & DataStorage::dslFunctional) {
1055 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1056 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1057 +    }
1058 +
1059      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1060        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1061        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1062      }
1063 +
1064 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1065 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1066 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1067 +    }
1068 +
1069 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1070 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1071 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1072 +    }
1073 +
1074 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1075 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1076 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1077 +    }
1078 +
1079   #endif
373    
1080    }
1081 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1082 <    InteractionData idat;
1083 <    skippedCharge1
378 <      skippedCharge2
379 <      rij
380 <      d
381 <    electroMult
382 <    sw
383 <    f
1081 >
1082 >  
1083 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1084   #ifdef IS_MPI
1085 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1086 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1087  
1088 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1089 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1090 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1088 >    atomRowData.force[atom1] += *(idat.f1);
1089 >    atomColData.force[atom2] -= *(idat.f1);
1090 >
1091 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1092 >      atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1);
1093 >      atomColData.flucQFrc[atom2] += *(idat.dVdFQ2);
1094      }
1095 <    if (storageLayout_ & DataStorage::dslTorque) {
1096 <      idat.t1 = &(atomRowData.torque[atom1]);
1097 <      idat.t2 = &(atomColData.torque[atom2]);
1095 >
1096 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1097 >      atomRowData.electricField[atom1] += *(idat.eField1);
1098 >      atomColData.electricField[atom2] += *(idat.eField2);
1099      }
1100  
1101 +    // should particle pot be done here also?
1102 + #else
1103 +    pairwisePot += *(idat.pot);
1104 +
1105 +    snap_->atomData.force[atom1] += *(idat.f1);
1106 +    snap_->atomData.force[atom2] -= *(idat.f1);
1107 +
1108 +    if (idat.doParticlePot) {
1109 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1110 +      snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw);
1111 +    }
1112      
1113 <  }
1114 <  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
1115 <  }
1113 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1114 >      snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1);
1115 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1116 >    }
1117 >
1118 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1119 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1120 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1121 >    }
1122  
1123 + #endif
1124 +    
1125 +  }
1126  
1127    /*
1128     * buildNeighborList
# Line 404 | Line 1130 | namespace OpenMD {
1130     * first element of pair is row-indexed CutoffGroup
1131     * second element of pair is column-indexed CutoffGroup
1132     */
1133 <  vector<pair<int, int> >  buildNeighborList() {
1134 <    Vector3d dr, invWid, rs, shift;
1135 <    Vector3i cc, m1v, m2s;
1136 <    RealType rrNebr;
1137 <    int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset;
1133 >  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1134 >      
1135 >    vector<pair<int, int> > neighborList;
1136 >    groupCutoffs cuts;
1137 >    bool doAllPairs = false;
1138  
1139 + #ifdef IS_MPI
1140 +    cellListRow_.clear();
1141 +    cellListCol_.clear();
1142 + #else
1143 +    cellList_.clear();
1144 + #endif
1145  
1146 <    vector<pair<int, int> > neighborList;  
1147 <    Vector3i nCells;
1148 <    Vector3d invWid, r;
417 <
418 <    rList_ = (rCut_ + skinThickness_);
419 <    rl2 = rList_ * rList_;
420 <
421 <    snap_ = sman_->getCurrentSnapshot();
1146 >    RealType rList_ = (largestRcut_ + skinThickness_);
1147 >    RealType rl2 = rList_ * rList_;
1148 >    Snapshot* snap_ = sman_->getCurrentSnapshot();
1149      Mat3x3d Hmat = snap_->getHmat();
1150      Vector3d Hx = Hmat.getColumn(0);
1151      Vector3d Hy = Hmat.getColumn(1);
1152      Vector3d Hz = Hmat.getColumn(2);
1153  
1154 <    nCells.x() = (int) ( Hx.length() )/ rList_;
1155 <    nCells.y() = (int) ( Hy.length() )/ rList_;
1156 <    nCells.z() = (int) ( Hz.length() )/ rList_;
1154 >    nCells_.x() = (int) ( Hx.length() )/ rList_;
1155 >    nCells_.y() = (int) ( Hy.length() )/ rList_;
1156 >    nCells_.z() = (int) ( Hz.length() )/ rList_;
1157  
1158 <    for (i = 0; i < nGroupsInRow; i++) {
432 <      rs = cgRowData.position[i];
433 <      snap_->scaleVector(rs);    
434 <    }
1158 >    // handle small boxes where the cell offsets can end up repeating cells
1159      
1160 +    if (nCells_.x() < 3) doAllPairs = true;
1161 +    if (nCells_.y() < 3) doAllPairs = true;
1162 +    if (nCells_.z() < 3) doAllPairs = true;
1163  
1164 <    VDiv (invWid, cells, region);
1165 <    for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1;
1166 <    for (n = 0; n < nMol; n ++) {
1167 <      VSAdd (rs, mol[n].r, 0.5, region);
1168 <      VMul (cc, rs, invWid);
442 <      c = VLinear (cc, cells) + nMol;
443 <      cellList[n] = cellList[c];
444 <      cellList[c] = n;
445 <    }
446 <    nebrTabLen = 0;
447 <    for (m1z = 0; m1z < cells.z(); m1z++) {
448 <      for (m1y = 0; m1y < cells.y(); m1y++) {
449 <        for (m1x = 0; m1x < cells.x(); m1x++) {
450 <          Vector3i m1v(m1x, m1y, m1z);
451 <          m1 = VLinear(m1v, cells) + nMol;
452 <          for (offset = 0; offset < nOffset_; offset++) {
453 <            m2v = m1v + cellOffsets_[offset];
454 <            shift = V3Zero();
1164 >    Mat3x3d invHmat = snap_->getInvHmat();
1165 >    Vector3d rs, scaled, dr;
1166 >    Vector3i whichCell;
1167 >    int cellIndex;
1168 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1169  
1170 <            if (m2v.x() >= cells.x) {
1171 <              m2v.x() = 0;          
1172 <              shift.x() = region.x();  
1173 <            } else if (m2v.x() < 0) {
1174 <              m2v.x() = cells.x() - 1;
1175 <              shift.x() = - region.x();
462 <            }
1170 > #ifdef IS_MPI
1171 >    cellListRow_.resize(nCtot);
1172 >    cellListCol_.resize(nCtot);
1173 > #else
1174 >    cellList_.resize(nCtot);
1175 > #endif
1176  
1177 <            if (m2v.y() >= cells.y()) {
1178 <              m2v.y() = 0;          
466 <              shift.y() = region.y();  
467 <            } else if (m2v.y() < 0) {
468 <              m2v.y() = cells.y() - 1;
469 <              shift.y() = - region.y();
470 <            }
1177 >    if (!doAllPairs) {
1178 > #ifdef IS_MPI
1179  
1180 <            m2 = VLinear (m2v, cells) + nMol;
1181 <            for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) {
1182 <              for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) {
1183 <                if (m1 != m2 || j2 < j1) {
1184 <                  dr = mol[j1].r - mol[j2].r;
1185 <                  VSub (dr, mol[j1].r, mol[j2].r);
1186 <                  VVSub (dr, shift);
1187 <                  if (VLenSq (dr) < rrNebr) {
1188 <                    neighborList.push_back(make_pair(j1, j2));
1180 >      for (int i = 0; i < nGroupsInRow_; i++) {
1181 >        rs = cgRowData.position[i];
1182 >        
1183 >        // scaled positions relative to the box vectors
1184 >        scaled = invHmat * rs;
1185 >        
1186 >        // wrap the vector back into the unit box by subtracting integer box
1187 >        // numbers
1188 >        for (int j = 0; j < 3; j++) {
1189 >          scaled[j] -= roundMe(scaled[j]);
1190 >          scaled[j] += 0.5;
1191 >        }
1192 >        
1193 >        // find xyz-indices of cell that cutoffGroup is in.
1194 >        whichCell.x() = nCells_.x() * scaled.x();
1195 >        whichCell.y() = nCells_.y() * scaled.y();
1196 >        whichCell.z() = nCells_.z() * scaled.z();
1197 >        
1198 >        // find single index of this cell:
1199 >        cellIndex = Vlinear(whichCell, nCells_);
1200 >        
1201 >        // add this cutoff group to the list of groups in this cell;
1202 >        cellListRow_[cellIndex].push_back(i);
1203 >      }
1204 >      for (int i = 0; i < nGroupsInCol_; i++) {
1205 >        rs = cgColData.position[i];
1206 >        
1207 >        // scaled positions relative to the box vectors
1208 >        scaled = invHmat * rs;
1209 >        
1210 >        // wrap the vector back into the unit box by subtracting integer box
1211 >        // numbers
1212 >        for (int j = 0; j < 3; j++) {
1213 >          scaled[j] -= roundMe(scaled[j]);
1214 >          scaled[j] += 0.5;
1215 >        }
1216 >        
1217 >        // find xyz-indices of cell that cutoffGroup is in.
1218 >        whichCell.x() = nCells_.x() * scaled.x();
1219 >        whichCell.y() = nCells_.y() * scaled.y();
1220 >        whichCell.z() = nCells_.z() * scaled.z();
1221 >        
1222 >        // find single index of this cell:
1223 >        cellIndex = Vlinear(whichCell, nCells_);
1224 >        
1225 >        // add this cutoff group to the list of groups in this cell;
1226 >        cellListCol_[cellIndex].push_back(i);
1227 >      }
1228 >    
1229 > #else
1230 >      for (int i = 0; i < nGroups_; i++) {
1231 >        rs = snap_->cgData.position[i];
1232 >        
1233 >        // scaled positions relative to the box vectors
1234 >        scaled = invHmat * rs;
1235 >        
1236 >        // wrap the vector back into the unit box by subtracting integer box
1237 >        // numbers
1238 >        for (int j = 0; j < 3; j++) {
1239 >          scaled[j] -= roundMe(scaled[j]);
1240 >          scaled[j] += 0.5;
1241 >        }
1242 >        
1243 >        // find xyz-indices of cell that cutoffGroup is in.
1244 >        whichCell.x() = nCells_.x() * scaled.x();
1245 >        whichCell.y() = nCells_.y() * scaled.y();
1246 >        whichCell.z() = nCells_.z() * scaled.z();
1247 >        
1248 >        // find single index of this cell:
1249 >        cellIndex = Vlinear(whichCell, nCells_);
1250 >        
1251 >        // add this cutoff group to the list of groups in this cell;
1252 >        cellList_[cellIndex].push_back(i);
1253 >      }
1254 >
1255 > #endif
1256 >
1257 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1258 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1259 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1260 >            Vector3i m1v(m1x, m1y, m1z);
1261 >            int m1 = Vlinear(m1v, nCells_);
1262 >            
1263 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1264 >                 os != cellOffsets_.end(); ++os) {
1265 >              
1266 >              Vector3i m2v = m1v + (*os);
1267 >            
1268 >
1269 >              if (m2v.x() >= nCells_.x()) {
1270 >                m2v.x() = 0;          
1271 >              } else if (m2v.x() < 0) {
1272 >                m2v.x() = nCells_.x() - 1;
1273 >              }
1274 >              
1275 >              if (m2v.y() >= nCells_.y()) {
1276 >                m2v.y() = 0;          
1277 >              } else if (m2v.y() < 0) {
1278 >                m2v.y() = nCells_.y() - 1;
1279 >              }
1280 >              
1281 >              if (m2v.z() >= nCells_.z()) {
1282 >                m2v.z() = 0;          
1283 >              } else if (m2v.z() < 0) {
1284 >                m2v.z() = nCells_.z() - 1;
1285 >              }
1286 >
1287 >              int m2 = Vlinear (m2v, nCells_);
1288 >              
1289 > #ifdef IS_MPI
1290 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1291 >                   j1 != cellListRow_[m1].end(); ++j1) {
1292 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1293 >                     j2 != cellListCol_[m2].end(); ++j2) {
1294 >                  
1295 >                  // In parallel, we need to visit *all* pairs of row
1296 >                  // & column indicies and will divide labor in the
1297 >                  // force evaluation later.
1298 >                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1299 >                  snap_->wrapVector(dr);
1300 >                  cuts = getGroupCutoffs( (*j1), (*j2) );
1301 >                  if (dr.lengthSquare() < cuts.third) {
1302 >                    neighborList.push_back(make_pair((*j1), (*j2)));
1303 >                  }                  
1304 >                }
1305 >              }
1306 > #else
1307 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1308 >                   j1 != cellList_[m1].end(); ++j1) {
1309 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1310 >                     j2 != cellList_[m2].end(); ++j2) {
1311 >    
1312 >                  // Always do this if we're in different cells or if
1313 >                  // we're in the same cell and the global index of
1314 >                  // the j2 cutoff group is greater than or equal to
1315 >                  // the j1 cutoff group.  Note that Rappaport's code
1316 >                  // has a "less than" conditional here, but that
1317 >                  // deals with atom-by-atom computation.  OpenMD
1318 >                  // allows atoms within a single cutoff group to
1319 >                  // interact with each other.
1320 >
1321 >
1322 >
1323 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1324 >
1325 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1326 >                    snap_->wrapVector(dr);
1327 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1328 >                    if (dr.lengthSquare() < cuts.third) {
1329 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1330 >                    }
1331                    }
1332                  }
1333                }
1334 + #endif
1335              }
1336            }
1337          }
1338        }
1339 +    } else {
1340 +      // branch to do all cutoff group pairs
1341 + #ifdef IS_MPI
1342 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1343 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1344 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1345 +          snap_->wrapVector(dr);
1346 +          cuts = getGroupCutoffs( j1, j2 );
1347 +          if (dr.lengthSquare() < cuts.third) {
1348 +            neighborList.push_back(make_pair(j1, j2));
1349 +          }
1350 +        }
1351 +      }      
1352 + #else
1353 +      // include all groups here.
1354 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1355 +        // include self group interactions j2 == j1
1356 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1357 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1358 +          snap_->wrapVector(dr);
1359 +          cuts = getGroupCutoffs( j1, j2 );
1360 +          if (dr.lengthSquare() < cuts.third) {
1361 +            neighborList.push_back(make_pair(j1, j2));
1362 +          }
1363 +        }    
1364 +      }
1365 + #endif
1366      }
1367 +      
1368 +    // save the local cutoff group positions for the check that is
1369 +    // done on each loop:
1370 +    saved_CG_positions_.clear();
1371 +    for (int i = 0; i < nGroups_; i++)
1372 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1373 +    
1374 +    return neighborList;
1375    }
490
491  
1376   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines