1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
#include "math/SquareMatrix3.hpp" |
43 |
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
#include "brains/SnapshotManager.hpp" |
45 |
|
46 |
using namespace std; |
47 |
namespace OpenMD { |
48 |
|
49 |
/** |
50 |
* distributeInitialData is essentially a copy of the older fortran |
51 |
* SimulationSetup |
52 |
*/ |
53 |
|
54 |
void ForceMatrixDecomposition::distributeInitialData() { |
55 |
snap_ = sman_->getCurrentSnapshot(); |
56 |
storageLayout_ = sman_->getStorageLayout(); |
57 |
#ifdef IS_MPI |
58 |
int nLocal = snap_->getNumberOfAtoms(); |
59 |
int nGroups = snap_->getNumberOfCutoffGroups(); |
60 |
|
61 |
AtomCommIntRow = new Communicator<Row,int>(nLocal); |
62 |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal); |
63 |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal); |
64 |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal); |
65 |
|
66 |
AtomCommIntColumn = new Communicator<Column,int>(nLocal); |
67 |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal); |
68 |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal); |
69 |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal); |
70 |
|
71 |
cgCommIntRow = new Communicator<Row,int>(nGroups); |
72 |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups); |
73 |
cgCommIntColumn = new Communicator<Column,int>(nGroups); |
74 |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups); |
75 |
|
76 |
int nAtomsInRow = AtomCommIntRow->getSize(); |
77 |
int nAtomsInCol = AtomCommIntColumn->getSize(); |
78 |
int nGroupsInRow = cgCommIntRow->getSize(); |
79 |
int nGroupsInCol = cgCommIntColumn->getSize(); |
80 |
|
81 |
// Modify the data storage objects with the correct layouts and sizes: |
82 |
atomRowData.resize(nAtomsInRow); |
83 |
atomRowData.setStorageLayout(storageLayout_); |
84 |
atomColData.resize(nAtomsInCol); |
85 |
atomColData.setStorageLayout(storageLayout_); |
86 |
cgRowData.resize(nGroupsInRow); |
87 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
88 |
cgColData.resize(nGroupsInCol); |
89 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
90 |
|
91 |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
92 |
vector<RealType> (nAtomsInRow, 0.0)); |
93 |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
94 |
vector<RealType> (nAtomsInCol, 0.0)); |
95 |
|
96 |
|
97 |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
98 |
|
99 |
// gather the information for atomtype IDs (atids): |
100 |
vector<int> identsLocal = info_->getIdentArray(); |
101 |
identsRow.reserve(nAtomsInRow); |
102 |
identsCol.reserve(nAtomsInCol); |
103 |
|
104 |
AtomCommIntRow->gather(identsLocal, identsRow); |
105 |
AtomCommIntColumn->gather(identsLocal, identsCol); |
106 |
|
107 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
108 |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
109 |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
110 |
|
111 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
112 |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
113 |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
114 |
|
115 |
// still need: |
116 |
// topoDist |
117 |
// exclude |
118 |
#endif |
119 |
} |
120 |
|
121 |
|
122 |
|
123 |
void ForceMatrixDecomposition::distributeData() { |
124 |
snap_ = sman_->getCurrentSnapshot(); |
125 |
storageLayout_ = sman_->getStorageLayout(); |
126 |
#ifdef IS_MPI |
127 |
|
128 |
// gather up the atomic positions |
129 |
AtomCommVectorRow->gather(snap_->atomData.position, |
130 |
atomRowData.position); |
131 |
AtomCommVectorColumn->gather(snap_->atomData.position, |
132 |
atomColData.position); |
133 |
|
134 |
// gather up the cutoff group positions |
135 |
cgCommVectorRow->gather(snap_->cgData.position, |
136 |
cgRowData.position); |
137 |
cgCommVectorColumn->gather(snap_->cgData.position, |
138 |
cgColData.position); |
139 |
|
140 |
// if needed, gather the atomic rotation matrices |
141 |
if (storageLayout_ & DataStorage::dslAmat) { |
142 |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
143 |
atomRowData.aMat); |
144 |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
145 |
atomColData.aMat); |
146 |
} |
147 |
|
148 |
// if needed, gather the atomic eletrostatic frames |
149 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
150 |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
151 |
atomRowData.electroFrame); |
152 |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
153 |
atomColData.electroFrame); |
154 |
} |
155 |
#endif |
156 |
} |
157 |
|
158 |
void ForceMatrixDecomposition::collectIntermediateData() { |
159 |
snap_ = sman_->getCurrentSnapshot(); |
160 |
storageLayout_ = sman_->getStorageLayout(); |
161 |
#ifdef IS_MPI |
162 |
|
163 |
if (storageLayout_ & DataStorage::dslDensity) { |
164 |
|
165 |
AtomCommRealRow->scatter(atomRowData.density, |
166 |
snap_->atomData.density); |
167 |
|
168 |
int n = snap_->atomData.density.size(); |
169 |
std::vector<RealType> rho_tmp(n, 0.0); |
170 |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
171 |
for (int i = 0; i < n; i++) |
172 |
snap_->atomData.density[i] += rho_tmp[i]; |
173 |
} |
174 |
#endif |
175 |
} |
176 |
|
177 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
178 |
snap_ = sman_->getCurrentSnapshot(); |
179 |
storageLayout_ = sman_->getStorageLayout(); |
180 |
#ifdef IS_MPI |
181 |
if (storageLayout_ & DataStorage::dslFunctional) { |
182 |
AtomCommRealRow->gather(snap_->atomData.functional, |
183 |
atomRowData.functional); |
184 |
AtomCommRealColumn->gather(snap_->atomData.functional, |
185 |
atomColData.functional); |
186 |
} |
187 |
|
188 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
189 |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
190 |
atomRowData.functionalDerivative); |
191 |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
192 |
atomColData.functionalDerivative); |
193 |
} |
194 |
#endif |
195 |
} |
196 |
|
197 |
|
198 |
void ForceMatrixDecomposition::collectData() { |
199 |
snap_ = sman_->getCurrentSnapshot(); |
200 |
storageLayout_ = sman_->getStorageLayout(); |
201 |
#ifdef IS_MPI |
202 |
int n = snap_->atomData.force.size(); |
203 |
vector<Vector3d> frc_tmp(n, V3Zero); |
204 |
|
205 |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
206 |
for (int i = 0; i < n; i++) { |
207 |
snap_->atomData.force[i] += frc_tmp[i]; |
208 |
frc_tmp[i] = 0.0; |
209 |
} |
210 |
|
211 |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
212 |
for (int i = 0; i < n; i++) |
213 |
snap_->atomData.force[i] += frc_tmp[i]; |
214 |
|
215 |
|
216 |
if (storageLayout_ & DataStorage::dslTorque) { |
217 |
|
218 |
int nt = snap_->atomData.force.size(); |
219 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
220 |
|
221 |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
222 |
for (int i = 0; i < n; i++) { |
223 |
snap_->atomData.torque[i] += trq_tmp[i]; |
224 |
trq_tmp[i] = 0.0; |
225 |
} |
226 |
|
227 |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
228 |
for (int i = 0; i < n; i++) |
229 |
snap_->atomData.torque[i] += trq_tmp[i]; |
230 |
} |
231 |
|
232 |
int nLocal = snap_->getNumberOfAtoms(); |
233 |
|
234 |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
235 |
vector<RealType> (nLocal, 0.0)); |
236 |
|
237 |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
238 |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
239 |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
240 |
pot_local[i] += pot_temp[i][ii]; |
241 |
} |
242 |
} |
243 |
#endif |
244 |
} |
245 |
|
246 |
|
247 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
248 |
Vector3d d; |
249 |
|
250 |
#ifdef IS_MPI |
251 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
252 |
#else |
253 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
254 |
#endif |
255 |
|
256 |
snap_->wrapVector(d); |
257 |
return d; |
258 |
} |
259 |
|
260 |
|
261 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
262 |
|
263 |
Vector3d d; |
264 |
|
265 |
#ifdef IS_MPI |
266 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
267 |
#else |
268 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
269 |
#endif |
270 |
|
271 |
snap_->wrapVector(d); |
272 |
return d; |
273 |
} |
274 |
|
275 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
276 |
Vector3d d; |
277 |
|
278 |
#ifdef IS_MPI |
279 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
280 |
#else |
281 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
282 |
#endif |
283 |
|
284 |
snap_->wrapVector(d); |
285 |
return d; |
286 |
} |
287 |
|
288 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
289 |
Vector3d d; |
290 |
|
291 |
#ifdef IS_MPI |
292 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
293 |
#else |
294 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
295 |
#endif |
296 |
|
297 |
snap_->wrapVector(d); |
298 |
return d; |
299 |
} |
300 |
|
301 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
302 |
#ifdef IS_MPI |
303 |
atomRowData.force[atom1] += fg; |
304 |
#else |
305 |
snap_->atomData.force[atom1] += fg; |
306 |
#endif |
307 |
} |
308 |
|
309 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
310 |
#ifdef IS_MPI |
311 |
atomColData.force[atom2] += fg; |
312 |
#else |
313 |
snap_->atomData.force[atom2] += fg; |
314 |
#endif |
315 |
|
316 |
} |
317 |
|
318 |
// filling interaction blocks with pointers |
319 |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
320 |
|
321 |
InteractionData idat; |
322 |
#ifdef IS_MPI |
323 |
if (storageLayout_ & DataStorage::dslAmat) { |
324 |
idat.A1 = &(atomRowData.aMat[atom1]); |
325 |
idat.A2 = &(atomColData.aMat[atom2]); |
326 |
} |
327 |
|
328 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
329 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
330 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
331 |
} |
332 |
|
333 |
if (storageLayout_ & DataStorage::dslTorque) { |
334 |
idat.t1 = &(atomRowData.torque[atom1]); |
335 |
idat.t2 = &(atomColData.torque[atom2]); |
336 |
} |
337 |
|
338 |
if (storageLayout_ & DataStorage::dslDensity) { |
339 |
idat.rho1 = &(atomRowData.density[atom1]); |
340 |
idat.rho2 = &(atomColData.density[atom2]); |
341 |
} |
342 |
|
343 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
344 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
345 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
346 |
} |
347 |
#else |
348 |
if (storageLayout_ & DataStorage::dslAmat) { |
349 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
350 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
351 |
} |
352 |
|
353 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
354 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
355 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
356 |
} |
357 |
|
358 |
if (storageLayout_ & DataStorage::dslTorque) { |
359 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
360 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
361 |
} |
362 |
|
363 |
if (storageLayout_ & DataStorage::dslDensity) { |
364 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
365 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
366 |
} |
367 |
|
368 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
369 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
370 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
371 |
} |
372 |
#endif |
373 |
|
374 |
} |
375 |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
376 |
InteractionData idat; |
377 |
skippedCharge1 |
378 |
skippedCharge2 |
379 |
rij |
380 |
d |
381 |
electroMult |
382 |
sw |
383 |
f |
384 |
#ifdef IS_MPI |
385 |
|
386 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
387 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
388 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
389 |
} |
390 |
if (storageLayout_ & DataStorage::dslTorque) { |
391 |
idat.t1 = &(atomRowData.torque[atom1]); |
392 |
idat.t2 = &(atomColData.torque[atom2]); |
393 |
} |
394 |
|
395 |
|
396 |
} |
397 |
SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
398 |
} |
399 |
|
400 |
|
401 |
/* |
402 |
* buildNeighborList |
403 |
* |
404 |
* first element of pair is row-indexed CutoffGroup |
405 |
* second element of pair is column-indexed CutoffGroup |
406 |
*/ |
407 |
vector<pair<int, int> > buildNeighborList() { |
408 |
Vector3d dr, invWid, rs, shift; |
409 |
Vector3i cc, m1v, m2s; |
410 |
RealType rrNebr; |
411 |
int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset; |
412 |
|
413 |
|
414 |
vector<pair<int, int> > neighborList; |
415 |
Vector3i nCells; |
416 |
Vector3d invWid, r; |
417 |
|
418 |
rList_ = (rCut_ + skinThickness_); |
419 |
rl2 = rList_ * rList_; |
420 |
|
421 |
snap_ = sman_->getCurrentSnapshot(); |
422 |
Mat3x3d Hmat = snap_->getHmat(); |
423 |
Vector3d Hx = Hmat.getColumn(0); |
424 |
Vector3d Hy = Hmat.getColumn(1); |
425 |
Vector3d Hz = Hmat.getColumn(2); |
426 |
|
427 |
nCells.x() = (int) ( Hx.length() )/ rList_; |
428 |
nCells.y() = (int) ( Hy.length() )/ rList_; |
429 |
nCells.z() = (int) ( Hz.length() )/ rList_; |
430 |
|
431 |
for (i = 0; i < nGroupsInRow; i++) { |
432 |
rs = cgRowData.position[i]; |
433 |
snap_->scaleVector(rs); |
434 |
} |
435 |
|
436 |
|
437 |
VDiv (invWid, cells, region); |
438 |
for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1; |
439 |
for (n = 0; n < nMol; n ++) { |
440 |
VSAdd (rs, mol[n].r, 0.5, region); |
441 |
VMul (cc, rs, invWid); |
442 |
c = VLinear (cc, cells) + nMol; |
443 |
cellList[n] = cellList[c]; |
444 |
cellList[c] = n; |
445 |
} |
446 |
nebrTabLen = 0; |
447 |
for (m1z = 0; m1z < cells.z(); m1z++) { |
448 |
for (m1y = 0; m1y < cells.y(); m1y++) { |
449 |
for (m1x = 0; m1x < cells.x(); m1x++) { |
450 |
Vector3i m1v(m1x, m1y, m1z); |
451 |
m1 = VLinear(m1v, cells) + nMol; |
452 |
for (offset = 0; offset < nOffset_; offset++) { |
453 |
m2v = m1v + cellOffsets_[offset]; |
454 |
shift = V3Zero(); |
455 |
|
456 |
if (m2v.x() >= cells.x) { |
457 |
m2v.x() = 0; |
458 |
shift.x() = region.x(); |
459 |
} else if (m2v.x() < 0) { |
460 |
m2v.x() = cells.x() - 1; |
461 |
shift.x() = - region.x(); |
462 |
} |
463 |
|
464 |
if (m2v.y() >= cells.y()) { |
465 |
m2v.y() = 0; |
466 |
shift.y() = region.y(); |
467 |
} else if (m2v.y() < 0) { |
468 |
m2v.y() = cells.y() - 1; |
469 |
shift.y() = - region.y(); |
470 |
} |
471 |
|
472 |
m2 = VLinear (m2v, cells) + nMol; |
473 |
for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) { |
474 |
for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) { |
475 |
if (m1 != m2 || j2 < j1) { |
476 |
dr = mol[j1].r - mol[j2].r; |
477 |
VSub (dr, mol[j1].r, mol[j2].r); |
478 |
VVSub (dr, shift); |
479 |
if (VLenSq (dr) < rrNebr) { |
480 |
neighborList.push_back(make_pair(j1, j2)); |
481 |
} |
482 |
} |
483 |
} |
484 |
} |
485 |
} |
486 |
} |
487 |
} |
488 |
} |
489 |
} |
490 |
|
491 |
|
492 |
} //end namespace OpenMD |