47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
49 |
|
|
50 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 |
+ |
|
52 |
+ |
// In a parallel computation, row and colum scans must visit all |
53 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
54 |
+ |
// are used when the processor can see all pairs) |
55 |
+ |
#ifdef IS_MPI |
56 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
69 |
+ |
#endif |
70 |
+ |
} |
71 |
+ |
|
72 |
+ |
|
73 |
|
/** |
74 |
|
* distributeInitialData is essentially a copy of the older fortran |
75 |
|
* SimulationSetup |
76 |
|
*/ |
54 |
– |
|
77 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
78 |
|
snap_ = sman_->getCurrentSnapshot(); |
79 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
|
97 |
|
#ifdef IS_MPI |
98 |
|
|
99 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
100 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
99 |
> |
MPI::Intracomm row = rowComm.getComm(); |
100 |
> |
MPI::Intracomm col = colComm.getComm(); |
101 |
|
|
102 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
103 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
104 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
105 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
106 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
102 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
103 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
104 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
105 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
106 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
107 |
|
|
108 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
109 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
110 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
111 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
108 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
109 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
110 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
111 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
112 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
113 |
|
|
114 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
115 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
116 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
117 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
114 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
115 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
116 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
117 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
118 |
|
|
119 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
120 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
121 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
122 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
123 |
+ |
|
124 |
|
// Modify the data storage objects with the correct layouts and sizes: |
125 |
|
atomRowData.resize(nAtomsInRow_); |
126 |
|
atomRowData.setStorageLayout(storageLayout_); |
134 |
|
identsRow.resize(nAtomsInRow_); |
135 |
|
identsCol.resize(nAtomsInCol_); |
136 |
|
|
137 |
< |
AtomCommIntRow->gather(idents, identsRow); |
138 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
137 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
138 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
139 |
|
|
140 |
|
// allocate memory for the parallel objects |
141 |
|
atypesRow.resize(nAtomsInRow_); |
151 |
|
|
152 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
153 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
154 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
155 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
156 |
< |
|
154 |
> |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
155 |
> |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
156 |
> |
|
157 |
> |
cerr << "Atoms in Local:\n"; |
158 |
> |
for (int i = 0; i < AtomLocalToGlobal.size(); i++) { |
159 |
> |
cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n"; |
160 |
> |
} |
161 |
> |
cerr << "Atoms in Row:\n"; |
162 |
> |
for (int i = 0; i < AtomRowToGlobal.size(); i++) { |
163 |
> |
cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n"; |
164 |
> |
} |
165 |
> |
cerr << "Atoms in Col:\n"; |
166 |
> |
for (int i = 0; i < AtomColToGlobal.size(); i++) { |
167 |
> |
cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n"; |
168 |
> |
} |
169 |
> |
|
170 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
171 |
|
cgColToGlobal.resize(nGroupsInCol_); |
172 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
173 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
172 |
> |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
173 |
> |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
174 |
|
|
175 |
+ |
cerr << "Gruops in Local:\n"; |
176 |
+ |
for (int i = 0; i < cgLocalToGlobal.size(); i++) { |
177 |
+ |
cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n"; |
178 |
+ |
} |
179 |
+ |
cerr << "Groups in Row:\n"; |
180 |
+ |
for (int i = 0; i < cgRowToGlobal.size(); i++) { |
181 |
+ |
cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n"; |
182 |
+ |
} |
183 |
+ |
cerr << "Groups in Col:\n"; |
184 |
+ |
for (int i = 0; i < cgColToGlobal.size(); i++) { |
185 |
+ |
cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n"; |
186 |
+ |
} |
187 |
+ |
|
188 |
+ |
|
189 |
|
massFactorsRow.resize(nAtomsInRow_); |
190 |
|
massFactorsCol.resize(nAtomsInCol_); |
191 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
192 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
191 |
> |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
192 |
> |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
193 |
|
|
194 |
|
groupListRow_.clear(); |
195 |
|
groupListRow_.resize(nGroupsInRow_); |
305 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
306 |
|
|
307 |
|
RealType tol = 1e-6; |
308 |
+ |
largestRcut_ = 0.0; |
309 |
|
RealType rc; |
310 |
|
int atid; |
311 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
312 |
+ |
|
313 |
|
map<int, RealType> atypeCutoff; |
314 |
|
|
315 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
317 |
|
atid = (*at)->getIdent(); |
318 |
|
if (userChoseCutoff_) |
319 |
|
atypeCutoff[atid] = userCutoff_; |
320 |
< |
else |
320 |
> |
else |
321 |
|
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
322 |
|
} |
323 |
< |
|
323 |
> |
|
324 |
|
vector<RealType> gTypeCutoffs; |
325 |
|
// first we do a single loop over the cutoff groups to find the |
326 |
|
// largest cutoff for any atypes present in this group. |
380 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
381 |
|
groupToGtype.resize(nGroups_); |
382 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
329 |
– |
|
383 |
|
groupCutoff[cg1] = 0.0; |
384 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
332 |
– |
|
385 |
|
for (vector<int>::iterator ia = atomList.begin(); |
386 |
|
ia != atomList.end(); ++ia) { |
387 |
|
int atom1 = (*ia); |
388 |
|
atid = idents[atom1]; |
389 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
389 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
390 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
339 |
– |
} |
391 |
|
} |
392 |
< |
|
392 |
> |
|
393 |
|
bool gTypeFound = false; |
394 |
|
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
395 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
397 |
|
gTypeFound = true; |
398 |
|
} |
399 |
|
} |
400 |
< |
if (!gTypeFound) { |
400 |
> |
if (!gTypeFound) { |
401 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
402 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
403 |
|
} |
441 |
|
|
442 |
|
pair<int,int> key = make_pair(i,j); |
443 |
|
gTypeCutoffMap[key].first = thisRcut; |
393 |
– |
|
444 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
395 |
– |
|
445 |
|
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
397 |
– |
|
446 |
|
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
399 |
– |
|
447 |
|
// sanity check |
448 |
|
|
449 |
|
if (userChoseCutoff_) { |
569 |
|
#ifdef IS_MPI |
570 |
|
|
571 |
|
// gather up the atomic positions |
572 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
572 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
573 |
|
atomRowData.position); |
574 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
574 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
575 |
|
atomColData.position); |
576 |
|
|
577 |
|
// gather up the cutoff group positions |
578 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
578 |
> |
|
579 |
> |
cerr << "before gather\n"; |
580 |
> |
for (int i = 0; i < snap_->cgData.position.size(); i++) { |
581 |
> |
cerr << "cgpos = " << snap_->cgData.position[i] << "\n"; |
582 |
> |
} |
583 |
> |
|
584 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
585 |
|
cgRowData.position); |
586 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
586 |
> |
|
587 |
> |
cerr << "after gather\n"; |
588 |
> |
for (int i = 0; i < cgRowData.position.size(); i++) { |
589 |
> |
cerr << "cgRpos = " << cgRowData.position[i] << "\n"; |
590 |
> |
} |
591 |
> |
|
592 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
593 |
|
cgColData.position); |
594 |
+ |
for (int i = 0; i < cgColData.position.size(); i++) { |
595 |
+ |
cerr << "cgCpos = " << cgColData.position[i] << "\n"; |
596 |
+ |
} |
597 |
+ |
|
598 |
|
|
599 |
|
// if needed, gather the atomic rotation matrices |
600 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
601 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
601 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
602 |
|
atomRowData.aMat); |
603 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
603 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
604 |
|
atomColData.aMat); |
605 |
|
} |
606 |
|
|
607 |
|
// if needed, gather the atomic eletrostatic frames |
608 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
609 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
609 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
610 |
|
atomRowData.electroFrame); |
611 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
611 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
612 |
|
atomColData.electroFrame); |
613 |
|
} |
614 |
|
|
625 |
|
|
626 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
627 |
|
|
628 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
628 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
629 |
|
snap_->atomData.density); |
630 |
|
|
631 |
|
int n = snap_->atomData.density.size(); |
632 |
|
vector<RealType> rho_tmp(n, 0.0); |
633 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
633 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
634 |
|
for (int i = 0; i < n; i++) |
635 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
636 |
|
} |
646 |
|
storageLayout_ = sman_->getStorageLayout(); |
647 |
|
#ifdef IS_MPI |
648 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
649 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
649 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
650 |
|
atomRowData.functional); |
651 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
651 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
652 |
|
atomColData.functional); |
653 |
|
} |
654 |
|
|
655 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
656 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
656 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
657 |
|
atomRowData.functionalDerivative); |
658 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
658 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
659 |
|
atomColData.functionalDerivative); |
660 |
|
} |
661 |
|
#endif |
669 |
|
int n = snap_->atomData.force.size(); |
670 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
671 |
|
|
672 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
672 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
673 |
|
for (int i = 0; i < n; i++) { |
674 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
675 |
|
frc_tmp[i] = 0.0; |
676 |
|
} |
677 |
|
|
678 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
679 |
< |
for (int i = 0; i < n; i++) |
678 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
679 |
> |
for (int i = 0; i < n; i++) { |
680 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
681 |
+ |
} |
682 |
|
|
683 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
684 |
|
|
685 |
|
int nt = snap_->atomData.torque.size(); |
686 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
687 |
|
|
688 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
688 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
689 |
|
for (int i = 0; i < nt; i++) { |
690 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
691 |
|
trq_tmp[i] = 0.0; |
692 |
|
} |
693 |
|
|
694 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
694 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
695 |
|
for (int i = 0; i < nt; i++) |
696 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
697 |
|
} |
701 |
|
int ns = snap_->atomData.skippedCharge.size(); |
702 |
|
vector<RealType> skch_tmp(ns, 0.0); |
703 |
|
|
704 |
< |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
704 |
> |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
705 |
|
for (int i = 0; i < ns; i++) { |
706 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
707 |
|
skch_tmp[i] = 0.0; |
708 |
|
} |
709 |
|
|
710 |
< |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
710 |
> |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
711 |
|
for (int i = 0; i < ns; i++) |
712 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
713 |
|
} |
719 |
|
|
720 |
|
// scatter/gather pot_row into the members of my column |
721 |
|
|
722 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
722 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
723 |
|
|
724 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
725 |
|
pairwisePot += pot_temp[ii]; |
727 |
|
fill(pot_temp.begin(), pot_temp.end(), |
728 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
729 |
|
|
730 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
730 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
731 |
|
|
732 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
733 |
|
pairwisePot += pot_temp[ii]; |
734 |
|
#endif |
735 |
|
|
736 |
+ |
cerr << "pairwisePot = " << pairwisePot << "\n"; |
737 |
|
} |
738 |
|
|
739 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
768 |
|
|
769 |
|
#ifdef IS_MPI |
770 |
|
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
771 |
+ |
cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n"; |
772 |
+ |
cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n"; |
773 |
|
#else |
774 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
775 |
+ |
cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n"; |
776 |
+ |
cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n"; |
777 |
|
#endif |
778 |
|
|
779 |
|
snap_->wrapVector(d); |
848 |
|
*/ |
849 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
850 |
|
int unique_id_1, unique_id_2; |
851 |
+ |
|
852 |
|
|
853 |
+ |
cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n"; |
854 |
|
#ifdef IS_MPI |
855 |
|
// in MPI, we have to look up the unique IDs for each atom |
856 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
857 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
858 |
|
|
859 |
+ |
cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n"; |
860 |
|
// this situation should only arise in MPI simulations |
861 |
|
if (unique_id_1 == unique_id_2) return true; |
862 |
|
|
881 |
|
*/ |
882 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
883 |
|
int unique_id_2; |
812 |
– |
|
884 |
|
#ifdef IS_MPI |
885 |
|
// in MPI, we have to look up the unique IDs for the row atom. |
886 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1107 |
|
// add this cutoff group to the list of groups in this cell; |
1108 |
|
cellListRow_[cellIndex].push_back(i); |
1109 |
|
} |
1039 |
– |
|
1110 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
1111 |
|
rs = cgColData.position[i]; |
1112 |
|
|
1151 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
1152 |
|
|
1153 |
|
// find single index of this cell: |
1154 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1154 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1155 |
|
|
1156 |
|
// add this cutoff group to the list of groups in this cell; |
1157 |
|
cellList_[cellIndex].push_back(i); |
1194 |
|
j1 != cellListRow_[m1].end(); ++j1) { |
1195 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1196 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1127 |
– |
|
1128 |
– |
// Always do this if we're in different cells or if |
1129 |
– |
// we're in the same cell and the global index of the |
1130 |
– |
// j2 cutoff group is less than the j1 cutoff group |
1197 |
|
|
1198 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1199 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1200 |
< |
snap_->wrapVector(dr); |
1201 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1202 |
< |
if (dr.lengthSquare() < cuts.third) { |
1203 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1204 |
< |
} |
1205 |
< |
} |
1198 |
> |
// In parallel, we need to visit *all* pairs of row & |
1199 |
> |
// column indicies and will truncate later on. |
1200 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1201 |
> |
snap_->wrapVector(dr); |
1202 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1203 |
> |
if (dr.lengthSquare() < cuts.third) { |
1204 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1205 |
> |
} |
1206 |
|
} |
1207 |
|
} |
1208 |
|
#else |