42 |
|
#include "math/SquareMatrix3.hpp" |
43 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
|
#include "brains/SnapshotManager.hpp" |
45 |
+ |
#include "brains/PairList.hpp" |
46 |
|
|
47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
55 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
|
snap_ = sman_->getCurrentSnapshot(); |
57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
< |
#ifdef IS_MPI |
59 |
< |
int nLocal = snap_->getNumberOfAtoms(); |
59 |
< |
int nGroups = snap_->getNumberOfCutoffGroups(); |
58 |
> |
ff_ = info_->getForceField(); |
59 |
> |
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
|
|
61 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal); |
62 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal); |
63 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal); |
64 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal); |
61 |
> |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
> |
// gather the information for atomtype IDs (atids): |
63 |
> |
idents = info_->getIdentArray(); |
64 |
> |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
> |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
> |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
|
|
68 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal); |
67 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal); |
68 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal); |
69 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal); |
68 |
> |
massFactors = info_->getMassFactors(); |
69 |
|
|
70 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups); |
71 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups); |
72 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups); |
73 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups); |
70 |
> |
PairList* excludes = info_->getExcludedInteractions(); |
71 |
> |
PairList* oneTwo = info_->getOneTwoInteractions(); |
72 |
> |
PairList* oneThree = info_->getOneThreeInteractions(); |
73 |
> |
PairList* oneFour = info_->getOneFourInteractions(); |
74 |
|
|
75 |
< |
int nAtomsInRow = AtomCommIntRow->getSize(); |
76 |
< |
int nAtomsInCol = AtomCommIntColumn->getSize(); |
77 |
< |
int nGroupsInRow = cgCommIntRow->getSize(); |
78 |
< |
int nGroupsInCol = cgCommIntColumn->getSize(); |
75 |
> |
#ifdef IS_MPI |
76 |
> |
|
77 |
> |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 |
> |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
> |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
> |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
> |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 |
|
|
83 |
+ |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 |
+ |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 |
+ |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 |
+ |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 |
+ |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 |
+ |
|
89 |
+ |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 |
+ |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
91 |
+ |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
92 |
+ |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
93 |
+ |
|
94 |
+ |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
95 |
+ |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
96 |
+ |
nGroupsInRow_ = cgCommIntRow->getSize(); |
97 |
+ |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
98 |
+ |
|
99 |
|
// Modify the data storage objects with the correct layouts and sizes: |
100 |
< |
atomRowData.resize(nAtomsInRow); |
100 |
> |
atomRowData.resize(nAtomsInRow_); |
101 |
|
atomRowData.setStorageLayout(storageLayout_); |
102 |
< |
atomColData.resize(nAtomsInCol); |
102 |
> |
atomColData.resize(nAtomsInCol_); |
103 |
|
atomColData.setStorageLayout(storageLayout_); |
104 |
< |
cgRowData.resize(nGroupsInRow); |
104 |
> |
cgRowData.resize(nGroupsInRow_); |
105 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 |
< |
cgColData.resize(nGroupsInCol); |
106 |
> |
cgColData.resize(nGroupsInCol_); |
107 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
108 |
+ |
|
109 |
+ |
identsRow.resize(nAtomsInRow_); |
110 |
+ |
identsCol.resize(nAtomsInCol_); |
111 |
|
|
112 |
< |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
113 |
< |
vector<RealType> (nAtomsInRow, 0.0)); |
114 |
< |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
115 |
< |
vector<RealType> (nAtomsInCol, 0.0)); |
112 |
> |
AtomCommIntRow->gather(idents, identsRow); |
113 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
114 |
> |
|
115 |
> |
// allocate memory for the parallel objects |
116 |
> |
atypesRow.resize(nAtomsInRow_); |
117 |
> |
atypesCol.resize(nAtomsInCol_); |
118 |
|
|
119 |
+ |
for (int i = 0; i < nAtomsInRow_; i++) |
120 |
+ |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
121 |
+ |
for (int i = 0; i < nAtomsInCol_; i++) |
122 |
+ |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
123 |
|
|
124 |
< |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
125 |
< |
|
126 |
< |
// gather the information for atomtype IDs (atids): |
127 |
< |
vector<int> identsLocal = info_->getIdentArray(); |
128 |
< |
identsRow.reserve(nAtomsInRow); |
102 |
< |
identsCol.reserve(nAtomsInCol); |
103 |
< |
|
104 |
< |
AtomCommIntRow->gather(identsLocal, identsRow); |
105 |
< |
AtomCommIntColumn->gather(identsLocal, identsCol); |
106 |
< |
|
107 |
< |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
124 |
> |
pot_row.resize(nAtomsInRow_); |
125 |
> |
pot_col.resize(nAtomsInCol_); |
126 |
> |
|
127 |
> |
AtomRowToGlobal.resize(nAtomsInRow_); |
128 |
> |
AtomColToGlobal.resize(nAtomsInCol_); |
129 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
130 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
131 |
|
|
132 |
< |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
132 |
> |
cgRowToGlobal.resize(nGroupsInRow_); |
133 |
> |
cgColToGlobal.resize(nGroupsInCol_); |
134 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
135 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
136 |
|
|
137 |
< |
// still need: |
138 |
< |
// topoDist |
139 |
< |
// exclude |
137 |
> |
massFactorsRow.resize(nAtomsInRow_); |
138 |
> |
massFactorsCol.resize(nAtomsInCol_); |
139 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
140 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
141 |
> |
|
142 |
> |
groupListRow_.clear(); |
143 |
> |
groupListRow_.resize(nGroupsInRow_); |
144 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
145 |
> |
int gid = cgRowToGlobal[i]; |
146 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
147 |
> |
int aid = AtomRowToGlobal[j]; |
148 |
> |
if (globalGroupMembership[aid] == gid) |
149 |
> |
groupListRow_[i].push_back(j); |
150 |
> |
} |
151 |
> |
} |
152 |
> |
|
153 |
> |
groupListCol_.clear(); |
154 |
> |
groupListCol_.resize(nGroupsInCol_); |
155 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
156 |
> |
int gid = cgColToGlobal[i]; |
157 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
158 |
> |
int aid = AtomColToGlobal[j]; |
159 |
> |
if (globalGroupMembership[aid] == gid) |
160 |
> |
groupListCol_[i].push_back(j); |
161 |
> |
} |
162 |
> |
} |
163 |
> |
|
164 |
> |
excludesForAtom.clear(); |
165 |
> |
excludesForAtom.resize(nAtomsInRow_); |
166 |
> |
toposForAtom.clear(); |
167 |
> |
toposForAtom.resize(nAtomsInRow_); |
168 |
> |
topoDist.clear(); |
169 |
> |
topoDist.resize(nAtomsInRow_); |
170 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
171 |
> |
int iglob = AtomRowToGlobal[i]; |
172 |
> |
|
173 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
174 |
> |
int jglob = AtomColToGlobal[j]; |
175 |
> |
|
176 |
> |
if (excludes->hasPair(iglob, jglob)) |
177 |
> |
excludesForAtom[i].push_back(j); |
178 |
> |
|
179 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
180 |
> |
toposForAtom[i].push_back(j); |
181 |
> |
topoDist[i].push_back(1); |
182 |
> |
} else { |
183 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
184 |
> |
toposForAtom[i].push_back(j); |
185 |
> |
topoDist[i].push_back(2); |
186 |
> |
} else { |
187 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
188 |
> |
toposForAtom[i].push_back(j); |
189 |
> |
topoDist[i].push_back(3); |
190 |
> |
} |
191 |
> |
} |
192 |
> |
} |
193 |
> |
} |
194 |
> |
} |
195 |
> |
|
196 |
> |
#endif |
197 |
> |
|
198 |
> |
// allocate memory for the parallel objects |
199 |
> |
atypesLocal.resize(nLocal_); |
200 |
> |
|
201 |
> |
for (int i = 0; i < nLocal_; i++) |
202 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 |
> |
|
204 |
> |
groupList_.clear(); |
205 |
> |
groupList_.resize(nGroups_); |
206 |
> |
for (int i = 0; i < nGroups_; i++) { |
207 |
> |
int gid = cgLocalToGlobal[i]; |
208 |
> |
for (int j = 0; j < nLocal_; j++) { |
209 |
> |
int aid = AtomLocalToGlobal[j]; |
210 |
> |
if (globalGroupMembership[aid] == gid) { |
211 |
> |
groupList_[i].push_back(j); |
212 |
> |
} |
213 |
> |
} |
214 |
> |
} |
215 |
> |
|
216 |
> |
excludesForAtom.clear(); |
217 |
> |
excludesForAtom.resize(nLocal_); |
218 |
> |
toposForAtom.clear(); |
219 |
> |
toposForAtom.resize(nLocal_); |
220 |
> |
topoDist.clear(); |
221 |
> |
topoDist.resize(nLocal_); |
222 |
> |
|
223 |
> |
for (int i = 0; i < nLocal_; i++) { |
224 |
> |
int iglob = AtomLocalToGlobal[i]; |
225 |
> |
|
226 |
> |
for (int j = 0; j < nLocal_; j++) { |
227 |
> |
int jglob = AtomLocalToGlobal[j]; |
228 |
> |
|
229 |
> |
if (excludes->hasPair(iglob, jglob)) |
230 |
> |
excludesForAtom[i].push_back(j); |
231 |
> |
|
232 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
233 |
> |
toposForAtom[i].push_back(j); |
234 |
> |
topoDist[i].push_back(1); |
235 |
> |
} else { |
236 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
237 |
> |
toposForAtom[i].push_back(j); |
238 |
> |
topoDist[i].push_back(2); |
239 |
> |
} else { |
240 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
241 |
> |
toposForAtom[i].push_back(j); |
242 |
> |
topoDist[i].push_back(3); |
243 |
> |
} |
244 |
> |
} |
245 |
> |
} |
246 |
> |
} |
247 |
> |
} |
248 |
> |
|
249 |
> |
createGtypeCutoffMap(); |
250 |
> |
|
251 |
> |
} |
252 |
> |
|
253 |
> |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
254 |
> |
|
255 |
> |
RealType tol = 1e-6; |
256 |
> |
RealType rc; |
257 |
> |
int atid; |
258 |
> |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
259 |
> |
map<int, RealType> atypeCutoff; |
260 |
> |
|
261 |
> |
for (set<AtomType*>::iterator at = atypes.begin(); |
262 |
> |
at != atypes.end(); ++at){ |
263 |
> |
atid = (*at)->getIdent(); |
264 |
> |
if (userChoseCutoff_) |
265 |
> |
atypeCutoff[atid] = userCutoff_; |
266 |
> |
else |
267 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
268 |
> |
} |
269 |
> |
|
270 |
> |
vector<RealType> gTypeCutoffs; |
271 |
> |
// first we do a single loop over the cutoff groups to find the |
272 |
> |
// largest cutoff for any atypes present in this group. |
273 |
> |
#ifdef IS_MPI |
274 |
> |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
275 |
> |
groupRowToGtype.resize(nGroupsInRow_); |
276 |
> |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
277 |
> |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
278 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
279 |
> |
ia != atomListRow.end(); ++ia) { |
280 |
> |
int atom1 = (*ia); |
281 |
> |
atid = identsRow[atom1]; |
282 |
> |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
283 |
> |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
284 |
> |
} |
285 |
> |
} |
286 |
> |
|
287 |
> |
bool gTypeFound = false; |
288 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
289 |
> |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
290 |
> |
groupRowToGtype[cg1] = gt; |
291 |
> |
gTypeFound = true; |
292 |
> |
} |
293 |
> |
} |
294 |
> |
if (!gTypeFound) { |
295 |
> |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
296 |
> |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
297 |
> |
} |
298 |
> |
|
299 |
> |
} |
300 |
> |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
301 |
> |
groupColToGtype.resize(nGroupsInCol_); |
302 |
> |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
303 |
> |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
304 |
> |
for (vector<int>::iterator jb = atomListCol.begin(); |
305 |
> |
jb != atomListCol.end(); ++jb) { |
306 |
> |
int atom2 = (*jb); |
307 |
> |
atid = identsCol[atom2]; |
308 |
> |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
309 |
> |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
310 |
> |
} |
311 |
> |
} |
312 |
> |
bool gTypeFound = false; |
313 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
314 |
> |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
315 |
> |
groupColToGtype[cg2] = gt; |
316 |
> |
gTypeFound = true; |
317 |
> |
} |
318 |
> |
} |
319 |
> |
if (!gTypeFound) { |
320 |
> |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
321 |
> |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
322 |
> |
} |
323 |
> |
} |
324 |
> |
#else |
325 |
> |
|
326 |
> |
vector<RealType> groupCutoff(nGroups_, 0.0); |
327 |
> |
groupToGtype.resize(nGroups_); |
328 |
> |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
329 |
> |
|
330 |
> |
groupCutoff[cg1] = 0.0; |
331 |
> |
vector<int> atomList = getAtomsInGroupRow(cg1); |
332 |
> |
|
333 |
> |
for (vector<int>::iterator ia = atomList.begin(); |
334 |
> |
ia != atomList.end(); ++ia) { |
335 |
> |
int atom1 = (*ia); |
336 |
> |
atid = idents[atom1]; |
337 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
338 |
> |
groupCutoff[cg1] = atypeCutoff[atid]; |
339 |
> |
} |
340 |
> |
} |
341 |
> |
|
342 |
> |
bool gTypeFound = false; |
343 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
344 |
> |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
345 |
> |
groupToGtype[cg1] = gt; |
346 |
> |
gTypeFound = true; |
347 |
> |
} |
348 |
> |
} |
349 |
> |
if (!gTypeFound) { |
350 |
> |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
351 |
> |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
352 |
> |
} |
353 |
> |
} |
354 |
|
#endif |
355 |
+ |
|
356 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
357 |
+ |
|
358 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
359 |
+ |
gTypeCutoffs.end()); |
360 |
+ |
|
361 |
+ |
#ifdef IS_MPI |
362 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
363 |
+ |
MPI::MAX); |
364 |
+ |
#endif |
365 |
+ |
|
366 |
+ |
RealType tradRcut = groupMax; |
367 |
+ |
|
368 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
369 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
370 |
+ |
RealType thisRcut; |
371 |
+ |
switch(cutoffPolicy_) { |
372 |
+ |
case TRADITIONAL: |
373 |
+ |
thisRcut = tradRcut; |
374 |
+ |
break; |
375 |
+ |
case MIX: |
376 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
377 |
+ |
break; |
378 |
+ |
case MAX: |
379 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
380 |
+ |
break; |
381 |
+ |
default: |
382 |
+ |
sprintf(painCave.errMsg, |
383 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
384 |
+ |
"hit an unknown cutoff policy!\n"); |
385 |
+ |
painCave.severity = OPENMD_ERROR; |
386 |
+ |
painCave.isFatal = 1; |
387 |
+ |
simError(); |
388 |
+ |
break; |
389 |
+ |
} |
390 |
+ |
|
391 |
+ |
pair<int,int> key = make_pair(i,j); |
392 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
393 |
+ |
|
394 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
395 |
+ |
|
396 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
397 |
+ |
|
398 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
399 |
+ |
|
400 |
+ |
// sanity check |
401 |
+ |
|
402 |
+ |
if (userChoseCutoff_) { |
403 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
404 |
+ |
sprintf(painCave.errMsg, |
405 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
406 |
+ |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
407 |
+ |
painCave.severity = OPENMD_ERROR; |
408 |
+ |
painCave.isFatal = 1; |
409 |
+ |
simError(); |
410 |
+ |
} |
411 |
+ |
} |
412 |
+ |
} |
413 |
+ |
} |
414 |
|
} |
415 |
+ |
|
416 |
+ |
|
417 |
+ |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
418 |
+ |
int i, j; |
419 |
+ |
#ifdef IS_MPI |
420 |
+ |
i = groupRowToGtype[cg1]; |
421 |
+ |
j = groupColToGtype[cg2]; |
422 |
+ |
#else |
423 |
+ |
i = groupToGtype[cg1]; |
424 |
+ |
j = groupToGtype[cg2]; |
425 |
+ |
#endif |
426 |
+ |
return gTypeCutoffMap[make_pair(i,j)]; |
427 |
+ |
} |
428 |
+ |
|
429 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
430 |
+ |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
431 |
+ |
if (toposForAtom[atom1][j] == atom2) |
432 |
+ |
return topoDist[atom1][j]; |
433 |
+ |
} |
434 |
+ |
return 0; |
435 |
+ |
} |
436 |
+ |
|
437 |
+ |
void ForceMatrixDecomposition::zeroWorkArrays() { |
438 |
+ |
pairwisePot = 0.0; |
439 |
+ |
embeddingPot = 0.0; |
440 |
+ |
|
441 |
+ |
#ifdef IS_MPI |
442 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
443 |
+ |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
444 |
+ |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
445 |
+ |
} |
446 |
+ |
|
447 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
448 |
+ |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
449 |
+ |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
450 |
+ |
} |
451 |
|
|
452 |
+ |
fill(pot_row.begin(), pot_row.end(), |
453 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
454 |
|
|
455 |
+ |
fill(pot_col.begin(), pot_col.end(), |
456 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
457 |
|
|
458 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
459 |
+ |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
460 |
+ |
0.0); |
461 |
+ |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
462 |
+ |
0.0); |
463 |
+ |
} |
464 |
+ |
|
465 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
466 |
+ |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
467 |
+ |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
468 |
+ |
} |
469 |
+ |
|
470 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
471 |
+ |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
472 |
+ |
0.0); |
473 |
+ |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
474 |
+ |
0.0); |
475 |
+ |
} |
476 |
+ |
|
477 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
478 |
+ |
fill(atomRowData.functionalDerivative.begin(), |
479 |
+ |
atomRowData.functionalDerivative.end(), 0.0); |
480 |
+ |
fill(atomColData.functionalDerivative.begin(), |
481 |
+ |
atomColData.functionalDerivative.end(), 0.0); |
482 |
+ |
} |
483 |
+ |
|
484 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
485 |
+ |
fill(atomRowData.skippedCharge.begin(), |
486 |
+ |
atomRowData.skippedCharge.end(), 0.0); |
487 |
+ |
fill(atomColData.skippedCharge.begin(), |
488 |
+ |
atomColData.skippedCharge.end(), 0.0); |
489 |
+ |
} |
490 |
+ |
|
491 |
+ |
#endif |
492 |
+ |
// even in parallel, we need to zero out the local arrays: |
493 |
+ |
|
494 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
495 |
+ |
fill(snap_->atomData.particlePot.begin(), |
496 |
+ |
snap_->atomData.particlePot.end(), 0.0); |
497 |
+ |
} |
498 |
+ |
|
499 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
500 |
+ |
fill(snap_->atomData.density.begin(), |
501 |
+ |
snap_->atomData.density.end(), 0.0); |
502 |
+ |
} |
503 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
504 |
+ |
fill(snap_->atomData.functional.begin(), |
505 |
+ |
snap_->atomData.functional.end(), 0.0); |
506 |
+ |
} |
507 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
508 |
+ |
fill(snap_->atomData.functionalDerivative.begin(), |
509 |
+ |
snap_->atomData.functionalDerivative.end(), 0.0); |
510 |
+ |
} |
511 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
512 |
+ |
fill(snap_->atomData.skippedCharge.begin(), |
513 |
+ |
snap_->atomData.skippedCharge.end(), 0.0); |
514 |
+ |
} |
515 |
+ |
|
516 |
+ |
} |
517 |
+ |
|
518 |
+ |
|
519 |
|
void ForceMatrixDecomposition::distributeData() { |
520 |
|
snap_ = sman_->getCurrentSnapshot(); |
521 |
|
storageLayout_ = sman_->getStorageLayout(); |
548 |
|
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
549 |
|
atomColData.electroFrame); |
550 |
|
} |
551 |
+ |
|
552 |
|
#endif |
553 |
|
} |
554 |
|
|
555 |
+ |
/* collects information obtained during the pre-pair loop onto local |
556 |
+ |
* data structures. |
557 |
+ |
*/ |
558 |
|
void ForceMatrixDecomposition::collectIntermediateData() { |
559 |
|
snap_ = sman_->getCurrentSnapshot(); |
560 |
|
storageLayout_ = sman_->getStorageLayout(); |
566 |
|
snap_->atomData.density); |
567 |
|
|
568 |
|
int n = snap_->atomData.density.size(); |
569 |
< |
std::vector<RealType> rho_tmp(n, 0.0); |
569 |
> |
vector<RealType> rho_tmp(n, 0.0); |
570 |
|
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
571 |
|
for (int i = 0; i < n; i++) |
572 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
573 |
|
} |
574 |
|
#endif |
575 |
|
} |
576 |
< |
|
576 |
> |
|
577 |
> |
/* |
578 |
> |
* redistributes information obtained during the pre-pair loop out to |
579 |
> |
* row and column-indexed data structures |
580 |
> |
*/ |
581 |
|
void ForceMatrixDecomposition::distributeIntermediateData() { |
582 |
|
snap_ = sman_->getCurrentSnapshot(); |
583 |
|
storageLayout_ = sman_->getStorageLayout(); |
615 |
|
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
616 |
|
for (int i = 0; i < n; i++) |
617 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
618 |
< |
|
215 |
< |
|
618 |
> |
|
619 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
620 |
|
|
621 |
< |
int nt = snap_->atomData.force.size(); |
621 |
> |
int nt = snap_->atomData.torque.size(); |
622 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
623 |
|
|
624 |
|
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
625 |
< |
for (int i = 0; i < n; i++) { |
625 |
> |
for (int i = 0; i < nt; i++) { |
626 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
627 |
|
trq_tmp[i] = 0.0; |
628 |
|
} |
629 |
|
|
630 |
|
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
631 |
< |
for (int i = 0; i < n; i++) |
631 |
> |
for (int i = 0; i < nt; i++) |
632 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
633 |
|
} |
231 |
– |
|
232 |
– |
int nLocal = snap_->getNumberOfAtoms(); |
634 |
|
|
635 |
< |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
636 |
< |
vector<RealType> (nLocal, 0.0)); |
637 |
< |
|
638 |
< |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
639 |
< |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
640 |
< |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
641 |
< |
pot_local[i] += pot_temp[i][ii]; |
635 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
636 |
> |
|
637 |
> |
int ns = snap_->atomData.skippedCharge.size(); |
638 |
> |
vector<RealType> skch_tmp(ns, 0.0); |
639 |
> |
|
640 |
> |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
641 |
> |
for (int i = 0; i < ns; i++) { |
642 |
> |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
643 |
> |
skch_tmp[i] = 0.0; |
644 |
|
} |
645 |
+ |
|
646 |
+ |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
647 |
+ |
for (int i = 0; i < ns; i++) |
648 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
649 |
|
} |
650 |
+ |
|
651 |
+ |
nLocal_ = snap_->getNumberOfAtoms(); |
652 |
+ |
|
653 |
+ |
vector<potVec> pot_temp(nLocal_, |
654 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
655 |
+ |
|
656 |
+ |
// scatter/gather pot_row into the members of my column |
657 |
+ |
|
658 |
+ |
AtomCommPotRow->scatter(pot_row, pot_temp); |
659 |
+ |
|
660 |
+ |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
661 |
+ |
pairwisePot += pot_temp[ii]; |
662 |
+ |
|
663 |
+ |
fill(pot_temp.begin(), pot_temp.end(), |
664 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
665 |
+ |
|
666 |
+ |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
667 |
+ |
|
668 |
+ |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
669 |
+ |
pairwisePot += pot_temp[ii]; |
670 |
|
#endif |
671 |
+ |
|
672 |
|
} |
673 |
|
|
674 |
+ |
int ForceMatrixDecomposition::getNAtomsInRow() { |
675 |
+ |
#ifdef IS_MPI |
676 |
+ |
return nAtomsInRow_; |
677 |
+ |
#else |
678 |
+ |
return nLocal_; |
679 |
+ |
#endif |
680 |
+ |
} |
681 |
+ |
|
682 |
+ |
/** |
683 |
+ |
* returns the list of atoms belonging to this group. |
684 |
+ |
*/ |
685 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
686 |
+ |
#ifdef IS_MPI |
687 |
+ |
return groupListRow_[cg1]; |
688 |
+ |
#else |
689 |
+ |
return groupList_[cg1]; |
690 |
+ |
#endif |
691 |
+ |
} |
692 |
+ |
|
693 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
694 |
+ |
#ifdef IS_MPI |
695 |
+ |
return groupListCol_[cg2]; |
696 |
+ |
#else |
697 |
+ |
return groupList_[cg2]; |
698 |
+ |
#endif |
699 |
+ |
} |
700 |
|
|
701 |
|
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
702 |
|
Vector3d d; |
738 |
|
snap_->wrapVector(d); |
739 |
|
return d; |
740 |
|
} |
741 |
+ |
|
742 |
+ |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
743 |
+ |
#ifdef IS_MPI |
744 |
+ |
return massFactorsRow[atom1]; |
745 |
+ |
#else |
746 |
+ |
return massFactors[atom1]; |
747 |
+ |
#endif |
748 |
+ |
} |
749 |
+ |
|
750 |
+ |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
751 |
+ |
#ifdef IS_MPI |
752 |
+ |
return massFactorsCol[atom2]; |
753 |
+ |
#else |
754 |
+ |
return massFactors[atom2]; |
755 |
+ |
#endif |
756 |
+ |
|
757 |
+ |
} |
758 |
|
|
759 |
|
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
760 |
|
Vector3d d; |
768 |
|
snap_->wrapVector(d); |
769 |
|
return d; |
770 |
|
} |
771 |
+ |
|
772 |
+ |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
773 |
+ |
return excludesForAtom[atom1]; |
774 |
+ |
} |
775 |
+ |
|
776 |
+ |
/** |
777 |
+ |
* We need to exclude some overcounted interactions that result from |
778 |
+ |
* the parallel decomposition. |
779 |
+ |
*/ |
780 |
+ |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
781 |
+ |
int unique_id_1, unique_id_2; |
782 |
+ |
|
783 |
+ |
#ifdef IS_MPI |
784 |
+ |
// in MPI, we have to look up the unique IDs for each atom |
785 |
+ |
unique_id_1 = AtomRowToGlobal[atom1]; |
786 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
787 |
+ |
|
788 |
+ |
// this situation should only arise in MPI simulations |
789 |
+ |
if (unique_id_1 == unique_id_2) return true; |
790 |
+ |
|
791 |
+ |
// this prevents us from doing the pair on multiple processors |
792 |
+ |
if (unique_id_1 < unique_id_2) { |
793 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
794 |
+ |
} else { |
795 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
796 |
+ |
} |
797 |
+ |
#endif |
798 |
+ |
return false; |
799 |
+ |
} |
800 |
+ |
|
801 |
+ |
/** |
802 |
+ |
* We need to handle the interactions for atoms who are involved in |
803 |
+ |
* the same rigid body as well as some short range interactions |
804 |
+ |
* (bonds, bends, torsions) differently from other interactions. |
805 |
+ |
* We'll still visit the pairwise routines, but with a flag that |
806 |
+ |
* tells those routines to exclude the pair from direct long range |
807 |
+ |
* interactions. Some indirect interactions (notably reaction |
808 |
+ |
* field) must still be handled for these pairs. |
809 |
+ |
*/ |
810 |
+ |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
811 |
+ |
int unique_id_2; |
812 |
+ |
|
813 |
+ |
#ifdef IS_MPI |
814 |
+ |
// in MPI, we have to look up the unique IDs for the row atom. |
815 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
816 |
+ |
#else |
817 |
+ |
// in the normal loop, the atom numbers are unique |
818 |
+ |
unique_id_2 = atom2; |
819 |
+ |
#endif |
820 |
+ |
|
821 |
+ |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
822 |
+ |
i != excludesForAtom[atom1].end(); ++i) { |
823 |
+ |
if ( (*i) == unique_id_2 ) return true; |
824 |
+ |
} |
825 |
+ |
|
826 |
+ |
return false; |
827 |
+ |
} |
828 |
+ |
|
829 |
|
|
830 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
831 |
|
#ifdef IS_MPI |
841 |
|
#else |
842 |
|
snap_->atomData.force[atom2] += fg; |
843 |
|
#endif |
315 |
– |
|
844 |
|
} |
845 |
|
|
846 |
|
// filling interaction blocks with pointers |
847 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
847 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
848 |
> |
int atom1, int atom2) { |
849 |
|
|
850 |
< |
InteractionData idat; |
850 |
> |
idat.excluded = excludeAtomPair(atom1, atom2); |
851 |
> |
|
852 |
|
#ifdef IS_MPI |
853 |
+ |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
854 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
855 |
+ |
// ff_->getAtomType(identsCol[atom2]) ); |
856 |
+ |
|
857 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
858 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
859 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
860 |
|
} |
861 |
< |
|
861 |
> |
|
862 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
863 |
|
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
864 |
|
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
874 |
|
idat.rho2 = &(atomColData.density[atom2]); |
875 |
|
} |
876 |
|
|
877 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
878 |
+ |
idat.frho1 = &(atomRowData.functional[atom1]); |
879 |
+ |
idat.frho2 = &(atomColData.functional[atom2]); |
880 |
+ |
} |
881 |
+ |
|
882 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
883 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
884 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
885 |
|
} |
886 |
+ |
|
887 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
888 |
+ |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
889 |
+ |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
890 |
+ |
} |
891 |
+ |
|
892 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
893 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
894 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
895 |
+ |
} |
896 |
+ |
|
897 |
|
#else |
898 |
+ |
|
899 |
+ |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
900 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
901 |
+ |
// ff_->getAtomType(idents[atom2]) ); |
902 |
+ |
|
903 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
904 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
905 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
915 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
916 |
|
} |
917 |
|
|
918 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
918 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
919 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
920 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
921 |
|
} |
922 |
|
|
923 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
924 |
+ |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
925 |
+ |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
926 |
+ |
} |
927 |
+ |
|
928 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
929 |
|
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
930 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
931 |
|
} |
932 |
+ |
|
933 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
934 |
+ |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
935 |
+ |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
936 |
+ |
} |
937 |
+ |
|
938 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
939 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
940 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
941 |
+ |
} |
942 |
|
#endif |
373 |
– |
|
943 |
|
} |
944 |
< |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
945 |
< |
InteractionData idat; |
946 |
< |
skippedCharge1 |
378 |
< |
skippedCharge2 |
379 |
< |
rij |
380 |
< |
d |
381 |
< |
electroMult |
382 |
< |
sw |
383 |
< |
f |
944 |
> |
|
945 |
> |
|
946 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
947 |
|
#ifdef IS_MPI |
948 |
+ |
pot_row[atom1] += 0.5 * *(idat.pot); |
949 |
+ |
pot_col[atom2] += 0.5 * *(idat.pot); |
950 |
|
|
951 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
952 |
< |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
953 |
< |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
954 |
< |
} |
390 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
391 |
< |
idat.t1 = &(atomRowData.torque[atom1]); |
392 |
< |
idat.t2 = &(atomColData.torque[atom2]); |
393 |
< |
} |
951 |
> |
atomRowData.force[atom1] += *(idat.f1); |
952 |
> |
atomColData.force[atom2] -= *(idat.f1); |
953 |
> |
#else |
954 |
> |
pairwisePot += *(idat.pot); |
955 |
|
|
956 |
+ |
snap_->atomData.force[atom1] += *(idat.f1); |
957 |
+ |
snap_->atomData.force[atom2] -= *(idat.f1); |
958 |
+ |
#endif |
959 |
|
|
960 |
|
} |
397 |
– |
SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
398 |
– |
} |
961 |
|
|
400 |
– |
|
962 |
|
/* |
963 |
|
* buildNeighborList |
964 |
|
* |
965 |
|
* first element of pair is row-indexed CutoffGroup |
966 |
|
* second element of pair is column-indexed CutoffGroup |
967 |
|
*/ |
968 |
< |
vector<pair<int, int> > buildNeighborList() { |
969 |
< |
Vector3d dr, invWid, rs, shift; |
970 |
< |
Vector3i cc, m1v, m2s; |
971 |
< |
RealType rrNebr; |
972 |
< |
int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset; |
968 |
> |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
969 |
> |
|
970 |
> |
vector<pair<int, int> > neighborList; |
971 |
> |
groupCutoffs cuts; |
972 |
> |
bool doAllPairs = false; |
973 |
|
|
974 |
+ |
#ifdef IS_MPI |
975 |
+ |
cellListRow_.clear(); |
976 |
+ |
cellListCol_.clear(); |
977 |
+ |
#else |
978 |
+ |
cellList_.clear(); |
979 |
+ |
#endif |
980 |
|
|
981 |
< |
vector<pair<int, int> > neighborList; |
982 |
< |
Vector3i nCells; |
983 |
< |
Vector3d invWid, r; |
417 |
< |
|
418 |
< |
rList_ = (rCut_ + skinThickness_); |
419 |
< |
rl2 = rList_ * rList_; |
420 |
< |
|
421 |
< |
snap_ = sman_->getCurrentSnapshot(); |
981 |
> |
RealType rList_ = (largestRcut_ + skinThickness_); |
982 |
> |
RealType rl2 = rList_ * rList_; |
983 |
> |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
984 |
|
Mat3x3d Hmat = snap_->getHmat(); |
985 |
|
Vector3d Hx = Hmat.getColumn(0); |
986 |
|
Vector3d Hy = Hmat.getColumn(1); |
987 |
|
Vector3d Hz = Hmat.getColumn(2); |
988 |
|
|
989 |
< |
nCells.x() = (int) ( Hx.length() )/ rList_; |
990 |
< |
nCells.y() = (int) ( Hy.length() )/ rList_; |
991 |
< |
nCells.z() = (int) ( Hz.length() )/ rList_; |
989 |
> |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
990 |
> |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
991 |
> |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
992 |
|
|
993 |
< |
for (i = 0; i < nGroupsInRow; i++) { |
432 |
< |
rs = cgRowData.position[i]; |
433 |
< |
snap_->scaleVector(rs); |
434 |
< |
} |
993 |
> |
// handle small boxes where the cell offsets can end up repeating cells |
994 |
|
|
995 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
996 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
997 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
998 |
|
|
999 |
< |
VDiv (invWid, cells, region); |
1000 |
< |
for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1; |
1001 |
< |
for (n = 0; n < nMol; n ++) { |
1002 |
< |
VSAdd (rs, mol[n].r, 0.5, region); |
1003 |
< |
VMul (cc, rs, invWid); |
442 |
< |
c = VLinear (cc, cells) + nMol; |
443 |
< |
cellList[n] = cellList[c]; |
444 |
< |
cellList[c] = n; |
445 |
< |
} |
446 |
< |
nebrTabLen = 0; |
447 |
< |
for (m1z = 0; m1z < cells.z(); m1z++) { |
448 |
< |
for (m1y = 0; m1y < cells.y(); m1y++) { |
449 |
< |
for (m1x = 0; m1x < cells.x(); m1x++) { |
450 |
< |
Vector3i m1v(m1x, m1y, m1z); |
451 |
< |
m1 = VLinear(m1v, cells) + nMol; |
452 |
< |
for (offset = 0; offset < nOffset_; offset++) { |
453 |
< |
m2v = m1v + cellOffsets_[offset]; |
454 |
< |
shift = V3Zero(); |
999 |
> |
Mat3x3d invHmat = snap_->getInvHmat(); |
1000 |
> |
Vector3d rs, scaled, dr; |
1001 |
> |
Vector3i whichCell; |
1002 |
> |
int cellIndex; |
1003 |
> |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1004 |
|
|
1005 |
< |
if (m2v.x() >= cells.x) { |
1006 |
< |
m2v.x() = 0; |
1007 |
< |
shift.x() = region.x(); |
1008 |
< |
} else if (m2v.x() < 0) { |
1009 |
< |
m2v.x() = cells.x() - 1; |
1010 |
< |
shift.x() = - region.x(); |
462 |
< |
} |
1005 |
> |
#ifdef IS_MPI |
1006 |
> |
cellListRow_.resize(nCtot); |
1007 |
> |
cellListCol_.resize(nCtot); |
1008 |
> |
#else |
1009 |
> |
cellList_.resize(nCtot); |
1010 |
> |
#endif |
1011 |
|
|
1012 |
< |
if (m2v.y() >= cells.y()) { |
1013 |
< |
m2v.y() = 0; |
466 |
< |
shift.y() = region.y(); |
467 |
< |
} else if (m2v.y() < 0) { |
468 |
< |
m2v.y() = cells.y() - 1; |
469 |
< |
shift.y() = - region.y(); |
470 |
< |
} |
1012 |
> |
if (!doAllPairs) { |
1013 |
> |
#ifdef IS_MPI |
1014 |
|
|
1015 |
< |
m2 = VLinear (m2v, cells) + nMol; |
1016 |
< |
for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) { |
1017 |
< |
for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) { |
1018 |
< |
if (m1 != m2 || j2 < j1) { |
1019 |
< |
dr = mol[j1].r - mol[j2].r; |
1020 |
< |
VSub (dr, mol[j1].r, mol[j2].r); |
1021 |
< |
VVSub (dr, shift); |
1022 |
< |
if (VLenSq (dr) < rrNebr) { |
1023 |
< |
neighborList.push_back(make_pair(j1, j2)); |
1015 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
1016 |
> |
rs = cgRowData.position[i]; |
1017 |
> |
|
1018 |
> |
// scaled positions relative to the box vectors |
1019 |
> |
scaled = invHmat * rs; |
1020 |
> |
|
1021 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1022 |
> |
// numbers |
1023 |
> |
for (int j = 0; j < 3; j++) { |
1024 |
> |
scaled[j] -= roundMe(scaled[j]); |
1025 |
> |
scaled[j] += 0.5; |
1026 |
> |
} |
1027 |
> |
|
1028 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1029 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1030 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1031 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1032 |
> |
|
1033 |
> |
// find single index of this cell: |
1034 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1035 |
> |
|
1036 |
> |
// add this cutoff group to the list of groups in this cell; |
1037 |
> |
cellListRow_[cellIndex].push_back(i); |
1038 |
> |
} |
1039 |
> |
|
1040 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1041 |
> |
rs = cgColData.position[i]; |
1042 |
> |
|
1043 |
> |
// scaled positions relative to the box vectors |
1044 |
> |
scaled = invHmat * rs; |
1045 |
> |
|
1046 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1047 |
> |
// numbers |
1048 |
> |
for (int j = 0; j < 3; j++) { |
1049 |
> |
scaled[j] -= roundMe(scaled[j]); |
1050 |
> |
scaled[j] += 0.5; |
1051 |
> |
} |
1052 |
> |
|
1053 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1054 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1055 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1056 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1057 |
> |
|
1058 |
> |
// find single index of this cell: |
1059 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1060 |
> |
|
1061 |
> |
// add this cutoff group to the list of groups in this cell; |
1062 |
> |
cellListCol_[cellIndex].push_back(i); |
1063 |
> |
} |
1064 |
> |
#else |
1065 |
> |
for (int i = 0; i < nGroups_; i++) { |
1066 |
> |
rs = snap_->cgData.position[i]; |
1067 |
> |
|
1068 |
> |
// scaled positions relative to the box vectors |
1069 |
> |
scaled = invHmat * rs; |
1070 |
> |
|
1071 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1072 |
> |
// numbers |
1073 |
> |
for (int j = 0; j < 3; j++) { |
1074 |
> |
scaled[j] -= roundMe(scaled[j]); |
1075 |
> |
scaled[j] += 0.5; |
1076 |
> |
} |
1077 |
> |
|
1078 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1079 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1080 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1081 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1082 |
> |
|
1083 |
> |
// find single index of this cell: |
1084 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1085 |
> |
|
1086 |
> |
// add this cutoff group to the list of groups in this cell; |
1087 |
> |
cellList_[cellIndex].push_back(i); |
1088 |
> |
} |
1089 |
> |
#endif |
1090 |
> |
|
1091 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1092 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1093 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1094 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1095 |
> |
int m1 = Vlinear(m1v, nCells_); |
1096 |
> |
|
1097 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1098 |
> |
os != cellOffsets_.end(); ++os) { |
1099 |
> |
|
1100 |
> |
Vector3i m2v = m1v + (*os); |
1101 |
> |
|
1102 |
> |
if (m2v.x() >= nCells_.x()) { |
1103 |
> |
m2v.x() = 0; |
1104 |
> |
} else if (m2v.x() < 0) { |
1105 |
> |
m2v.x() = nCells_.x() - 1; |
1106 |
> |
} |
1107 |
> |
|
1108 |
> |
if (m2v.y() >= nCells_.y()) { |
1109 |
> |
m2v.y() = 0; |
1110 |
> |
} else if (m2v.y() < 0) { |
1111 |
> |
m2v.y() = nCells_.y() - 1; |
1112 |
> |
} |
1113 |
> |
|
1114 |
> |
if (m2v.z() >= nCells_.z()) { |
1115 |
> |
m2v.z() = 0; |
1116 |
> |
} else if (m2v.z() < 0) { |
1117 |
> |
m2v.z() = nCells_.z() - 1; |
1118 |
> |
} |
1119 |
> |
|
1120 |
> |
int m2 = Vlinear (m2v, nCells_); |
1121 |
> |
|
1122 |
> |
#ifdef IS_MPI |
1123 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1124 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1125 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1126 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1127 |
> |
|
1128 |
> |
// Always do this if we're in different cells or if |
1129 |
> |
// we're in the same cell and the global index of the |
1130 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1131 |
> |
|
1132 |
> |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1133 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1134 |
> |
snap_->wrapVector(dr); |
1135 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1136 |
> |
if (dr.lengthSquare() < cuts.third) { |
1137 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1138 |
> |
} |
1139 |
|
} |
1140 |
|
} |
1141 |
|
} |
1142 |
+ |
#else |
1143 |
+ |
|
1144 |
+ |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1145 |
+ |
j1 != cellList_[m1].end(); ++j1) { |
1146 |
+ |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1147 |
+ |
j2 != cellList_[m2].end(); ++j2) { |
1148 |
+ |
|
1149 |
+ |
// Always do this if we're in different cells or if |
1150 |
+ |
// we're in the same cell and the global index of the |
1151 |
+ |
// j2 cutoff group is less than the j1 cutoff group |
1152 |
+ |
|
1153 |
+ |
if (m2 != m1 || (*j2) < (*j1)) { |
1154 |
+ |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1155 |
+ |
snap_->wrapVector(dr); |
1156 |
+ |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1157 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1158 |
+ |
neighborList.push_back(make_pair((*j1), (*j2))); |
1159 |
+ |
} |
1160 |
+ |
} |
1161 |
+ |
} |
1162 |
+ |
} |
1163 |
+ |
#endif |
1164 |
|
} |
1165 |
|
} |
1166 |
|
} |
1167 |
|
} |
1168 |
+ |
} else { |
1169 |
+ |
// branch to do all cutoff group pairs |
1170 |
+ |
#ifdef IS_MPI |
1171 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1172 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1173 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1174 |
+ |
snap_->wrapVector(dr); |
1175 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1176 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1177 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1178 |
+ |
} |
1179 |
+ |
} |
1180 |
+ |
} |
1181 |
+ |
#else |
1182 |
+ |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1183 |
+ |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1184 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1185 |
+ |
snap_->wrapVector(dr); |
1186 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1187 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1188 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1189 |
+ |
} |
1190 |
+ |
} |
1191 |
+ |
} |
1192 |
+ |
#endif |
1193 |
|
} |
1194 |
+ |
|
1195 |
+ |
// save the local cutoff group positions for the check that is |
1196 |
+ |
// done on each loop: |
1197 |
+ |
saved_CG_positions_.clear(); |
1198 |
+ |
for (int i = 0; i < nGroups_; i++) |
1199 |
+ |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1200 |
+ |
|
1201 |
+ |
return neighborList; |
1202 |
|
} |
490 |
– |
|
491 |
– |
|
1203 |
|
} //end namespace OpenMD |