42 |
|
#include "math/SquareMatrix3.hpp" |
43 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
|
#include "brains/SnapshotManager.hpp" |
45 |
+ |
#include "brains/PairList.hpp" |
46 |
|
|
47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
55 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
|
snap_ = sman_->getCurrentSnapshot(); |
57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
< |
#ifdef IS_MPI |
59 |
< |
int nLocal = snap_->getNumberOfAtoms(); |
60 |
< |
int nGroups = snap_->getNumberOfCutoffGroups(); |
60 |
< |
|
61 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal); |
62 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal); |
63 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal); |
64 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal); |
58 |
> |
ff_ = info_->getForceField(); |
59 |
> |
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
> |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
61 |
|
|
62 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal); |
63 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal); |
64 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal); |
65 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal); |
62 |
> |
// gather the information for atomtype IDs (atids): |
63 |
> |
identsLocal = info_->getIdentArray(); |
64 |
> |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
> |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
> |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
> |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 |
> |
PairList excludes = info_->getExcludedInteractions(); |
69 |
> |
PairList oneTwo = info_->getOneTwoInteractions(); |
70 |
> |
PairList oneThree = info_->getOneThreeInteractions(); |
71 |
> |
PairList oneFour = info_->getOneFourInteractions(); |
72 |
> |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
73 |
|
|
74 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups); |
75 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups); |
76 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups); |
77 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups); |
74 |
> |
#ifdef IS_MPI |
75 |
> |
|
76 |
> |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
77 |
> |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 |
> |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 |
> |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 |
|
|
81 |
< |
int nAtomsInRow = AtomCommIntRow->getSize(); |
82 |
< |
int nAtomsInCol = AtomCommIntColumn->getSize(); |
83 |
< |
int nGroupsInRow = cgCommIntRow->getSize(); |
84 |
< |
int nGroupsInCol = cgCommIntColumn->getSize(); |
81 |
> |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
82 |
> |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
83 |
> |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
84 |
> |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
85 |
|
|
86 |
+ |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
87 |
+ |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
88 |
+ |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
89 |
+ |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
90 |
+ |
|
91 |
+ |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
92 |
+ |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
93 |
+ |
nGroupsInRow_ = cgCommIntRow->getSize(); |
94 |
+ |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
95 |
+ |
|
96 |
|
// Modify the data storage objects with the correct layouts and sizes: |
97 |
< |
atomRowData.resize(nAtomsInRow); |
97 |
> |
atomRowData.resize(nAtomsInRow_); |
98 |
|
atomRowData.setStorageLayout(storageLayout_); |
99 |
< |
atomColData.resize(nAtomsInCol); |
99 |
> |
atomColData.resize(nAtomsInCol_); |
100 |
|
atomColData.setStorageLayout(storageLayout_); |
101 |
< |
cgRowData.resize(nGroupsInRow); |
101 |
> |
cgRowData.resize(nGroupsInRow_); |
102 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
103 |
< |
cgColData.resize(nGroupsInCol); |
103 |
> |
cgColData.resize(nGroupsInCol_); |
104 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
105 |
|
|
106 |
|
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
107 |
< |
vector<RealType> (nAtomsInRow, 0.0)); |
107 |
> |
vector<RealType> (nAtomsInRow_, 0.0)); |
108 |
|
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
109 |
< |
vector<RealType> (nAtomsInCol, 0.0)); |
95 |
< |
|
96 |
< |
|
97 |
< |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
109 |
> |
vector<RealType> (nAtomsInCol_, 0.0)); |
110 |
|
|
111 |
< |
// gather the information for atomtype IDs (atids): |
112 |
< |
vector<int> identsLocal = info_->getIdentArray(); |
101 |
< |
identsRow.reserve(nAtomsInRow); |
102 |
< |
identsCol.reserve(nAtomsInCol); |
111 |
> |
identsRow.reserve(nAtomsInRow_); |
112 |
> |
identsCol.reserve(nAtomsInCol_); |
113 |
|
|
114 |
|
AtomCommIntRow->gather(identsLocal, identsRow); |
115 |
|
AtomCommIntColumn->gather(identsLocal, identsCol); |
116 |
|
|
107 |
– |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
117 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
118 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
119 |
|
|
111 |
– |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
120 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
121 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
122 |
|
|
123 |
< |
// still need: |
124 |
< |
// topoDist |
125 |
< |
// exclude |
123 |
> |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
124 |
> |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
125 |
> |
|
126 |
> |
groupListRow_.clear(); |
127 |
> |
groupListRow_.reserve(nGroupsInRow_); |
128 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
129 |
> |
int gid = cgRowToGlobal[i]; |
130 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
131 |
> |
int aid = AtomRowToGlobal[j]; |
132 |
> |
if (globalGroupMembership[aid] == gid) |
133 |
> |
groupListRow_[i].push_back(j); |
134 |
> |
} |
135 |
> |
} |
136 |
> |
|
137 |
> |
groupListCol_.clear(); |
138 |
> |
groupListCol_.reserve(nGroupsInCol_); |
139 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
140 |
> |
int gid = cgColToGlobal[i]; |
141 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
142 |
> |
int aid = AtomColToGlobal[j]; |
143 |
> |
if (globalGroupMembership[aid] == gid) |
144 |
> |
groupListCol_[i].push_back(j); |
145 |
> |
} |
146 |
> |
} |
147 |
> |
|
148 |
> |
skipsForRowAtom.clear(); |
149 |
> |
skipsForRowAtom.reserve(nAtomsInRow_); |
150 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
151 |
> |
int iglob = AtomRowToGlobal[i]; |
152 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
153 |
> |
int jglob = AtomColToGlobal[j]; |
154 |
> |
if (excludes.hasPair(iglob, jglob)) |
155 |
> |
skipsForRowAtom[i].push_back(j); |
156 |
> |
} |
157 |
> |
} |
158 |
> |
|
159 |
> |
toposForRowAtom.clear(); |
160 |
> |
toposForRowAtom.reserve(nAtomsInRow_); |
161 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
162 |
> |
int iglob = AtomRowToGlobal[i]; |
163 |
> |
int nTopos = 0; |
164 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
165 |
> |
int jglob = AtomColToGlobal[j]; |
166 |
> |
if (oneTwo.hasPair(iglob, jglob)) { |
167 |
> |
toposForRowAtom[i].push_back(j); |
168 |
> |
topoDistRow[i][nTopos] = 1; |
169 |
> |
nTopos++; |
170 |
> |
} |
171 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
172 |
> |
toposForRowAtom[i].push_back(j); |
173 |
> |
topoDistRow[i][nTopos] = 2; |
174 |
> |
nTopos++; |
175 |
> |
} |
176 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
177 |
> |
toposForRowAtom[i].push_back(j); |
178 |
> |
topoDistRow[i][nTopos] = 3; |
179 |
> |
nTopos++; |
180 |
> |
} |
181 |
> |
} |
182 |
> |
} |
183 |
> |
|
184 |
|
#endif |
119 |
– |
} |
120 |
– |
|
185 |
|
|
186 |
+ |
groupList_.clear(); |
187 |
+ |
groupList_.reserve(nGroups_); |
188 |
+ |
for (int i = 0; i < nGroups_; i++) { |
189 |
+ |
int gid = cgLocalToGlobal[i]; |
190 |
+ |
for (int j = 0; j < nLocal_; j++) { |
191 |
+ |
int aid = AtomLocalToGlobal[j]; |
192 |
+ |
if (globalGroupMembership[aid] == gid) |
193 |
+ |
groupList_[i].push_back(j); |
194 |
+ |
} |
195 |
+ |
} |
196 |
|
|
197 |
+ |
skipsForLocalAtom.clear(); |
198 |
+ |
skipsForLocalAtom.reserve(nLocal_); |
199 |
+ |
|
200 |
+ |
for (int i = 0; i < nLocal_; i++) { |
201 |
+ |
int iglob = AtomLocalToGlobal[i]; |
202 |
+ |
for (int j = 0; j < nLocal_; j++) { |
203 |
+ |
int jglob = AtomLocalToGlobal[j]; |
204 |
+ |
if (excludes.hasPair(iglob, jglob)) |
205 |
+ |
skipsForLocalAtom[i].push_back(j); |
206 |
+ |
} |
207 |
+ |
} |
208 |
+ |
|
209 |
+ |
toposForLocalAtom.clear(); |
210 |
+ |
toposForLocalAtom.reserve(nLocal_); |
211 |
+ |
for (int i = 0; i < nLocal_; i++) { |
212 |
+ |
int iglob = AtomLocalToGlobal[i]; |
213 |
+ |
int nTopos = 0; |
214 |
+ |
for (int j = 0; j < nLocal_; j++) { |
215 |
+ |
int jglob = AtomLocalToGlobal[j]; |
216 |
+ |
if (oneTwo.hasPair(iglob, jglob)) { |
217 |
+ |
toposForLocalAtom[i].push_back(j); |
218 |
+ |
topoDistLocal[i][nTopos] = 1; |
219 |
+ |
nTopos++; |
220 |
+ |
} |
221 |
+ |
if (oneThree.hasPair(iglob, jglob)) { |
222 |
+ |
toposForLocalAtom[i].push_back(j); |
223 |
+ |
topoDistLocal[i][nTopos] = 2; |
224 |
+ |
nTopos++; |
225 |
+ |
} |
226 |
+ |
if (oneFour.hasPair(iglob, jglob)) { |
227 |
+ |
toposForLocalAtom[i].push_back(j); |
228 |
+ |
topoDistLocal[i][nTopos] = 3; |
229 |
+ |
nTopos++; |
230 |
+ |
} |
231 |
+ |
} |
232 |
+ |
} |
233 |
+ |
} |
234 |
+ |
|
235 |
|
void ForceMatrixDecomposition::distributeData() { |
236 |
|
snap_ = sman_->getCurrentSnapshot(); |
237 |
|
storageLayout_ = sman_->getStorageLayout(); |
341 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
342 |
|
} |
343 |
|
|
344 |
< |
int nLocal = snap_->getNumberOfAtoms(); |
344 |
> |
nLocal_ = snap_->getNumberOfAtoms(); |
345 |
|
|
346 |
|
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
347 |
< |
vector<RealType> (nLocal, 0.0)); |
347 |
> |
vector<RealType> (nLocal_, 0.0)); |
348 |
|
|
349 |
|
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
350 |
|
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
355 |
|
#endif |
356 |
|
} |
357 |
|
|
358 |
+ |
int ForceMatrixDecomposition::getNAtomsInRow() { |
359 |
+ |
#ifdef IS_MPI |
360 |
+ |
return nAtomsInRow_; |
361 |
+ |
#else |
362 |
+ |
return nLocal_; |
363 |
+ |
#endif |
364 |
+ |
} |
365 |
+ |
|
366 |
+ |
/** |
367 |
+ |
* returns the list of atoms belonging to this group. |
368 |
+ |
*/ |
369 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
370 |
+ |
#ifdef IS_MPI |
371 |
+ |
return groupListRow_[cg1]; |
372 |
+ |
#else |
373 |
+ |
return groupList_[cg1]; |
374 |
+ |
#endif |
375 |
+ |
} |
376 |
+ |
|
377 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
378 |
+ |
#ifdef IS_MPI |
379 |
+ |
return groupListCol_[cg2]; |
380 |
+ |
#else |
381 |
+ |
return groupList_[cg2]; |
382 |
+ |
#endif |
383 |
+ |
} |
384 |
|
|
385 |
|
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
386 |
|
Vector3d d; |
422 |
|
snap_->wrapVector(d); |
423 |
|
return d; |
424 |
|
} |
425 |
+ |
|
426 |
+ |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
427 |
+ |
#ifdef IS_MPI |
428 |
+ |
return massFactorsRow[atom1]; |
429 |
+ |
#else |
430 |
+ |
return massFactorsLocal[atom1]; |
431 |
+ |
#endif |
432 |
+ |
} |
433 |
+ |
|
434 |
+ |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
435 |
+ |
#ifdef IS_MPI |
436 |
+ |
return massFactorsCol[atom2]; |
437 |
+ |
#else |
438 |
+ |
return massFactorsLocal[atom2]; |
439 |
+ |
#endif |
440 |
+ |
|
441 |
+ |
} |
442 |
|
|
443 |
|
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
444 |
|
Vector3d d; |
453 |
|
return d; |
454 |
|
} |
455 |
|
|
456 |
+ |
vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
457 |
+ |
#ifdef IS_MPI |
458 |
+ |
return skipsForRowAtom[atom1]; |
459 |
+ |
#else |
460 |
+ |
return skipsForLocalAtom[atom1]; |
461 |
+ |
#endif |
462 |
+ |
} |
463 |
+ |
|
464 |
+ |
/** |
465 |
+ |
* there are a number of reasons to skip a pair or a particle mostly |
466 |
+ |
* we do this to exclude atoms who are involved in short range |
467 |
+ |
* interactions (bonds, bends, torsions), but we also need to |
468 |
+ |
* exclude some overcounted interactions that result from the |
469 |
+ |
* parallel decomposition. |
470 |
+ |
*/ |
471 |
+ |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
472 |
+ |
int unique_id_1, unique_id_2; |
473 |
+ |
|
474 |
+ |
#ifdef IS_MPI |
475 |
+ |
// in MPI, we have to look up the unique IDs for each atom |
476 |
+ |
unique_id_1 = AtomRowToGlobal[atom1]; |
477 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
478 |
+ |
|
479 |
+ |
// this situation should only arise in MPI simulations |
480 |
+ |
if (unique_id_1 == unique_id_2) return true; |
481 |
+ |
|
482 |
+ |
// this prevents us from doing the pair on multiple processors |
483 |
+ |
if (unique_id_1 < unique_id_2) { |
484 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
485 |
+ |
} else { |
486 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
487 |
+ |
} |
488 |
+ |
#else |
489 |
+ |
// in the normal loop, the atom numbers are unique |
490 |
+ |
unique_id_1 = atom1; |
491 |
+ |
unique_id_2 = atom2; |
492 |
+ |
#endif |
493 |
+ |
|
494 |
+ |
#ifdef IS_MPI |
495 |
+ |
for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
496 |
+ |
i != skipsForRowAtom[atom1].end(); ++i) { |
497 |
+ |
if ( (*i) == unique_id_2 ) return true; |
498 |
+ |
} |
499 |
+ |
#else |
500 |
+ |
for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
501 |
+ |
i != skipsForLocalAtom[atom1].end(); ++i) { |
502 |
+ |
if ( (*i) == unique_id_2 ) return true; |
503 |
+ |
} |
504 |
+ |
#endif |
505 |
+ |
} |
506 |
+ |
|
507 |
+ |
int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
508 |
+ |
|
509 |
+ |
#ifdef IS_MPI |
510 |
+ |
for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
511 |
+ |
if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
512 |
+ |
} |
513 |
+ |
#else |
514 |
+ |
for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
515 |
+ |
if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
516 |
+ |
} |
517 |
+ |
#endif |
518 |
+ |
|
519 |
+ |
// zero is default for unconnected (i.e. normal) pair interactions |
520 |
+ |
return 0; |
521 |
+ |
} |
522 |
+ |
|
523 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
524 |
|
#ifdef IS_MPI |
525 |
|
atomRowData.force[atom1] += fg; |
534 |
|
#else |
535 |
|
snap_->atomData.force[atom2] += fg; |
536 |
|
#endif |
315 |
– |
|
537 |
|
} |
538 |
|
|
539 |
|
// filling interaction blocks with pointers |
540 |
|
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
320 |
– |
|
541 |
|
InteractionData idat; |
542 |
+ |
|
543 |
|
#ifdef IS_MPI |
544 |
+ |
|
545 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
546 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
547 |
+ |
|
548 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
549 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
550 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
551 |
|
} |
552 |
< |
|
552 |
> |
|
553 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
554 |
|
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
555 |
|
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
569 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
570 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
571 |
|
} |
572 |
+ |
|
573 |
+ |
#else |
574 |
+ |
|
575 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
576 |
+ |
ff_->getAtomType(identsLocal[atom2]) ); |
577 |
+ |
|
578 |
+ |
if (storageLayout_ & DataStorage::dslAmat) { |
579 |
+ |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
580 |
+ |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
581 |
+ |
} |
582 |
+ |
|
583 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
584 |
+ |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
585 |
+ |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
586 |
+ |
} |
587 |
+ |
|
588 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
589 |
+ |
idat.t1 = &(snap_->atomData.torque[atom1]); |
590 |
+ |
idat.t2 = &(snap_->atomData.torque[atom2]); |
591 |
+ |
} |
592 |
+ |
|
593 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
594 |
+ |
idat.rho1 = &(snap_->atomData.density[atom1]); |
595 |
+ |
idat.rho2 = &(snap_->atomData.density[atom2]); |
596 |
+ |
} |
597 |
+ |
|
598 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
599 |
+ |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
600 |
+ |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
601 |
+ |
} |
602 |
|
#endif |
603 |
< |
|
603 |
> |
return idat; |
604 |
|
} |
605 |
+ |
|
606 |
|
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
607 |
+ |
|
608 |
+ |
InteractionData idat; |
609 |
+ |
#ifdef IS_MPI |
610 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
611 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
612 |
+ |
|
613 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
614 |
+ |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
615 |
+ |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
616 |
+ |
} |
617 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
618 |
+ |
idat.t1 = &(atomRowData.torque[atom1]); |
619 |
+ |
idat.t2 = &(atomColData.torque[atom2]); |
620 |
+ |
} |
621 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
622 |
+ |
idat.t1 = &(atomRowData.force[atom1]); |
623 |
+ |
idat.t2 = &(atomColData.force[atom2]); |
624 |
+ |
} |
625 |
+ |
#else |
626 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
627 |
+ |
ff_->getAtomType(identsLocal[atom2]) ); |
628 |
+ |
|
629 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
630 |
+ |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
631 |
+ |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
632 |
+ |
} |
633 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
634 |
+ |
idat.t1 = &(snap_->atomData.torque[atom1]); |
635 |
+ |
idat.t2 = &(snap_->atomData.torque[atom2]); |
636 |
+ |
} |
637 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
638 |
+ |
idat.t1 = &(snap_->atomData.force[atom1]); |
639 |
+ |
idat.t2 = &(snap_->atomData.force[atom2]); |
640 |
+ |
} |
641 |
+ |
#endif |
642 |
|
} |
352 |
– |
SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
353 |
– |
} |
643 |
|
|
644 |
< |
|
644 |
> |
/* |
645 |
> |
* buildNeighborList |
646 |
> |
* |
647 |
> |
* first element of pair is row-indexed CutoffGroup |
648 |
> |
* second element of pair is column-indexed CutoffGroup |
649 |
> |
*/ |
650 |
> |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
651 |
> |
|
652 |
> |
vector<pair<int, int> > neighborList; |
653 |
> |
#ifdef IS_MPI |
654 |
> |
cellListRow_.clear(); |
655 |
> |
cellListCol_.clear(); |
656 |
> |
#else |
657 |
> |
cellList_.clear(); |
658 |
> |
#endif |
659 |
> |
|
660 |
> |
// dangerous to not do error checking. |
661 |
> |
RealType rCut_; |
662 |
> |
|
663 |
> |
RealType rList_ = (rCut_ + skinThickness_); |
664 |
> |
RealType rl2 = rList_ * rList_; |
665 |
> |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
666 |
> |
Mat3x3d Hmat = snap_->getHmat(); |
667 |
> |
Vector3d Hx = Hmat.getColumn(0); |
668 |
> |
Vector3d Hy = Hmat.getColumn(1); |
669 |
> |
Vector3d Hz = Hmat.getColumn(2); |
670 |
> |
|
671 |
> |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
672 |
> |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
673 |
> |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
674 |
> |
|
675 |
> |
Mat3x3d invHmat = snap_->getInvHmat(); |
676 |
> |
Vector3d rs, scaled, dr; |
677 |
> |
Vector3i whichCell; |
678 |
> |
int cellIndex; |
679 |
> |
|
680 |
> |
#ifdef IS_MPI |
681 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
682 |
> |
rs = cgRowData.position[i]; |
683 |
> |
// scaled positions relative to the box vectors |
684 |
> |
scaled = invHmat * rs; |
685 |
> |
// wrap the vector back into the unit box by subtracting integer box |
686 |
> |
// numbers |
687 |
> |
for (int j = 0; j < 3; j++) |
688 |
> |
scaled[j] -= roundMe(scaled[j]); |
689 |
> |
|
690 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
691 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
692 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
693 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
694 |
> |
|
695 |
> |
// find single index of this cell: |
696 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
697 |
> |
// add this cutoff group to the list of groups in this cell; |
698 |
> |
cellListRow_[cellIndex].push_back(i); |
699 |
> |
} |
700 |
> |
|
701 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
702 |
> |
rs = cgColData.position[i]; |
703 |
> |
// scaled positions relative to the box vectors |
704 |
> |
scaled = invHmat * rs; |
705 |
> |
// wrap the vector back into the unit box by subtracting integer box |
706 |
> |
// numbers |
707 |
> |
for (int j = 0; j < 3; j++) |
708 |
> |
scaled[j] -= roundMe(scaled[j]); |
709 |
> |
|
710 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
711 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
712 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
713 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
714 |
> |
|
715 |
> |
// find single index of this cell: |
716 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
717 |
> |
// add this cutoff group to the list of groups in this cell; |
718 |
> |
cellListCol_[cellIndex].push_back(i); |
719 |
> |
} |
720 |
> |
#else |
721 |
> |
for (int i = 0; i < nGroups_; i++) { |
722 |
> |
rs = snap_->cgData.position[i]; |
723 |
> |
// scaled positions relative to the box vectors |
724 |
> |
scaled = invHmat * rs; |
725 |
> |
// wrap the vector back into the unit box by subtracting integer box |
726 |
> |
// numbers |
727 |
> |
for (int j = 0; j < 3; j++) |
728 |
> |
scaled[j] -= roundMe(scaled[j]); |
729 |
> |
|
730 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
731 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
732 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
733 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
734 |
> |
|
735 |
> |
// find single index of this cell: |
736 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
737 |
> |
// add this cutoff group to the list of groups in this cell; |
738 |
> |
cellList_[cellIndex].push_back(i); |
739 |
> |
} |
740 |
> |
#endif |
741 |
> |
|
742 |
> |
|
743 |
> |
|
744 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
745 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
746 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
747 |
> |
Vector3i m1v(m1x, m1y, m1z); |
748 |
> |
int m1 = Vlinear(m1v, nCells_); |
749 |
> |
|
750 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
751 |
> |
os != cellOffsets_.end(); ++os) { |
752 |
> |
|
753 |
> |
Vector3i m2v = m1v + (*os); |
754 |
> |
|
755 |
> |
if (m2v.x() >= nCells_.x()) { |
756 |
> |
m2v.x() = 0; |
757 |
> |
} else if (m2v.x() < 0) { |
758 |
> |
m2v.x() = nCells_.x() - 1; |
759 |
> |
} |
760 |
> |
|
761 |
> |
if (m2v.y() >= nCells_.y()) { |
762 |
> |
m2v.y() = 0; |
763 |
> |
} else if (m2v.y() < 0) { |
764 |
> |
m2v.y() = nCells_.y() - 1; |
765 |
> |
} |
766 |
> |
|
767 |
> |
if (m2v.z() >= nCells_.z()) { |
768 |
> |
m2v.z() = 0; |
769 |
> |
} else if (m2v.z() < 0) { |
770 |
> |
m2v.z() = nCells_.z() - 1; |
771 |
> |
} |
772 |
> |
|
773 |
> |
int m2 = Vlinear (m2v, nCells_); |
774 |
> |
|
775 |
> |
#ifdef IS_MPI |
776 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
777 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
778 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
779 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
780 |
> |
|
781 |
> |
// Always do this if we're in different cells or if |
782 |
> |
// we're in the same cell and the global index of the |
783 |
> |
// j2 cutoff group is less than the j1 cutoff group |
784 |
> |
|
785 |
> |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
786 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
787 |
> |
snap_->wrapVector(dr); |
788 |
> |
if (dr.lengthSquare() < rl2) { |
789 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
790 |
> |
} |
791 |
> |
} |
792 |
> |
} |
793 |
> |
} |
794 |
> |
#else |
795 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
796 |
> |
j1 != cellList_[m1].end(); ++j1) { |
797 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
798 |
> |
j2 != cellList_[m2].end(); ++j2) { |
799 |
> |
|
800 |
> |
// Always do this if we're in different cells or if |
801 |
> |
// we're in the same cell and the global index of the |
802 |
> |
// j2 cutoff group is less than the j1 cutoff group |
803 |
> |
|
804 |
> |
if (m2 != m1 || (*j2) < (*j1)) { |
805 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
806 |
> |
snap_->wrapVector(dr); |
807 |
> |
if (dr.lengthSquare() < rl2) { |
808 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
809 |
> |
} |
810 |
> |
} |
811 |
> |
} |
812 |
> |
} |
813 |
> |
#endif |
814 |
> |
} |
815 |
> |
} |
816 |
> |
} |
817 |
> |
} |
818 |
> |
|
819 |
> |
// save the local cutoff group positions for the check that is |
820 |
> |
// done on each loop: |
821 |
> |
saved_CG_positions_.clear(); |
822 |
> |
for (int i = 0; i < nGroups_; i++) |
823 |
> |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
824 |
> |
|
825 |
> |
return neighborList; |
826 |
> |
} |
827 |
|
} //end namespace OpenMD |