42 |
|
#include "math/SquareMatrix3.hpp" |
43 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
|
#include "brains/SnapshotManager.hpp" |
45 |
+ |
#include "brains/PairList.hpp" |
46 |
|
|
47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
55 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
|
snap_ = sman_->getCurrentSnapshot(); |
57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
+ |
ff_ = info_->getForceField(); |
59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
< |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
60 |
> |
|
61 |
> |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
> |
// gather the information for atomtype IDs (atids): |
63 |
> |
idents = info_->getIdentArray(); |
64 |
> |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
> |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
> |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
|
|
68 |
+ |
massFactors = info_->getMassFactors(); |
69 |
+ |
|
70 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
71 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
72 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
73 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
74 |
+ |
|
75 |
|
#ifdef IS_MPI |
76 |
|
|
77 |
|
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 |
|
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
|
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
|
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
+ |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 |
|
|
83 |
|
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 |
|
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 |
|
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 |
|
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 |
+ |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 |
|
|
89 |
|
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 |
|
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
105 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 |
|
cgColData.resize(nGroupsInCol_); |
107 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
108 |
+ |
|
109 |
+ |
identsRow.resize(nAtomsInRow_); |
110 |
+ |
identsCol.resize(nAtomsInCol_); |
111 |
|
|
112 |
< |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
113 |
< |
vector<RealType> (nAtomsInRow_, 0.0)); |
94 |
< |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
95 |
< |
vector<RealType> (nAtomsInCol_, 0.0)); |
96 |
< |
|
97 |
< |
|
98 |
< |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
112 |
> |
AtomCommIntRow->gather(idents, identsRow); |
113 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
114 |
|
|
115 |
< |
// gather the information for atomtype IDs (atids): |
116 |
< |
vector<int> identsLocal = info_->getIdentArray(); |
117 |
< |
identsRow.reserve(nAtomsInRow_); |
118 |
< |
identsCol.reserve(nAtomsInCol_); |
104 |
< |
|
105 |
< |
AtomCommIntRow->gather(identsLocal, identsRow); |
106 |
< |
AtomCommIntColumn->gather(identsLocal, identsCol); |
107 |
< |
|
108 |
< |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
115 |
> |
vector<int>::iterator it; |
116 |
> |
for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) { |
117 |
> |
cerr << "my AtomLocalToGlobal = " << (*it) << "\n"; |
118 |
> |
} |
119 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
120 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
121 |
|
|
112 |
– |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
122 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
123 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
124 |
|
|
125 |
< |
// still need: |
126 |
< |
// topoDist |
127 |
< |
// exclude |
125 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
126 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
127 |
> |
|
128 |
> |
groupListRow_.clear(); |
129 |
> |
groupListRow_.resize(nGroupsInRow_); |
130 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
131 |
> |
int gid = cgRowToGlobal[i]; |
132 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
133 |
> |
int aid = AtomRowToGlobal[j]; |
134 |
> |
if (globalGroupMembership[aid] == gid) |
135 |
> |
groupListRow_[i].push_back(j); |
136 |
> |
} |
137 |
> |
} |
138 |
> |
|
139 |
> |
groupListCol_.clear(); |
140 |
> |
groupListCol_.resize(nGroupsInCol_); |
141 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
142 |
> |
int gid = cgColToGlobal[i]; |
143 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
144 |
> |
int aid = AtomColToGlobal[j]; |
145 |
> |
if (globalGroupMembership[aid] == gid) |
146 |
> |
groupListCol_[i].push_back(j); |
147 |
> |
} |
148 |
> |
} |
149 |
> |
|
150 |
> |
excludesForAtom.clear(); |
151 |
> |
excludesForAtom.resize(nAtomsInRow_); |
152 |
> |
toposForAtom.clear(); |
153 |
> |
toposForAtom.resize(nAtomsInRow_); |
154 |
> |
topoDist.clear(); |
155 |
> |
topoDist.resize(nAtomsInRow_); |
156 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
157 |
> |
int iglob = AtomRowToGlobal[i]; |
158 |
> |
|
159 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
160 |
> |
int jglob = AtomColToGlobal[j]; |
161 |
> |
|
162 |
> |
if (excludes->hasPair(iglob, jglob)) |
163 |
> |
excludesForAtom[i].push_back(j); |
164 |
> |
|
165 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
166 |
> |
toposForAtom[i].push_back(j); |
167 |
> |
topoDist[i].push_back(1); |
168 |
> |
} else { |
169 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
170 |
> |
toposForAtom[i].push_back(j); |
171 |
> |
topoDist[i].push_back(2); |
172 |
> |
} else { |
173 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
174 |
> |
toposForAtom[i].push_back(j); |
175 |
> |
topoDist[i].push_back(3); |
176 |
> |
} |
177 |
> |
} |
178 |
> |
} |
179 |
> |
} |
180 |
> |
} |
181 |
> |
|
182 |
|
#endif |
183 |
+ |
|
184 |
+ |
groupList_.clear(); |
185 |
+ |
groupList_.resize(nGroups_); |
186 |
+ |
for (int i = 0; i < nGroups_; i++) { |
187 |
+ |
int gid = cgLocalToGlobal[i]; |
188 |
+ |
for (int j = 0; j < nLocal_; j++) { |
189 |
+ |
int aid = AtomLocalToGlobal[j]; |
190 |
+ |
if (globalGroupMembership[aid] == gid) { |
191 |
+ |
groupList_[i].push_back(j); |
192 |
+ |
} |
193 |
+ |
} |
194 |
+ |
} |
195 |
+ |
|
196 |
+ |
excludesForAtom.clear(); |
197 |
+ |
excludesForAtom.resize(nLocal_); |
198 |
+ |
toposForAtom.clear(); |
199 |
+ |
toposForAtom.resize(nLocal_); |
200 |
+ |
topoDist.clear(); |
201 |
+ |
topoDist.resize(nLocal_); |
202 |
+ |
|
203 |
+ |
for (int i = 0; i < nLocal_; i++) { |
204 |
+ |
int iglob = AtomLocalToGlobal[i]; |
205 |
+ |
|
206 |
+ |
for (int j = 0; j < nLocal_; j++) { |
207 |
+ |
int jglob = AtomLocalToGlobal[j]; |
208 |
+ |
|
209 |
+ |
if (excludes->hasPair(iglob, jglob)) |
210 |
+ |
excludesForAtom[i].push_back(j); |
211 |
+ |
|
212 |
+ |
if (oneTwo->hasPair(iglob, jglob)) { |
213 |
+ |
toposForAtom[i].push_back(j); |
214 |
+ |
topoDist[i].push_back(1); |
215 |
+ |
} else { |
216 |
+ |
if (oneThree->hasPair(iglob, jglob)) { |
217 |
+ |
toposForAtom[i].push_back(j); |
218 |
+ |
topoDist[i].push_back(2); |
219 |
+ |
} else { |
220 |
+ |
if (oneFour->hasPair(iglob, jglob)) { |
221 |
+ |
toposForAtom[i].push_back(j); |
222 |
+ |
topoDist[i].push_back(3); |
223 |
+ |
} |
224 |
+ |
} |
225 |
+ |
} |
226 |
+ |
} |
227 |
+ |
} |
228 |
+ |
|
229 |
+ |
createGtypeCutoffMap(); |
230 |
+ |
|
231 |
|
} |
232 |
+ |
|
233 |
+ |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
234 |
|
|
235 |
+ |
RealType tol = 1e-6; |
236 |
+ |
RealType rc; |
237 |
+ |
int atid; |
238 |
+ |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
239 |
+ |
map<int, RealType> atypeCutoff; |
240 |
+ |
|
241 |
+ |
for (set<AtomType*>::iterator at = atypes.begin(); |
242 |
+ |
at != atypes.end(); ++at){ |
243 |
+ |
atid = (*at)->getIdent(); |
244 |
+ |
if (userChoseCutoff_) |
245 |
+ |
atypeCutoff[atid] = userCutoff_; |
246 |
+ |
else |
247 |
+ |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
248 |
+ |
} |
249 |
|
|
250 |
+ |
vector<RealType> gTypeCutoffs; |
251 |
+ |
// first we do a single loop over the cutoff groups to find the |
252 |
+ |
// largest cutoff for any atypes present in this group. |
253 |
+ |
#ifdef IS_MPI |
254 |
+ |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
255 |
+ |
groupRowToGtype.resize(nGroupsInRow_); |
256 |
+ |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
257 |
+ |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
258 |
+ |
for (vector<int>::iterator ia = atomListRow.begin(); |
259 |
+ |
ia != atomListRow.end(); ++ia) { |
260 |
+ |
int atom1 = (*ia); |
261 |
+ |
atid = identsRow[atom1]; |
262 |
+ |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
263 |
+ |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
264 |
+ |
} |
265 |
+ |
} |
266 |
|
|
267 |
+ |
bool gTypeFound = false; |
268 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
269 |
+ |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
270 |
+ |
groupRowToGtype[cg1] = gt; |
271 |
+ |
gTypeFound = true; |
272 |
+ |
} |
273 |
+ |
} |
274 |
+ |
if (!gTypeFound) { |
275 |
+ |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
276 |
+ |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
277 |
+ |
} |
278 |
+ |
|
279 |
+ |
} |
280 |
+ |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
281 |
+ |
groupColToGtype.resize(nGroupsInCol_); |
282 |
+ |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
283 |
+ |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
284 |
+ |
for (vector<int>::iterator jb = atomListCol.begin(); |
285 |
+ |
jb != atomListCol.end(); ++jb) { |
286 |
+ |
int atom2 = (*jb); |
287 |
+ |
atid = identsCol[atom2]; |
288 |
+ |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
289 |
+ |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
290 |
+ |
} |
291 |
+ |
} |
292 |
+ |
bool gTypeFound = false; |
293 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
294 |
+ |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
295 |
+ |
groupColToGtype[cg2] = gt; |
296 |
+ |
gTypeFound = true; |
297 |
+ |
} |
298 |
+ |
} |
299 |
+ |
if (!gTypeFound) { |
300 |
+ |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
301 |
+ |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
302 |
+ |
} |
303 |
+ |
} |
304 |
+ |
#else |
305 |
+ |
|
306 |
+ |
vector<RealType> groupCutoff(nGroups_, 0.0); |
307 |
+ |
groupToGtype.resize(nGroups_); |
308 |
+ |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
309 |
+ |
|
310 |
+ |
groupCutoff[cg1] = 0.0; |
311 |
+ |
vector<int> atomList = getAtomsInGroupRow(cg1); |
312 |
+ |
|
313 |
+ |
for (vector<int>::iterator ia = atomList.begin(); |
314 |
+ |
ia != atomList.end(); ++ia) { |
315 |
+ |
int atom1 = (*ia); |
316 |
+ |
atid = idents[atom1]; |
317 |
+ |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
318 |
+ |
groupCutoff[cg1] = atypeCutoff[atid]; |
319 |
+ |
} |
320 |
+ |
} |
321 |
+ |
|
322 |
+ |
bool gTypeFound = false; |
323 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
324 |
+ |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
325 |
+ |
groupToGtype[cg1] = gt; |
326 |
+ |
gTypeFound = true; |
327 |
+ |
} |
328 |
+ |
} |
329 |
+ |
if (!gTypeFound) { |
330 |
+ |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
331 |
+ |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
332 |
+ |
} |
333 |
+ |
} |
334 |
+ |
#endif |
335 |
+ |
|
336 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
337 |
+ |
|
338 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
339 |
+ |
|
340 |
+ |
#ifdef IS_MPI |
341 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
342 |
+ |
#endif |
343 |
+ |
|
344 |
+ |
RealType tradRcut = groupMax; |
345 |
+ |
|
346 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
347 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
348 |
+ |
RealType thisRcut; |
349 |
+ |
switch(cutoffPolicy_) { |
350 |
+ |
case TRADITIONAL: |
351 |
+ |
thisRcut = tradRcut; |
352 |
+ |
break; |
353 |
+ |
case MIX: |
354 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
355 |
+ |
break; |
356 |
+ |
case MAX: |
357 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
358 |
+ |
break; |
359 |
+ |
default: |
360 |
+ |
sprintf(painCave.errMsg, |
361 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
362 |
+ |
"hit an unknown cutoff policy!\n"); |
363 |
+ |
painCave.severity = OPENMD_ERROR; |
364 |
+ |
painCave.isFatal = 1; |
365 |
+ |
simError(); |
366 |
+ |
break; |
367 |
+ |
} |
368 |
+ |
|
369 |
+ |
pair<int,int> key = make_pair(i,j); |
370 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
371 |
+ |
|
372 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
373 |
+ |
|
374 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
375 |
+ |
|
376 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
377 |
+ |
|
378 |
+ |
// sanity check |
379 |
+ |
|
380 |
+ |
if (userChoseCutoff_) { |
381 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
382 |
+ |
sprintf(painCave.errMsg, |
383 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
384 |
+ |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
385 |
+ |
painCave.severity = OPENMD_ERROR; |
386 |
+ |
painCave.isFatal = 1; |
387 |
+ |
simError(); |
388 |
+ |
} |
389 |
+ |
} |
390 |
+ |
} |
391 |
+ |
} |
392 |
+ |
} |
393 |
+ |
|
394 |
+ |
|
395 |
+ |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
396 |
+ |
int i, j; |
397 |
+ |
#ifdef IS_MPI |
398 |
+ |
i = groupRowToGtype[cg1]; |
399 |
+ |
j = groupColToGtype[cg2]; |
400 |
+ |
#else |
401 |
+ |
i = groupToGtype[cg1]; |
402 |
+ |
j = groupToGtype[cg2]; |
403 |
+ |
#endif |
404 |
+ |
return gTypeCutoffMap[make_pair(i,j)]; |
405 |
+ |
} |
406 |
+ |
|
407 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
408 |
+ |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
409 |
+ |
if (toposForAtom[atom1][j] == atom2) |
410 |
+ |
return topoDist[atom1][j]; |
411 |
+ |
} |
412 |
+ |
return 0; |
413 |
+ |
} |
414 |
+ |
|
415 |
+ |
void ForceMatrixDecomposition::zeroWorkArrays() { |
416 |
+ |
pairwisePot = 0.0; |
417 |
+ |
embeddingPot = 0.0; |
418 |
+ |
|
419 |
+ |
#ifdef IS_MPI |
420 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
421 |
+ |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
422 |
+ |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
423 |
+ |
} |
424 |
+ |
|
425 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
426 |
+ |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
427 |
+ |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
428 |
+ |
} |
429 |
+ |
|
430 |
+ |
fill(pot_row.begin(), pot_row.end(), |
431 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
432 |
+ |
|
433 |
+ |
fill(pot_col.begin(), pot_col.end(), |
434 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
435 |
+ |
|
436 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
437 |
+ |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
438 |
+ |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
439 |
+ |
} |
440 |
+ |
|
441 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
442 |
+ |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
443 |
+ |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
444 |
+ |
} |
445 |
+ |
|
446 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
447 |
+ |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
448 |
+ |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
449 |
+ |
} |
450 |
+ |
|
451 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
452 |
+ |
fill(atomRowData.functionalDerivative.begin(), |
453 |
+ |
atomRowData.functionalDerivative.end(), 0.0); |
454 |
+ |
fill(atomColData.functionalDerivative.begin(), |
455 |
+ |
atomColData.functionalDerivative.end(), 0.0); |
456 |
+ |
} |
457 |
+ |
|
458 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
459 |
+ |
fill(atomRowData.skippedCharge.begin(), |
460 |
+ |
atomRowData.skippedCharge.end(), 0.0); |
461 |
+ |
fill(atomColData.skippedCharge.begin(), |
462 |
+ |
atomColData.skippedCharge.end(), 0.0); |
463 |
+ |
} |
464 |
+ |
|
465 |
+ |
#else |
466 |
+ |
|
467 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
468 |
+ |
fill(snap_->atomData.particlePot.begin(), |
469 |
+ |
snap_->atomData.particlePot.end(), 0.0); |
470 |
+ |
} |
471 |
+ |
|
472 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
473 |
+ |
fill(snap_->atomData.density.begin(), |
474 |
+ |
snap_->atomData.density.end(), 0.0); |
475 |
+ |
} |
476 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
477 |
+ |
fill(snap_->atomData.functional.begin(), |
478 |
+ |
snap_->atomData.functional.end(), 0.0); |
479 |
+ |
} |
480 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
481 |
+ |
fill(snap_->atomData.functionalDerivative.begin(), |
482 |
+ |
snap_->atomData.functionalDerivative.end(), 0.0); |
483 |
+ |
} |
484 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
485 |
+ |
fill(snap_->atomData.skippedCharge.begin(), |
486 |
+ |
snap_->atomData.skippedCharge.end(), 0.0); |
487 |
+ |
} |
488 |
+ |
#endif |
489 |
+ |
|
490 |
+ |
} |
491 |
+ |
|
492 |
+ |
|
493 |
|
void ForceMatrixDecomposition::distributeData() { |
494 |
|
snap_ = sman_->getCurrentSnapshot(); |
495 |
|
storageLayout_ = sman_->getStorageLayout(); |
525 |
|
#endif |
526 |
|
} |
527 |
|
|
528 |
+ |
/* collects information obtained during the pre-pair loop onto local |
529 |
+ |
* data structures. |
530 |
+ |
*/ |
531 |
|
void ForceMatrixDecomposition::collectIntermediateData() { |
532 |
|
snap_ = sman_->getCurrentSnapshot(); |
533 |
|
storageLayout_ = sman_->getStorageLayout(); |
539 |
|
snap_->atomData.density); |
540 |
|
|
541 |
|
int n = snap_->atomData.density.size(); |
542 |
< |
std::vector<RealType> rho_tmp(n, 0.0); |
542 |
> |
vector<RealType> rho_tmp(n, 0.0); |
543 |
|
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
544 |
|
for (int i = 0; i < n; i++) |
545 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
546 |
|
} |
547 |
|
#endif |
548 |
|
} |
549 |
< |
|
549 |
> |
|
550 |
> |
/* |
551 |
> |
* redistributes information obtained during the pre-pair loop out to |
552 |
> |
* row and column-indexed data structures |
553 |
> |
*/ |
554 |
|
void ForceMatrixDecomposition::distributeIntermediateData() { |
555 |
|
snap_ = sman_->getCurrentSnapshot(); |
556 |
|
storageLayout_ = sman_->getStorageLayout(); |
592 |
|
|
593 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
594 |
|
|
595 |
< |
int nt = snap_->atomData.force.size(); |
595 |
> |
int nt = snap_->atomData.torque.size(); |
596 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
597 |
|
|
598 |
|
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
599 |
< |
for (int i = 0; i < n; i++) { |
599 |
> |
for (int i = 0; i < nt; i++) { |
600 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
601 |
|
trq_tmp[i] = 0.0; |
602 |
|
} |
603 |
|
|
604 |
|
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
605 |
< |
for (int i = 0; i < n; i++) |
605 |
> |
for (int i = 0; i < nt; i++) |
606 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
607 |
|
} |
608 |
+ |
|
609 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
610 |
+ |
|
611 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
612 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
613 |
+ |
|
614 |
+ |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
615 |
+ |
for (int i = 0; i < ns; i++) { |
616 |
+ |
snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
617 |
+ |
skch_tmp[i] = 0.0; |
618 |
+ |
} |
619 |
+ |
|
620 |
+ |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
621 |
+ |
for (int i = 0; i < ns; i++) |
622 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
623 |
+ |
} |
624 |
|
|
625 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
626 |
|
|
627 |
< |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
628 |
< |
vector<RealType> (nLocal_, 0.0)); |
627 |
> |
vector<potVec> pot_temp(nLocal_, |
628 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
629 |
> |
|
630 |
> |
// scatter/gather pot_row into the members of my column |
631 |
> |
|
632 |
> |
AtomCommPotRow->scatter(pot_row, pot_temp); |
633 |
> |
|
634 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
635 |
> |
pairwisePot += pot_temp[ii]; |
636 |
|
|
637 |
< |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
638 |
< |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
639 |
< |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
640 |
< |
pot_local[i] += pot_temp[i][ii]; |
641 |
< |
} |
642 |
< |
} |
637 |
> |
fill(pot_temp.begin(), pot_temp.end(), |
638 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
639 |
> |
|
640 |
> |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
641 |
> |
|
642 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
643 |
> |
pairwisePot += pot_temp[ii]; |
644 |
|
#endif |
645 |
+ |
|
646 |
|
} |
647 |
|
|
648 |
+ |
int ForceMatrixDecomposition::getNAtomsInRow() { |
649 |
+ |
#ifdef IS_MPI |
650 |
+ |
return nAtomsInRow_; |
651 |
+ |
#else |
652 |
+ |
return nLocal_; |
653 |
+ |
#endif |
654 |
+ |
} |
655 |
+ |
|
656 |
+ |
/** |
657 |
+ |
* returns the list of atoms belonging to this group. |
658 |
+ |
*/ |
659 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
660 |
+ |
#ifdef IS_MPI |
661 |
+ |
return groupListRow_[cg1]; |
662 |
+ |
#else |
663 |
+ |
return groupList_[cg1]; |
664 |
+ |
#endif |
665 |
+ |
} |
666 |
+ |
|
667 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
668 |
+ |
#ifdef IS_MPI |
669 |
+ |
return groupListCol_[cg2]; |
670 |
+ |
#else |
671 |
+ |
return groupList_[cg2]; |
672 |
+ |
#endif |
673 |
+ |
} |
674 |
|
|
675 |
|
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
676 |
|
Vector3d d; |
711 |
|
|
712 |
|
snap_->wrapVector(d); |
713 |
|
return d; |
714 |
+ |
} |
715 |
+ |
|
716 |
+ |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
717 |
+ |
#ifdef IS_MPI |
718 |
+ |
return massFactorsRow[atom1]; |
719 |
+ |
#else |
720 |
+ |
return massFactors[atom1]; |
721 |
+ |
#endif |
722 |
+ |
} |
723 |
+ |
|
724 |
+ |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
725 |
+ |
#ifdef IS_MPI |
726 |
+ |
return massFactorsCol[atom2]; |
727 |
+ |
#else |
728 |
+ |
return massFactors[atom2]; |
729 |
+ |
#endif |
730 |
+ |
|
731 |
|
} |
732 |
|
|
733 |
|
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
743 |
|
return d; |
744 |
|
} |
745 |
|
|
746 |
+ |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
747 |
+ |
return excludesForAtom[atom1]; |
748 |
+ |
} |
749 |
+ |
|
750 |
+ |
/** |
751 |
+ |
* We need to exclude some overcounted interactions that result from |
752 |
+ |
* the parallel decomposition. |
753 |
+ |
*/ |
754 |
+ |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
755 |
+ |
int unique_id_1, unique_id_2; |
756 |
+ |
|
757 |
+ |
#ifdef IS_MPI |
758 |
+ |
// in MPI, we have to look up the unique IDs for each atom |
759 |
+ |
unique_id_1 = AtomRowToGlobal[atom1]; |
760 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
761 |
+ |
|
762 |
+ |
// this situation should only arise in MPI simulations |
763 |
+ |
if (unique_id_1 == unique_id_2) return true; |
764 |
+ |
|
765 |
+ |
// this prevents us from doing the pair on multiple processors |
766 |
+ |
if (unique_id_1 < unique_id_2) { |
767 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
768 |
+ |
} else { |
769 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
770 |
+ |
} |
771 |
+ |
#endif |
772 |
+ |
return false; |
773 |
+ |
} |
774 |
+ |
|
775 |
+ |
/** |
776 |
+ |
* We need to handle the interactions for atoms who are involved in |
777 |
+ |
* the same rigid body as well as some short range interactions |
778 |
+ |
* (bonds, bends, torsions) differently from other interactions. |
779 |
+ |
* We'll still visit the pairwise routines, but with a flag that |
780 |
+ |
* tells those routines to exclude the pair from direct long range |
781 |
+ |
* interactions. Some indirect interactions (notably reaction |
782 |
+ |
* field) must still be handled for these pairs. |
783 |
+ |
*/ |
784 |
+ |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
785 |
+ |
int unique_id_2; |
786 |
+ |
|
787 |
+ |
#ifdef IS_MPI |
788 |
+ |
// in MPI, we have to look up the unique IDs for the row atom. |
789 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
790 |
+ |
#else |
791 |
+ |
// in the normal loop, the atom numbers are unique |
792 |
+ |
unique_id_2 = atom2; |
793 |
+ |
#endif |
794 |
+ |
|
795 |
+ |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
796 |
+ |
i != excludesForAtom[atom1].end(); ++i) { |
797 |
+ |
if ( (*i) == unique_id_2 ) return true; |
798 |
+ |
} |
799 |
+ |
|
800 |
+ |
return false; |
801 |
+ |
} |
802 |
+ |
|
803 |
+ |
|
804 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
805 |
|
#ifdef IS_MPI |
806 |
|
atomRowData.force[atom1] += fg; |
818 |
|
} |
819 |
|
|
820 |
|
// filling interaction blocks with pointers |
821 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
822 |
< |
InteractionData idat; |
821 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
822 |
> |
int atom1, int atom2) { |
823 |
|
|
824 |
+ |
idat.excluded = excludeAtomPair(atom1, atom2); |
825 |
+ |
|
826 |
|
#ifdef IS_MPI |
827 |
+ |
|
828 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
829 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
830 |
+ |
|
831 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
832 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
833 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
848 |
|
idat.rho2 = &(atomColData.density[atom2]); |
849 |
|
} |
850 |
|
|
851 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
852 |
+ |
idat.frho1 = &(atomRowData.functional[atom1]); |
853 |
+ |
idat.frho2 = &(atomColData.functional[atom2]); |
854 |
+ |
} |
855 |
+ |
|
856 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
857 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
858 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
859 |
|
} |
860 |
+ |
|
861 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
862 |
+ |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
863 |
+ |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
864 |
+ |
} |
865 |
+ |
|
866 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
867 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
868 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
869 |
+ |
} |
870 |
+ |
|
871 |
|
#else |
872 |
+ |
|
873 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
874 |
+ |
ff_->getAtomType(idents[atom2]) ); |
875 |
+ |
|
876 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
877 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
878 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
888 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
889 |
|
} |
890 |
|
|
891 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
891 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
892 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
893 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
894 |
|
} |
895 |
|
|
896 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
897 |
+ |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
898 |
+ |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
899 |
+ |
} |
900 |
+ |
|
901 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
902 |
|
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
903 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
904 |
|
} |
905 |
+ |
|
906 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
907 |
+ |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
908 |
+ |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
909 |
+ |
} |
910 |
+ |
|
911 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
912 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
913 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
914 |
+ |
} |
915 |
|
#endif |
373 |
– |
return idat; |
916 |
|
} |
917 |
|
|
918 |
< |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
919 |
< |
|
378 |
< |
InteractionData idat; |
918 |
> |
|
919 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
920 |
|
#ifdef IS_MPI |
921 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
922 |
< |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
923 |
< |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
924 |
< |
} |
925 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
385 |
< |
idat.t1 = &(atomRowData.torque[atom1]); |
386 |
< |
idat.t2 = &(atomColData.torque[atom2]); |
387 |
< |
} |
388 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
389 |
< |
idat.t1 = &(atomRowData.force[atom1]); |
390 |
< |
idat.t2 = &(atomColData.force[atom2]); |
391 |
< |
} |
921 |
> |
pot_row[atom1] += 0.5 * *(idat.pot); |
922 |
> |
pot_col[atom2] += 0.5 * *(idat.pot); |
923 |
> |
|
924 |
> |
atomRowData.force[atom1] += *(idat.f1); |
925 |
> |
atomColData.force[atom2] -= *(idat.f1); |
926 |
|
#else |
927 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
928 |
< |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
929 |
< |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
930 |
< |
} |
397 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
398 |
< |
idat.t1 = &(snap_->atomData.torque[atom1]); |
399 |
< |
idat.t2 = &(snap_->atomData.torque[atom2]); |
400 |
< |
} |
401 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
402 |
< |
idat.t1 = &(snap_->atomData.force[atom1]); |
403 |
< |
idat.t2 = &(snap_->atomData.force[atom2]); |
404 |
< |
} |
927 |
> |
pairwisePot += *(idat.pot); |
928 |
> |
|
929 |
> |
snap_->atomData.force[atom1] += *(idat.f1); |
930 |
> |
snap_->atomData.force[atom2] -= *(idat.f1); |
931 |
|
#endif |
932 |
|
|
933 |
|
} |
934 |
|
|
409 |
– |
SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
410 |
– |
SelfData sdat; |
411 |
– |
// Still Missing atype, skippedCharge, potVec pot, |
412 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
413 |
– |
sdat.eFrame = &(snap_->atomData.electroFrame[atom1]); |
414 |
– |
} |
415 |
– |
|
416 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
417 |
– |
sdat.t = &(snap_->atomData.torque[atom1]); |
418 |
– |
} |
419 |
– |
|
420 |
– |
if (storageLayout_ & DataStorage::dslDensity) { |
421 |
– |
sdat.rho = &(snap_->atomData.density[atom1]); |
422 |
– |
} |
423 |
– |
|
424 |
– |
if (storageLayout_ & DataStorage::dslFunctional) { |
425 |
– |
sdat.frho = &(snap_->atomData.functional[atom1]); |
426 |
– |
} |
427 |
– |
|
428 |
– |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
429 |
– |
sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); |
430 |
– |
} |
431 |
– |
|
432 |
– |
return sdat; |
433 |
– |
} |
434 |
– |
|
435 |
– |
|
436 |
– |
|
935 |
|
/* |
936 |
|
* buildNeighborList |
937 |
|
* |
941 |
|
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
942 |
|
|
943 |
|
vector<pair<int, int> > neighborList; |
944 |
+ |
groupCutoffs cuts; |
945 |
+ |
bool doAllPairs = false; |
946 |
+ |
|
947 |
|
#ifdef IS_MPI |
948 |
< |
CellListRow.clear(); |
949 |
< |
CellListCol.clear(); |
948 |
> |
cellListRow_.clear(); |
949 |
> |
cellListCol_.clear(); |
950 |
|
#else |
951 |
< |
CellList.clear(); |
951 |
> |
cellList_.clear(); |
952 |
|
#endif |
953 |
|
|
954 |
< |
// dangerous to not do error checking. |
454 |
< |
RealType skinThickness_ = info_->getSimParams()->getSkinThickness(); |
455 |
< |
RealType rCut_; |
456 |
< |
|
457 |
< |
RealType rList_ = (rCut_ + skinThickness_); |
954 |
> |
RealType rList_ = (largestRcut_ + skinThickness_); |
955 |
|
RealType rl2 = rList_ * rList_; |
956 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
957 |
|
Mat3x3d Hmat = snap_->getHmat(); |
958 |
|
Vector3d Hx = Hmat.getColumn(0); |
959 |
|
Vector3d Hy = Hmat.getColumn(1); |
960 |
|
Vector3d Hz = Hmat.getColumn(2); |
464 |
– |
Vector3i nCells; |
961 |
|
|
962 |
< |
nCells.x() = (int) ( Hx.length() )/ rList_; |
963 |
< |
nCells.y() = (int) ( Hy.length() )/ rList_; |
964 |
< |
nCells.z() = (int) ( Hz.length() )/ rList_; |
962 |
> |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
963 |
> |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
964 |
> |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
965 |
|
|
966 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
967 |
+ |
|
968 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
969 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
970 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
971 |
+ |
|
972 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
973 |
|
Vector3d rs, scaled, dr; |
974 |
|
Vector3i whichCell; |
975 |
|
int cellIndex; |
976 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
977 |
|
|
978 |
|
#ifdef IS_MPI |
979 |
< |
for (int i = 0; i < nGroupsInRow_; i++) { |
980 |
< |
rs = cgRowData.position[i]; |
981 |
< |
// scaled positions relative to the box vectors |
982 |
< |
scaled = invHmat * rs; |
983 |
< |
// wrap the vector back into the unit box by subtracting integer box |
481 |
< |
// numbers |
482 |
< |
for (int j = 0; j < 3; j++) |
483 |
< |
scaled[j] -= roundMe(scaled[j]); |
484 |
< |
|
485 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
486 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
487 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
488 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
979 |
> |
cellListRow_.resize(nCtot); |
980 |
> |
cellListCol_.resize(nCtot); |
981 |
> |
#else |
982 |
> |
cellList_.resize(nCtot); |
983 |
> |
#endif |
984 |
|
|
985 |
< |
// find single index of this cell: |
986 |
< |
cellIndex = Vlinear(whichCell, nCells); |
492 |
< |
// add this cutoff group to the list of groups in this cell; |
493 |
< |
CellListRow[cellIndex].push_back(i); |
494 |
< |
} |
985 |
> |
if (!doAllPairs) { |
986 |
> |
#ifdef IS_MPI |
987 |
|
|
988 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
989 |
< |
rs = cgColData.position[i]; |
990 |
< |
// scaled positions relative to the box vectors |
991 |
< |
scaled = invHmat * rs; |
992 |
< |
// wrap the vector back into the unit box by subtracting integer box |
993 |
< |
// numbers |
994 |
< |
for (int j = 0; j < 3; j++) |
995 |
< |
scaled[j] -= roundMe(scaled[j]); |
996 |
< |
|
997 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
998 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
999 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
1000 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
1001 |
< |
|
1002 |
< |
// find single index of this cell: |
1003 |
< |
cellIndex = Vlinear(whichCell, nCells); |
1004 |
< |
// add this cutoff group to the list of groups in this cell; |
1005 |
< |
CellListCol[cellIndex].push_back(i); |
1006 |
< |
} |
988 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
989 |
> |
rs = cgRowData.position[i]; |
990 |
> |
|
991 |
> |
// scaled positions relative to the box vectors |
992 |
> |
scaled = invHmat * rs; |
993 |
> |
|
994 |
> |
// wrap the vector back into the unit box by subtracting integer box |
995 |
> |
// numbers |
996 |
> |
for (int j = 0; j < 3; j++) { |
997 |
> |
scaled[j] -= roundMe(scaled[j]); |
998 |
> |
scaled[j] += 0.5; |
999 |
> |
} |
1000 |
> |
|
1001 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1002 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1003 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1004 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1005 |
> |
|
1006 |
> |
// find single index of this cell: |
1007 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1008 |
> |
|
1009 |
> |
// add this cutoff group to the list of groups in this cell; |
1010 |
> |
cellListRow_[cellIndex].push_back(i); |
1011 |
> |
} |
1012 |
> |
|
1013 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1014 |
> |
rs = cgColData.position[i]; |
1015 |
> |
|
1016 |
> |
// scaled positions relative to the box vectors |
1017 |
> |
scaled = invHmat * rs; |
1018 |
> |
|
1019 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1020 |
> |
// numbers |
1021 |
> |
for (int j = 0; j < 3; j++) { |
1022 |
> |
scaled[j] -= roundMe(scaled[j]); |
1023 |
> |
scaled[j] += 0.5; |
1024 |
> |
} |
1025 |
> |
|
1026 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1027 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1028 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1029 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1030 |
> |
|
1031 |
> |
// find single index of this cell: |
1032 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1033 |
> |
|
1034 |
> |
// add this cutoff group to the list of groups in this cell; |
1035 |
> |
cellListCol_[cellIndex].push_back(i); |
1036 |
> |
} |
1037 |
|
#else |
1038 |
< |
for (int i = 0; i < nGroups_; i++) { |
1039 |
< |
rs = snap_->cgData.position[i]; |
1040 |
< |
// scaled positions relative to the box vectors |
1041 |
< |
scaled = invHmat * rs; |
1042 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1043 |
< |
// numbers |
1044 |
< |
for (int j = 0; j < 3; j++) |
1045 |
< |
scaled[j] -= roundMe(scaled[j]); |
1046 |
< |
|
1047 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1048 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
1049 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
1050 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
1051 |
< |
|
1052 |
< |
// find single index of this cell: |
1053 |
< |
cellIndex = Vlinear(whichCell, nCells); |
1054 |
< |
// add this cutoff group to the list of groups in this cell; |
1055 |
< |
CellList[cellIndex].push_back(i); |
1056 |
< |
} |
1038 |
> |
for (int i = 0; i < nGroups_; i++) { |
1039 |
> |
rs = snap_->cgData.position[i]; |
1040 |
> |
|
1041 |
> |
// scaled positions relative to the box vectors |
1042 |
> |
scaled = invHmat * rs; |
1043 |
> |
|
1044 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1045 |
> |
// numbers |
1046 |
> |
for (int j = 0; j < 3; j++) { |
1047 |
> |
scaled[j] -= roundMe(scaled[j]); |
1048 |
> |
scaled[j] += 0.5; |
1049 |
> |
} |
1050 |
> |
|
1051 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1052 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1053 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1054 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1055 |
> |
|
1056 |
> |
// find single index of this cell: |
1057 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1058 |
> |
|
1059 |
> |
// add this cutoff group to the list of groups in this cell; |
1060 |
> |
cellList_[cellIndex].push_back(i); |
1061 |
> |
} |
1062 |
|
#endif |
1063 |
|
|
1064 |
< |
|
1065 |
< |
|
1066 |
< |
for (int m1z = 0; m1z < nCells.z(); m1z++) { |
1067 |
< |
for (int m1y = 0; m1y < nCells.y(); m1y++) { |
1068 |
< |
for (int m1x = 0; m1x < nCells.x(); m1x++) { |
1069 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1070 |
< |
int m1 = Vlinear(m1v, nCells); |
1071 |
< |
for (int offset = 0; offset < nOffset_; offset++) { |
1072 |
< |
Vector3i m2v = m1v + cellOffsets_[offset]; |
1073 |
< |
|
1074 |
< |
if (m2v.x() >= nCells.x()) { |
1075 |
< |
m2v.x() = 0; |
1076 |
< |
} else if (m2v.x() < 0) { |
1077 |
< |
m2v.x() = nCells.x() - 1; |
1078 |
< |
} |
1079 |
< |
|
1080 |
< |
if (m2v.y() >= nCells.y()) { |
1081 |
< |
m2v.y() = 0; |
1082 |
< |
} else if (m2v.y() < 0) { |
1083 |
< |
m2v.y() = nCells.y() - 1; |
1084 |
< |
} |
1085 |
< |
|
1086 |
< |
if (m2v.z() >= nCells.z()) { |
1087 |
< |
m2v.z() = 0; |
1088 |
< |
} else if (m2v.z() < 0) { |
1089 |
< |
m2v.z() = nCells.z() - 1; |
1090 |
< |
} |
1091 |
< |
|
1092 |
< |
int m2 = Vlinear (m2v, nCells); |
1093 |
< |
|
1064 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1065 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1066 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1067 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1068 |
> |
int m1 = Vlinear(m1v, nCells_); |
1069 |
> |
|
1070 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1071 |
> |
os != cellOffsets_.end(); ++os) { |
1072 |
> |
|
1073 |
> |
Vector3i m2v = m1v + (*os); |
1074 |
> |
|
1075 |
> |
if (m2v.x() >= nCells_.x()) { |
1076 |
> |
m2v.x() = 0; |
1077 |
> |
} else if (m2v.x() < 0) { |
1078 |
> |
m2v.x() = nCells_.x() - 1; |
1079 |
> |
} |
1080 |
> |
|
1081 |
> |
if (m2v.y() >= nCells_.y()) { |
1082 |
> |
m2v.y() = 0; |
1083 |
> |
} else if (m2v.y() < 0) { |
1084 |
> |
m2v.y() = nCells_.y() - 1; |
1085 |
> |
} |
1086 |
> |
|
1087 |
> |
if (m2v.z() >= nCells_.z()) { |
1088 |
> |
m2v.z() = 0; |
1089 |
> |
} else if (m2v.z() < 0) { |
1090 |
> |
m2v.z() = nCells_.z() - 1; |
1091 |
> |
} |
1092 |
> |
|
1093 |
> |
int m2 = Vlinear (m2v, nCells_); |
1094 |
> |
|
1095 |
|
#ifdef IS_MPI |
1096 |
< |
for (vector<int>::iterator j1 = CellListRow[m1].begin(); |
1097 |
< |
j1 != CellListRow[m1].end(); ++j1) { |
1098 |
< |
for (vector<int>::iterator j2 = CellListCol[m2].begin(); |
1099 |
< |
j2 != CellListCol[m2].end(); ++j2) { |
1100 |
< |
|
1101 |
< |
// Always do this if we're in different cells or if |
1102 |
< |
// we're in the same cell and the global index of the |
1103 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1104 |
< |
|
1105 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1106 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1107 |
< |
snap_->wrapVector(dr); |
1108 |
< |
if (dr.lengthSquare() < rl2) { |
1109 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1096 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1097 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1098 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1099 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1100 |
> |
|
1101 |
> |
// Always do this if we're in different cells or if |
1102 |
> |
// we're in the same cell and the global index of the |
1103 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1104 |
> |
|
1105 |
> |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1106 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1107 |
> |
snap_->wrapVector(dr); |
1108 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1109 |
> |
if (dr.lengthSquare() < cuts.third) { |
1110 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1111 |
> |
} |
1112 |
|
} |
1113 |
|
} |
1114 |
|
} |
585 |
– |
} |
1115 |
|
#else |
1116 |
< |
for (vector<int>::iterator j1 = CellList[m1].begin(); |
1117 |
< |
j1 != CellList[m1].end(); ++j1) { |
1118 |
< |
for (vector<int>::iterator j2 = CellList[m2].begin(); |
1119 |
< |
j2 != CellList[m2].end(); ++j2) { |
1120 |
< |
|
1121 |
< |
// Always do this if we're in different cells or if |
1122 |
< |
// we're in the same cell and the global index of the |
1123 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1124 |
< |
|
1125 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1126 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1127 |
< |
snap_->wrapVector(dr); |
1128 |
< |
if (dr.lengthSquare() < rl2) { |
1129 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1116 |
> |
|
1117 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1118 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1119 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1120 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1121 |
> |
|
1122 |
> |
// Always do this if we're in different cells or if |
1123 |
> |
// we're in the same cell and the global index of the |
1124 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1125 |
> |
|
1126 |
> |
if (m2 != m1 || (*j2) < (*j1)) { |
1127 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1128 |
> |
snap_->wrapVector(dr); |
1129 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1130 |
> |
if (dr.lengthSquare() < cuts.third) { |
1131 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1132 |
> |
} |
1133 |
|
} |
1134 |
|
} |
1135 |
|
} |
604 |
– |
} |
1136 |
|
#endif |
1137 |
+ |
} |
1138 |
|
} |
1139 |
|
} |
1140 |
|
} |
1141 |
+ |
} else { |
1142 |
+ |
// branch to do all cutoff group pairs |
1143 |
+ |
#ifdef IS_MPI |
1144 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1145 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1146 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1147 |
+ |
snap_->wrapVector(dr); |
1148 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1149 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1150 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1151 |
+ |
} |
1152 |
+ |
} |
1153 |
+ |
} |
1154 |
+ |
#else |
1155 |
+ |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1156 |
+ |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1157 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1158 |
+ |
snap_->wrapVector(dr); |
1159 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1160 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1161 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1162 |
+ |
} |
1163 |
+ |
} |
1164 |
+ |
} |
1165 |
+ |
#endif |
1166 |
|
} |
1167 |
+ |
|
1168 |
+ |
// save the local cutoff group positions for the check that is |
1169 |
+ |
// done on each loop: |
1170 |
+ |
saved_CG_positions_.clear(); |
1171 |
+ |
for (int i = 0; i < nGroups_; i++) |
1172 |
+ |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1173 |
+ |
|
1174 |
|
return neighborList; |
1175 |
|
} |
1176 |
|
} //end namespace OpenMD |