38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
< |
#include "parallel/ForceDecomposition.hpp" |
41 |
> |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
|
#include "math/SquareMatrix3.hpp" |
43 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
|
#include "brains/SnapshotManager.hpp" |
45 |
+ |
#include "brains/PairList.hpp" |
46 |
|
|
47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
52 |
|
* SimulationSetup |
53 |
|
*/ |
54 |
|
|
55 |
< |
void ForceDecomposition::distributeInitialData() { |
56 |
< |
#ifdef IS_MPI |
57 |
< |
Snapshot* snap = sman_->getCurrentSnapshot(); |
58 |
< |
int nLocal = snap->getNumberOfAtoms(); |
59 |
< |
int nGroups = snap->getNumberOfCutoffGroups(); |
55 |
> |
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
> |
snap_ = sman_->getCurrentSnapshot(); |
57 |
> |
storageLayout_ = sman_->getStorageLayout(); |
58 |
> |
ff_ = info_->getForceField(); |
59 |
> |
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
|
|
61 |
< |
AtomCommIntI = new Communicator<Row,int>(nLocal); |
62 |
< |
AtomCommRealI = new Communicator<Row,RealType>(nLocal); |
63 |
< |
AtomCommVectorI = new Communicator<Row,Vector3d>(nLocal); |
64 |
< |
AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nLocal); |
61 |
> |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
> |
cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
63 |
> |
// gather the information for atomtype IDs (atids): |
64 |
> |
idents = info_->getIdentArray(); |
65 |
> |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
66 |
> |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
67 |
> |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
68 |
> |
massFactors = info_->getMassFactors(); |
69 |
> |
PairList excludes = info_->getExcludedInteractions(); |
70 |
> |
PairList oneTwo = info_->getOneTwoInteractions(); |
71 |
> |
PairList oneThree = info_->getOneThreeInteractions(); |
72 |
> |
PairList oneFour = info_->getOneFourInteractions(); |
73 |
|
|
74 |
< |
AtomCommIntJ = new Communicator<Column,int>(nLocal); |
75 |
< |
AtomCommRealJ = new Communicator<Column,RealType>(nLocal); |
76 |
< |
AtomCommVectorJ = new Communicator<Column,Vector3d>(nLocal); |
77 |
< |
AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nLocal); |
74 |
> |
#ifdef IS_MPI |
75 |
> |
|
76 |
> |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
77 |
> |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 |
> |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 |
> |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 |
> |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
81 |
|
|
82 |
< |
cgCommIntI = new Communicator<Row,int>(nGroups); |
83 |
< |
cgCommVectorI = new Communicator<Row,Vector3d>(nGroups); |
84 |
< |
cgCommIntJ = new Communicator<Column,int>(nGroups); |
85 |
< |
cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups); |
82 |
> |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
83 |
> |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
84 |
> |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
85 |
> |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
86 |
> |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
87 |
|
|
88 |
< |
int nAtomsInRow = AtomCommIntI->getSize(); |
89 |
< |
int nAtomsInCol = AtomCommIntJ->getSize(); |
90 |
< |
int nGroupsInRow = cgCommIntI->getSize(); |
91 |
< |
int nGroupsInCol = cgCommIntJ->getSize(); |
88 |
> |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
89 |
> |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
90 |
> |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
91 |
> |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
92 |
|
|
93 |
< |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
94 |
< |
vector<RealType> (nAtomsInRow, 0.0)); |
95 |
< |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
96 |
< |
vector<RealType> (nAtomsInCol, 0.0)); |
93 |
> |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
94 |
> |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
95 |
> |
nGroupsInRow_ = cgCommIntRow->getSize(); |
96 |
> |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
97 |
> |
|
98 |
> |
// Modify the data storage objects with the correct layouts and sizes: |
99 |
> |
atomRowData.resize(nAtomsInRow_); |
100 |
> |
atomRowData.setStorageLayout(storageLayout_); |
101 |
> |
atomColData.resize(nAtomsInCol_); |
102 |
> |
atomColData.setStorageLayout(storageLayout_); |
103 |
> |
cgRowData.resize(nGroupsInRow_); |
104 |
> |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
105 |
> |
cgColData.resize(nGroupsInCol_); |
106 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
107 |
> |
|
108 |
> |
identsRow.resize(nAtomsInRow_); |
109 |
> |
identsCol.resize(nAtomsInCol_); |
110 |
|
|
111 |
< |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
111 |
> |
AtomCommIntRow->gather(idents, identsRow); |
112 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
113 |
> |
|
114 |
> |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
115 |
> |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
116 |
> |
|
117 |
> |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
118 |
> |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
119 |
|
|
120 |
< |
// gather the information for atomtype IDs (atids): |
121 |
< |
AtomCommIntI->gather(info_->getIdentArray(), identsRow); |
89 |
< |
AtomCommIntJ->gather(info_->getIdentArray(), identsCol); |
120 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
121 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
122 |
|
|
123 |
< |
AtomLocalToGlobal = info_->getLocalToGlobalAtomIndex(); |
124 |
< |
AtomCommIntI->gather(AtomLocalToGlobal, AtomRowToGlobal); |
125 |
< |
AtomCommIntJ->gather(AtomLocalToGlobal, AtomColToGlobal); |
123 |
> |
groupListRow_.clear(); |
124 |
> |
groupListRow_.resize(nGroupsInRow_); |
125 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
126 |
> |
int gid = cgRowToGlobal[i]; |
127 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
128 |
> |
int aid = AtomRowToGlobal[j]; |
129 |
> |
if (globalGroupMembership[aid] == gid) |
130 |
> |
groupListRow_[i].push_back(j); |
131 |
> |
} |
132 |
> |
} |
133 |
|
|
134 |
< |
cgLocalToGlobal = info_->getLocalToGlobalCutoffGroupIndex(); |
135 |
< |
cgCommIntI->gather(cgLocalToGlobal, cgRowToGlobal); |
136 |
< |
cgCommIntJ->gather(cgLocalToGlobal, cgColToGlobal); |
134 |
> |
groupListCol_.clear(); |
135 |
> |
groupListCol_.resize(nGroupsInCol_); |
136 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
137 |
> |
int gid = cgColToGlobal[i]; |
138 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
139 |
> |
int aid = AtomColToGlobal[j]; |
140 |
> |
if (globalGroupMembership[aid] == gid) |
141 |
> |
groupListCol_[i].push_back(j); |
142 |
> |
} |
143 |
> |
} |
144 |
|
|
145 |
+ |
skipsForAtom.clear(); |
146 |
+ |
skipsForAtom.resize(nAtomsInRow_); |
147 |
+ |
toposForAtom.clear(); |
148 |
+ |
toposForAtom.resize(nAtomsInRow_); |
149 |
+ |
topoDist.clear(); |
150 |
+ |
topoDist.resize(nAtomsInRow_); |
151 |
+ |
for (int i = 0; i < nAtomsInRow_; i++) { |
152 |
+ |
int iglob = AtomRowToGlobal[i]; |
153 |
+ |
|
154 |
+ |
for (int j = 0; j < nAtomsInCol_; j++) { |
155 |
+ |
int jglob = AtomColToGlobal[j]; |
156 |
+ |
|
157 |
+ |
if (excludes.hasPair(iglob, jglob)) |
158 |
+ |
skipsForAtom[i].push_back(j); |
159 |
+ |
|
160 |
+ |
if (oneTwo.hasPair(iglob, jglob)) { |
161 |
+ |
toposForAtom[i].push_back(j); |
162 |
+ |
topoDist[i].push_back(1); |
163 |
+ |
} else { |
164 |
+ |
if (oneThree.hasPair(iglob, jglob)) { |
165 |
+ |
toposForAtom[i].push_back(j); |
166 |
+ |
topoDist[i].push_back(2); |
167 |
+ |
} else { |
168 |
+ |
if (oneFour.hasPair(iglob, jglob)) { |
169 |
+ |
toposForAtom[i].push_back(j); |
170 |
+ |
topoDist[i].push_back(3); |
171 |
+ |
} |
172 |
+ |
} |
173 |
+ |
} |
174 |
+ |
} |
175 |
+ |
} |
176 |
+ |
|
177 |
+ |
#endif |
178 |
+ |
|
179 |
+ |
groupList_.clear(); |
180 |
+ |
groupList_.resize(nGroups_); |
181 |
+ |
for (int i = 0; i < nGroups_; i++) { |
182 |
+ |
int gid = cgLocalToGlobal[i]; |
183 |
+ |
for (int j = 0; j < nLocal_; j++) { |
184 |
+ |
int aid = AtomLocalToGlobal[j]; |
185 |
+ |
if (globalGroupMembership[aid] == gid) { |
186 |
+ |
groupList_[i].push_back(j); |
187 |
+ |
} |
188 |
+ |
} |
189 |
+ |
} |
190 |
+ |
|
191 |
+ |
skipsForAtom.clear(); |
192 |
+ |
skipsForAtom.resize(nLocal_); |
193 |
+ |
toposForAtom.clear(); |
194 |
+ |
toposForAtom.resize(nLocal_); |
195 |
+ |
topoDist.clear(); |
196 |
+ |
topoDist.resize(nLocal_); |
197 |
+ |
|
198 |
+ |
for (int i = 0; i < nLocal_; i++) { |
199 |
+ |
int iglob = AtomLocalToGlobal[i]; |
200 |
+ |
|
201 |
+ |
for (int j = 0; j < nLocal_; j++) { |
202 |
+ |
int jglob = AtomLocalToGlobal[j]; |
203 |
+ |
|
204 |
+ |
if (excludes.hasPair(iglob, jglob)) |
205 |
+ |
skipsForAtom[i].push_back(j); |
206 |
+ |
|
207 |
+ |
if (oneTwo.hasPair(iglob, jglob)) { |
208 |
+ |
toposForAtom[i].push_back(j); |
209 |
+ |
topoDist[i].push_back(1); |
210 |
+ |
} else { |
211 |
+ |
if (oneThree.hasPair(iglob, jglob)) { |
212 |
+ |
toposForAtom[i].push_back(j); |
213 |
+ |
topoDist[i].push_back(2); |
214 |
+ |
} else { |
215 |
+ |
if (oneFour.hasPair(iglob, jglob)) { |
216 |
+ |
toposForAtom[i].push_back(j); |
217 |
+ |
topoDist[i].push_back(3); |
218 |
+ |
} |
219 |
+ |
} |
220 |
+ |
} |
221 |
+ |
} |
222 |
+ |
} |
223 |
+ |
|
224 |
+ |
createGtypeCutoffMap(); |
225 |
+ |
} |
226 |
+ |
|
227 |
+ |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
228 |
+ |
|
229 |
+ |
RealType tol = 1e-6; |
230 |
+ |
RealType rc; |
231 |
+ |
int atid; |
232 |
+ |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
233 |
+ |
vector<RealType> atypeCutoff; |
234 |
+ |
atypeCutoff.resize( atypes.size() ); |
235 |
|
|
236 |
+ |
for (set<AtomType*>::iterator at = atypes.begin(); |
237 |
+ |
at != atypes.end(); ++at){ |
238 |
+ |
atid = (*at)->getIdent(); |
239 |
+ |
|
240 |
+ |
if (userChoseCutoff_) |
241 |
+ |
atypeCutoff[atid] = userCutoff_; |
242 |
+ |
else |
243 |
+ |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
244 |
+ |
} |
245 |
+ |
|
246 |
+ |
vector<RealType> gTypeCutoffs; |
247 |
+ |
|
248 |
+ |
// first we do a single loop over the cutoff groups to find the |
249 |
+ |
// largest cutoff for any atypes present in this group. |
250 |
+ |
#ifdef IS_MPI |
251 |
+ |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
252 |
+ |
groupRowToGtype.resize(nGroupsInRow_); |
253 |
+ |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
254 |
+ |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
255 |
+ |
for (vector<int>::iterator ia = atomListRow.begin(); |
256 |
+ |
ia != atomListRow.end(); ++ia) { |
257 |
+ |
int atom1 = (*ia); |
258 |
+ |
atid = identsRow[atom1]; |
259 |
+ |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
260 |
+ |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
261 |
+ |
} |
262 |
+ |
} |
263 |
+ |
|
264 |
+ |
bool gTypeFound = false; |
265 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
266 |
+ |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
267 |
+ |
groupRowToGtype[cg1] = gt; |
268 |
+ |
gTypeFound = true; |
269 |
+ |
} |
270 |
+ |
} |
271 |
+ |
if (!gTypeFound) { |
272 |
+ |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
273 |
+ |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
274 |
+ |
} |
275 |
|
|
276 |
+ |
} |
277 |
+ |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
278 |
+ |
groupColToGtype.resize(nGroupsInCol_); |
279 |
+ |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
280 |
+ |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
281 |
+ |
for (vector<int>::iterator jb = atomListCol.begin(); |
282 |
+ |
jb != atomListCol.end(); ++jb) { |
283 |
+ |
int atom2 = (*jb); |
284 |
+ |
atid = identsCol[atom2]; |
285 |
+ |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
286 |
+ |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
287 |
+ |
} |
288 |
+ |
} |
289 |
+ |
bool gTypeFound = false; |
290 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
291 |
+ |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
292 |
+ |
groupColToGtype[cg2] = gt; |
293 |
+ |
gTypeFound = true; |
294 |
+ |
} |
295 |
+ |
} |
296 |
+ |
if (!gTypeFound) { |
297 |
+ |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
298 |
+ |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
299 |
+ |
} |
300 |
+ |
} |
301 |
+ |
#else |
302 |
|
|
303 |
+ |
vector<RealType> groupCutoff(nGroups_, 0.0); |
304 |
+ |
groupToGtype.resize(nGroups_); |
305 |
|
|
306 |
+ |
cerr << "nGroups = " << nGroups_ << "\n"; |
307 |
+ |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
308 |
|
|
309 |
< |
// still need: |
310 |
< |
// topoDist |
311 |
< |
// exclude |
309 |
> |
groupCutoff[cg1] = 0.0; |
310 |
> |
vector<int> atomList = getAtomsInGroupRow(cg1); |
311 |
> |
|
312 |
> |
for (vector<int>::iterator ia = atomList.begin(); |
313 |
> |
ia != atomList.end(); ++ia) { |
314 |
> |
int atom1 = (*ia); |
315 |
> |
atid = idents[atom1]; |
316 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
317 |
> |
groupCutoff[cg1] = atypeCutoff[atid]; |
318 |
> |
} |
319 |
> |
} |
320 |
> |
|
321 |
> |
bool gTypeFound = false; |
322 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
323 |
> |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
324 |
> |
groupToGtype[cg1] = gt; |
325 |
> |
gTypeFound = true; |
326 |
> |
} |
327 |
> |
} |
328 |
> |
if (!gTypeFound) { |
329 |
> |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
330 |
> |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
331 |
> |
} |
332 |
> |
} |
333 |
|
#endif |
334 |
+ |
|
335 |
+ |
cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
336 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
337 |
+ |
|
338 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
339 |
+ |
|
340 |
+ |
#ifdef IS_MPI |
341 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
342 |
+ |
#endif |
343 |
+ |
|
344 |
+ |
RealType tradRcut = groupMax; |
345 |
+ |
|
346 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
347 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
348 |
+ |
RealType thisRcut; |
349 |
+ |
switch(cutoffPolicy_) { |
350 |
+ |
case TRADITIONAL: |
351 |
+ |
thisRcut = tradRcut; |
352 |
+ |
break; |
353 |
+ |
case MIX: |
354 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
355 |
+ |
break; |
356 |
+ |
case MAX: |
357 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
358 |
+ |
break; |
359 |
+ |
default: |
360 |
+ |
sprintf(painCave.errMsg, |
361 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
362 |
+ |
"hit an unknown cutoff policy!\n"); |
363 |
+ |
painCave.severity = OPENMD_ERROR; |
364 |
+ |
painCave.isFatal = 1; |
365 |
+ |
simError(); |
366 |
+ |
break; |
367 |
+ |
} |
368 |
+ |
|
369 |
+ |
pair<int,int> key = make_pair(i,j); |
370 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
371 |
+ |
|
372 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
373 |
+ |
|
374 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
375 |
+ |
|
376 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
377 |
+ |
|
378 |
+ |
// sanity check |
379 |
+ |
|
380 |
+ |
if (userChoseCutoff_) { |
381 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
382 |
+ |
sprintf(painCave.errMsg, |
383 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
384 |
+ |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
385 |
+ |
painCave.severity = OPENMD_ERROR; |
386 |
+ |
painCave.isFatal = 1; |
387 |
+ |
simError(); |
388 |
+ |
} |
389 |
+ |
} |
390 |
+ |
} |
391 |
+ |
} |
392 |
|
} |
393 |
+ |
|
394 |
+ |
|
395 |
+ |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
396 |
+ |
int i, j; |
397 |
+ |
#ifdef IS_MPI |
398 |
+ |
i = groupRowToGtype[cg1]; |
399 |
+ |
j = groupColToGtype[cg2]; |
400 |
+ |
#else |
401 |
+ |
i = groupToGtype[cg1]; |
402 |
+ |
j = groupToGtype[cg2]; |
403 |
+ |
#endif |
404 |
+ |
return gTypeCutoffMap[make_pair(i,j)]; |
405 |
+ |
} |
406 |
+ |
|
407 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
408 |
+ |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
409 |
+ |
if (toposForAtom[atom1][j] == atom2) |
410 |
+ |
return topoDist[atom1][j]; |
411 |
+ |
} |
412 |
+ |
return 0; |
413 |
+ |
} |
414 |
+ |
|
415 |
+ |
void ForceMatrixDecomposition::zeroWorkArrays() { |
416 |
+ |
pairwisePot = 0.0; |
417 |
+ |
embeddingPot = 0.0; |
418 |
+ |
|
419 |
+ |
#ifdef IS_MPI |
420 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
421 |
+ |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
422 |
+ |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
423 |
+ |
} |
424 |
+ |
|
425 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
426 |
+ |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
427 |
+ |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
428 |
+ |
} |
429 |
|
|
430 |
+ |
fill(pot_row.begin(), pot_row.end(), |
431 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
432 |
|
|
433 |
+ |
fill(pot_col.begin(), pot_col.end(), |
434 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
435 |
|
|
436 |
< |
void ForceDecomposition::distributeData() { |
436 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
437 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
438 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
439 |
> |
} |
440 |
> |
|
441 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
442 |
> |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
443 |
> |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
444 |
> |
} |
445 |
> |
|
446 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
447 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
448 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
449 |
> |
} |
450 |
> |
|
451 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
452 |
> |
fill(atomRowData.functionalDerivative.begin(), |
453 |
> |
atomRowData.functionalDerivative.end(), 0.0); |
454 |
> |
fill(atomColData.functionalDerivative.begin(), |
455 |
> |
atomColData.functionalDerivative.end(), 0.0); |
456 |
> |
} |
457 |
> |
|
458 |
> |
#else |
459 |
> |
|
460 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
461 |
> |
fill(snap_->atomData.particlePot.begin(), |
462 |
> |
snap_->atomData.particlePot.end(), 0.0); |
463 |
> |
} |
464 |
> |
|
465 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
466 |
> |
fill(snap_->atomData.density.begin(), |
467 |
> |
snap_->atomData.density.end(), 0.0); |
468 |
> |
} |
469 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
470 |
> |
fill(snap_->atomData.functional.begin(), |
471 |
> |
snap_->atomData.functional.end(), 0.0); |
472 |
> |
} |
473 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
474 |
> |
fill(snap_->atomData.functionalDerivative.begin(), |
475 |
> |
snap_->atomData.functionalDerivative.end(), 0.0); |
476 |
> |
} |
477 |
> |
#endif |
478 |
> |
|
479 |
> |
} |
480 |
> |
|
481 |
> |
|
482 |
> |
void ForceMatrixDecomposition::distributeData() { |
483 |
> |
snap_ = sman_->getCurrentSnapshot(); |
484 |
> |
storageLayout_ = sman_->getStorageLayout(); |
485 |
|
#ifdef IS_MPI |
114 |
– |
Snapshot* snap = sman_->getCurrentSnapshot(); |
486 |
|
|
487 |
|
// gather up the atomic positions |
488 |
< |
AtomCommVectorI->gather(snap->atomData.position, |
489 |
< |
snap->atomIData.position); |
490 |
< |
AtomCommVectorJ->gather(snap->atomData.position, |
491 |
< |
snap->atomJData.position); |
488 |
> |
AtomCommVectorRow->gather(snap_->atomData.position, |
489 |
> |
atomRowData.position); |
490 |
> |
AtomCommVectorColumn->gather(snap_->atomData.position, |
491 |
> |
atomColData.position); |
492 |
|
|
493 |
|
// gather up the cutoff group positions |
494 |
< |
cgCommVectorI->gather(snap->cgData.position, |
495 |
< |
snap->cgIData.position); |
496 |
< |
cgCommVectorJ->gather(snap->cgData.position, |
497 |
< |
snap->cgJData.position); |
494 |
> |
cgCommVectorRow->gather(snap_->cgData.position, |
495 |
> |
cgRowData.position); |
496 |
> |
cgCommVectorColumn->gather(snap_->cgData.position, |
497 |
> |
cgColData.position); |
498 |
|
|
499 |
|
// if needed, gather the atomic rotation matrices |
500 |
< |
if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) { |
501 |
< |
AtomCommMatrixI->gather(snap->atomData.aMat, |
502 |
< |
snap->atomIData.aMat); |
503 |
< |
AtomCommMatrixJ->gather(snap->atomData.aMat, |
504 |
< |
snap->atomJData.aMat); |
500 |
> |
if (storageLayout_ & DataStorage::dslAmat) { |
501 |
> |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
502 |
> |
atomRowData.aMat); |
503 |
> |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
504 |
> |
atomColData.aMat); |
505 |
|
} |
506 |
|
|
507 |
|
// if needed, gather the atomic eletrostatic frames |
508 |
< |
if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) { |
509 |
< |
AtomCommMatrixI->gather(snap->atomData.electroFrame, |
510 |
< |
snap->atomIData.electroFrame); |
511 |
< |
AtomCommMatrixJ->gather(snap->atomData.electroFrame, |
512 |
< |
snap->atomJData.electroFrame); |
508 |
> |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
509 |
> |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
510 |
> |
atomRowData.electroFrame); |
511 |
> |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
512 |
> |
atomColData.electroFrame); |
513 |
|
} |
514 |
|
#endif |
515 |
|
} |
516 |
|
|
517 |
< |
void ForceDecomposition::collectIntermediateData() { |
517 |
> |
/* collects information obtained during the pre-pair loop onto local |
518 |
> |
* data structures. |
519 |
> |
*/ |
520 |
> |
void ForceMatrixDecomposition::collectIntermediateData() { |
521 |
> |
snap_ = sman_->getCurrentSnapshot(); |
522 |
> |
storageLayout_ = sman_->getStorageLayout(); |
523 |
|
#ifdef IS_MPI |
148 |
– |
Snapshot* snap = sman_->getCurrentSnapshot(); |
524 |
|
|
525 |
< |
if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) { |
526 |
< |
|
527 |
< |
AtomCommRealI->scatter(snap->atomIData.density, |
528 |
< |
snap->atomData.density); |
529 |
< |
|
530 |
< |
int n = snap->atomData.density.size(); |
531 |
< |
std::vector<RealType> rho_tmp(n, 0.0); |
532 |
< |
AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp); |
525 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
526 |
> |
|
527 |
> |
AtomCommRealRow->scatter(atomRowData.density, |
528 |
> |
snap_->atomData.density); |
529 |
> |
|
530 |
> |
int n = snap_->atomData.density.size(); |
531 |
> |
vector<RealType> rho_tmp(n, 0.0); |
532 |
> |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
533 |
|
for (int i = 0; i < n; i++) |
534 |
< |
snap->atomData.density[i] += rho_tmp[i]; |
534 |
> |
snap_->atomData.density[i] += rho_tmp[i]; |
535 |
|
} |
536 |
|
#endif |
537 |
|
} |
538 |
< |
|
539 |
< |
void ForceDecomposition::distributeIntermediateData() { |
538 |
> |
|
539 |
> |
/* |
540 |
> |
* redistributes information obtained during the pre-pair loop out to |
541 |
> |
* row and column-indexed data structures |
542 |
> |
*/ |
543 |
> |
void ForceMatrixDecomposition::distributeIntermediateData() { |
544 |
> |
snap_ = sman_->getCurrentSnapshot(); |
545 |
> |
storageLayout_ = sman_->getStorageLayout(); |
546 |
|
#ifdef IS_MPI |
547 |
< |
Snapshot* snap = sman_->getCurrentSnapshot(); |
548 |
< |
if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) { |
549 |
< |
AtomCommRealI->gather(snap->atomData.functional, |
550 |
< |
snap->atomIData.functional); |
551 |
< |
AtomCommRealJ->gather(snap->atomData.functional, |
171 |
< |
snap->atomJData.functional); |
547 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
548 |
> |
AtomCommRealRow->gather(snap_->atomData.functional, |
549 |
> |
atomRowData.functional); |
550 |
> |
AtomCommRealColumn->gather(snap_->atomData.functional, |
551 |
> |
atomColData.functional); |
552 |
|
} |
553 |
|
|
554 |
< |
if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) { |
555 |
< |
AtomCommRealI->gather(snap->atomData.functionalDerivative, |
556 |
< |
snap->atomIData.functionalDerivative); |
557 |
< |
AtomCommRealJ->gather(snap->atomData.functionalDerivative, |
558 |
< |
snap->atomJData.functionalDerivative); |
554 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
555 |
> |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
556 |
> |
atomRowData.functionalDerivative); |
557 |
> |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
558 |
> |
atomColData.functionalDerivative); |
559 |
|
} |
560 |
|
#endif |
561 |
|
} |
562 |
|
|
563 |
|
|
564 |
< |
void ForceDecomposition::collectData() { |
565 |
< |
#ifdef IS_MPI |
566 |
< |
Snapshot* snap = sman_->getCurrentSnapshot(); |
567 |
< |
|
568 |
< |
int n = snap->atomData.force.size(); |
564 |
> |
void ForceMatrixDecomposition::collectData() { |
565 |
> |
snap_ = sman_->getCurrentSnapshot(); |
566 |
> |
storageLayout_ = sman_->getStorageLayout(); |
567 |
> |
#ifdef IS_MPI |
568 |
> |
int n = snap_->atomData.force.size(); |
569 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
570 |
|
|
571 |
< |
AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp); |
571 |
> |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
572 |
|
for (int i = 0; i < n; i++) { |
573 |
< |
snap->atomData.force[i] += frc_tmp[i]; |
573 |
> |
snap_->atomData.force[i] += frc_tmp[i]; |
574 |
|
frc_tmp[i] = 0.0; |
575 |
|
} |
576 |
|
|
577 |
< |
AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp); |
577 |
> |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
578 |
|
for (int i = 0; i < n; i++) |
579 |
< |
snap->atomData.force[i] += frc_tmp[i]; |
579 |
> |
snap_->atomData.force[i] += frc_tmp[i]; |
580 |
|
|
581 |
|
|
582 |
< |
if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) { |
582 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
583 |
|
|
584 |
< |
int nt = snap->atomData.force.size(); |
584 |
> |
int nt = snap_->atomData.force.size(); |
585 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
586 |
|
|
587 |
< |
AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp); |
587 |
> |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
588 |
|
for (int i = 0; i < n; i++) { |
589 |
< |
snap->atomData.torque[i] += trq_tmp[i]; |
589 |
> |
snap_->atomData.torque[i] += trq_tmp[i]; |
590 |
|
trq_tmp[i] = 0.0; |
591 |
|
} |
592 |
|
|
593 |
< |
AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp); |
593 |
> |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
594 |
|
for (int i = 0; i < n; i++) |
595 |
< |
snap->atomData.torque[i] += trq_tmp[i]; |
595 |
> |
snap_->atomData.torque[i] += trq_tmp[i]; |
596 |
|
} |
597 |
|
|
598 |
< |
int nLocal = snap->getNumberOfAtoms(); |
598 |
> |
nLocal_ = snap_->getNumberOfAtoms(); |
599 |
|
|
600 |
< |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
601 |
< |
vector<RealType> (nLocal, 0.0)); |
600 |
> |
vector<potVec> pot_temp(nLocal_, |
601 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
602 |
> |
|
603 |
> |
// scatter/gather pot_row into the members of my column |
604 |
> |
|
605 |
> |
AtomCommPotRow->scatter(pot_row, pot_temp); |
606 |
> |
|
607 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
608 |
> |
pairwisePot += pot_temp[ii]; |
609 |
|
|
610 |
< |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
611 |
< |
AtomCommRealI->scatter(pot_row[i], pot_temp[i]); |
612 |
< |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
613 |
< |
pot_local[i] += pot_temp[i][ii]; |
614 |
< |
} |
610 |
> |
fill(pot_temp.begin(), pot_temp.end(), |
611 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
612 |
> |
|
613 |
> |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
614 |
> |
|
615 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
616 |
> |
pairwisePot += pot_temp[ii]; |
617 |
> |
#endif |
618 |
> |
|
619 |
> |
} |
620 |
> |
|
621 |
> |
int ForceMatrixDecomposition::getNAtomsInRow() { |
622 |
> |
#ifdef IS_MPI |
623 |
> |
return nAtomsInRow_; |
624 |
> |
#else |
625 |
> |
return nLocal_; |
626 |
> |
#endif |
627 |
> |
} |
628 |
> |
|
629 |
> |
/** |
630 |
> |
* returns the list of atoms belonging to this group. |
631 |
> |
*/ |
632 |
> |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
633 |
> |
#ifdef IS_MPI |
634 |
> |
return groupListRow_[cg1]; |
635 |
> |
#else |
636 |
> |
return groupList_[cg1]; |
637 |
> |
#endif |
638 |
> |
} |
639 |
> |
|
640 |
> |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
641 |
> |
#ifdef IS_MPI |
642 |
> |
return groupListCol_[cg2]; |
643 |
> |
#else |
644 |
> |
return groupList_[cg2]; |
645 |
> |
#endif |
646 |
> |
} |
647 |
> |
|
648 |
> |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
649 |
> |
Vector3d d; |
650 |
> |
|
651 |
> |
#ifdef IS_MPI |
652 |
> |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
653 |
> |
#else |
654 |
> |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
655 |
> |
#endif |
656 |
> |
|
657 |
> |
snap_->wrapVector(d); |
658 |
> |
return d; |
659 |
> |
} |
660 |
> |
|
661 |
> |
|
662 |
> |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
663 |
> |
|
664 |
> |
Vector3d d; |
665 |
> |
|
666 |
> |
#ifdef IS_MPI |
667 |
> |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
668 |
> |
#else |
669 |
> |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
670 |
> |
#endif |
671 |
> |
|
672 |
> |
snap_->wrapVector(d); |
673 |
> |
return d; |
674 |
> |
} |
675 |
> |
|
676 |
> |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
677 |
> |
Vector3d d; |
678 |
> |
|
679 |
> |
#ifdef IS_MPI |
680 |
> |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
681 |
> |
#else |
682 |
> |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
683 |
> |
#endif |
684 |
> |
|
685 |
> |
snap_->wrapVector(d); |
686 |
> |
return d; |
687 |
> |
} |
688 |
> |
|
689 |
> |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
690 |
> |
#ifdef IS_MPI |
691 |
> |
return massFactorsRow[atom1]; |
692 |
> |
#else |
693 |
> |
return massFactors[atom1]; |
694 |
> |
#endif |
695 |
> |
} |
696 |
> |
|
697 |
> |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
698 |
> |
#ifdef IS_MPI |
699 |
> |
return massFactorsCol[atom2]; |
700 |
> |
#else |
701 |
> |
return massFactors[atom2]; |
702 |
> |
#endif |
703 |
> |
|
704 |
> |
} |
705 |
> |
|
706 |
> |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
707 |
> |
Vector3d d; |
708 |
> |
|
709 |
> |
#ifdef IS_MPI |
710 |
> |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
711 |
> |
#else |
712 |
> |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
713 |
> |
#endif |
714 |
> |
|
715 |
> |
snap_->wrapVector(d); |
716 |
> |
return d; |
717 |
> |
} |
718 |
> |
|
719 |
> |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
720 |
> |
return skipsForAtom[atom1]; |
721 |
> |
} |
722 |
> |
|
723 |
> |
/** |
724 |
> |
* There are a number of reasons to skip a pair or a |
725 |
> |
* particle. Mostly we do this to exclude atoms who are involved in |
726 |
> |
* short range interactions (bonds, bends, torsions), but we also |
727 |
> |
* need to exclude some overcounted interactions that result from |
728 |
> |
* the parallel decomposition. |
729 |
> |
*/ |
730 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
731 |
> |
int unique_id_1, unique_id_2; |
732 |
> |
|
733 |
> |
#ifdef IS_MPI |
734 |
> |
// in MPI, we have to look up the unique IDs for each atom |
735 |
> |
unique_id_1 = AtomRowToGlobal[atom1]; |
736 |
> |
unique_id_2 = AtomColToGlobal[atom2]; |
737 |
> |
|
738 |
> |
// this situation should only arise in MPI simulations |
739 |
> |
if (unique_id_1 == unique_id_2) return true; |
740 |
> |
|
741 |
> |
// this prevents us from doing the pair on multiple processors |
742 |
> |
if (unique_id_1 < unique_id_2) { |
743 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
744 |
> |
} else { |
745 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
746 |
> |
} |
747 |
> |
#else |
748 |
> |
// in the normal loop, the atom numbers are unique |
749 |
> |
unique_id_1 = atom1; |
750 |
> |
unique_id_2 = atom2; |
751 |
> |
#endif |
752 |
> |
|
753 |
> |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
754 |
> |
i != skipsForAtom[atom1].end(); ++i) { |
755 |
> |
if ( (*i) == unique_id_2 ) return true; |
756 |
> |
} |
757 |
> |
|
758 |
> |
return false; |
759 |
> |
} |
760 |
> |
|
761 |
> |
|
762 |
> |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
763 |
> |
#ifdef IS_MPI |
764 |
> |
atomRowData.force[atom1] += fg; |
765 |
> |
#else |
766 |
> |
snap_->atomData.force[atom1] += fg; |
767 |
> |
#endif |
768 |
> |
} |
769 |
> |
|
770 |
> |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
771 |
> |
#ifdef IS_MPI |
772 |
> |
atomColData.force[atom2] += fg; |
773 |
> |
#else |
774 |
> |
snap_->atomData.force[atom2] += fg; |
775 |
> |
#endif |
776 |
> |
} |
777 |
> |
|
778 |
> |
// filling interaction blocks with pointers |
779 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
780 |
> |
int atom1, int atom2) { |
781 |
> |
#ifdef IS_MPI |
782 |
> |
|
783 |
> |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
784 |
> |
ff_->getAtomType(identsCol[atom2]) ); |
785 |
> |
|
786 |
> |
if (storageLayout_ & DataStorage::dslAmat) { |
787 |
> |
idat.A1 = &(atomRowData.aMat[atom1]); |
788 |
> |
idat.A2 = &(atomColData.aMat[atom2]); |
789 |
> |
} |
790 |
> |
|
791 |
> |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
792 |
> |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
793 |
> |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
794 |
> |
} |
795 |
> |
|
796 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
797 |
> |
idat.t1 = &(atomRowData.torque[atom1]); |
798 |
> |
idat.t2 = &(atomColData.torque[atom2]); |
799 |
> |
} |
800 |
> |
|
801 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
802 |
> |
idat.rho1 = &(atomRowData.density[atom1]); |
803 |
> |
idat.rho2 = &(atomColData.density[atom2]); |
804 |
> |
} |
805 |
> |
|
806 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
807 |
> |
idat.frho1 = &(atomRowData.functional[atom1]); |
808 |
> |
idat.frho2 = &(atomColData.functional[atom2]); |
809 |
> |
} |
810 |
> |
|
811 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
812 |
> |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
813 |
> |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
814 |
> |
} |
815 |
> |
|
816 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
817 |
> |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
818 |
> |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
819 |
> |
} |
820 |
> |
|
821 |
> |
#else |
822 |
> |
|
823 |
> |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
824 |
> |
ff_->getAtomType(idents[atom2]) ); |
825 |
> |
|
826 |
> |
if (storageLayout_ & DataStorage::dslAmat) { |
827 |
> |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
828 |
> |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
829 |
> |
} |
830 |
> |
|
831 |
> |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
832 |
> |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
833 |
> |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
834 |
> |
} |
835 |
> |
|
836 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
837 |
> |
idat.t1 = &(snap_->atomData.torque[atom1]); |
838 |
> |
idat.t2 = &(snap_->atomData.torque[atom2]); |
839 |
> |
} |
840 |
> |
|
841 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
842 |
> |
idat.rho1 = &(snap_->atomData.density[atom1]); |
843 |
> |
idat.rho2 = &(snap_->atomData.density[atom2]); |
844 |
> |
} |
845 |
> |
|
846 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
847 |
> |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
848 |
> |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
849 |
> |
} |
850 |
> |
|
851 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
852 |
> |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
853 |
> |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
854 |
|
} |
855 |
+ |
|
856 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
857 |
+ |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
858 |
+ |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
859 |
+ |
} |
860 |
+ |
|
861 |
|
#endif |
862 |
|
} |
863 |
+ |
|
864 |
|
|
865 |
+ |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
866 |
+ |
#ifdef IS_MPI |
867 |
+ |
pot_row[atom1] += 0.5 * *(idat.pot); |
868 |
+ |
pot_col[atom2] += 0.5 * *(idat.pot); |
869 |
+ |
|
870 |
+ |
atomRowData.force[atom1] += *(idat.f1); |
871 |
+ |
atomColData.force[atom2] -= *(idat.f1); |
872 |
+ |
#else |
873 |
+ |
pairwisePot += *(idat.pot); |
874 |
+ |
|
875 |
+ |
snap_->atomData.force[atom1] += *(idat.f1); |
876 |
+ |
snap_->atomData.force[atom2] -= *(idat.f1); |
877 |
+ |
#endif |
878 |
+ |
|
879 |
+ |
} |
880 |
+ |
|
881 |
+ |
|
882 |
+ |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
883 |
+ |
int atom1, int atom2) { |
884 |
+ |
// Still Missing:: skippedCharge fill must be added to DataStorage |
885 |
+ |
#ifdef IS_MPI |
886 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
887 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
888 |
+ |
|
889 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
890 |
+ |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
891 |
+ |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
892 |
+ |
} |
893 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
894 |
+ |
idat.t1 = &(atomRowData.torque[atom1]); |
895 |
+ |
idat.t2 = &(atomColData.torque[atom2]); |
896 |
+ |
} |
897 |
+ |
#else |
898 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
899 |
+ |
ff_->getAtomType(idents[atom2]) ); |
900 |
+ |
|
901 |
+ |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
902 |
+ |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
903 |
+ |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
904 |
+ |
} |
905 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
906 |
+ |
idat.t1 = &(snap_->atomData.torque[atom1]); |
907 |
+ |
idat.t2 = &(snap_->atomData.torque[atom2]); |
908 |
+ |
} |
909 |
+ |
#endif |
910 |
+ |
} |
911 |
+ |
|
912 |
+ |
|
913 |
+ |
void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
914 |
+ |
#ifdef IS_MPI |
915 |
+ |
pot_row[atom1] += 0.5 * *(idat.pot); |
916 |
+ |
pot_col[atom2] += 0.5 * *(idat.pot); |
917 |
+ |
#else |
918 |
+ |
pairwisePot += *(idat.pot); |
919 |
+ |
#endif |
920 |
+ |
|
921 |
+ |
} |
922 |
+ |
|
923 |
+ |
|
924 |
+ |
/* |
925 |
+ |
* buildNeighborList |
926 |
+ |
* |
927 |
+ |
* first element of pair is row-indexed CutoffGroup |
928 |
+ |
* second element of pair is column-indexed CutoffGroup |
929 |
+ |
*/ |
930 |
+ |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
931 |
+ |
|
932 |
+ |
vector<pair<int, int> > neighborList; |
933 |
+ |
groupCutoffs cuts; |
934 |
+ |
#ifdef IS_MPI |
935 |
+ |
cellListRow_.clear(); |
936 |
+ |
cellListCol_.clear(); |
937 |
+ |
#else |
938 |
+ |
cellList_.clear(); |
939 |
+ |
#endif |
940 |
+ |
|
941 |
+ |
RealType rList_ = (largestRcut_ + skinThickness_); |
942 |
+ |
RealType rl2 = rList_ * rList_; |
943 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
944 |
+ |
Mat3x3d Hmat = snap_->getHmat(); |
945 |
+ |
Vector3d Hx = Hmat.getColumn(0); |
946 |
+ |
Vector3d Hy = Hmat.getColumn(1); |
947 |
+ |
Vector3d Hz = Hmat.getColumn(2); |
948 |
+ |
|
949 |
+ |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
950 |
+ |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
951 |
+ |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
952 |
+ |
|
953 |
+ |
Mat3x3d invHmat = snap_->getInvHmat(); |
954 |
+ |
Vector3d rs, scaled, dr; |
955 |
+ |
Vector3i whichCell; |
956 |
+ |
int cellIndex; |
957 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
958 |
+ |
|
959 |
+ |
#ifdef IS_MPI |
960 |
+ |
cellListRow_.resize(nCtot); |
961 |
+ |
cellListCol_.resize(nCtot); |
962 |
+ |
#else |
963 |
+ |
cellList_.resize(nCtot); |
964 |
+ |
#endif |
965 |
+ |
|
966 |
+ |
#ifdef IS_MPI |
967 |
+ |
for (int i = 0; i < nGroupsInRow_; i++) { |
968 |
+ |
rs = cgRowData.position[i]; |
969 |
+ |
|
970 |
+ |
// scaled positions relative to the box vectors |
971 |
+ |
scaled = invHmat * rs; |
972 |
+ |
|
973 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
974 |
+ |
// numbers |
975 |
+ |
for (int j = 0; j < 3; j++) { |
976 |
+ |
scaled[j] -= roundMe(scaled[j]); |
977 |
+ |
scaled[j] += 0.5; |
978 |
+ |
} |
979 |
+ |
|
980 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
981 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
982 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
983 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
984 |
+ |
|
985 |
+ |
// find single index of this cell: |
986 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
987 |
+ |
|
988 |
+ |
// add this cutoff group to the list of groups in this cell; |
989 |
+ |
cellListRow_[cellIndex].push_back(i); |
990 |
+ |
} |
991 |
+ |
|
992 |
+ |
for (int i = 0; i < nGroupsInCol_; i++) { |
993 |
+ |
rs = cgColData.position[i]; |
994 |
+ |
|
995 |
+ |
// scaled positions relative to the box vectors |
996 |
+ |
scaled = invHmat * rs; |
997 |
+ |
|
998 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
999 |
+ |
// numbers |
1000 |
+ |
for (int j = 0; j < 3; j++) { |
1001 |
+ |
scaled[j] -= roundMe(scaled[j]); |
1002 |
+ |
scaled[j] += 0.5; |
1003 |
+ |
} |
1004 |
+ |
|
1005 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
1006 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
1007 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
1008 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
1009 |
+ |
|
1010 |
+ |
// find single index of this cell: |
1011 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
1012 |
+ |
|
1013 |
+ |
// add this cutoff group to the list of groups in this cell; |
1014 |
+ |
cellListCol_[cellIndex].push_back(i); |
1015 |
+ |
} |
1016 |
+ |
#else |
1017 |
+ |
for (int i = 0; i < nGroups_; i++) { |
1018 |
+ |
rs = snap_->cgData.position[i]; |
1019 |
+ |
|
1020 |
+ |
// scaled positions relative to the box vectors |
1021 |
+ |
scaled = invHmat * rs; |
1022 |
+ |
|
1023 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
1024 |
+ |
// numbers |
1025 |
+ |
for (int j = 0; j < 3; j++) { |
1026 |
+ |
scaled[j] -= roundMe(scaled[j]); |
1027 |
+ |
scaled[j] += 0.5; |
1028 |
+ |
} |
1029 |
+ |
|
1030 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
1031 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
1032 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
1033 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
1034 |
+ |
|
1035 |
+ |
// find single index of this cell: |
1036 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
1037 |
+ |
|
1038 |
+ |
// add this cutoff group to the list of groups in this cell; |
1039 |
+ |
cellList_[cellIndex].push_back(i); |
1040 |
+ |
} |
1041 |
+ |
#endif |
1042 |
+ |
|
1043 |
+ |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1044 |
+ |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1045 |
+ |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1046 |
+ |
Vector3i m1v(m1x, m1y, m1z); |
1047 |
+ |
int m1 = Vlinear(m1v, nCells_); |
1048 |
+ |
|
1049 |
+ |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1050 |
+ |
os != cellOffsets_.end(); ++os) { |
1051 |
+ |
|
1052 |
+ |
Vector3i m2v = m1v + (*os); |
1053 |
+ |
|
1054 |
+ |
if (m2v.x() >= nCells_.x()) { |
1055 |
+ |
m2v.x() = 0; |
1056 |
+ |
} else if (m2v.x() < 0) { |
1057 |
+ |
m2v.x() = nCells_.x() - 1; |
1058 |
+ |
} |
1059 |
+ |
|
1060 |
+ |
if (m2v.y() >= nCells_.y()) { |
1061 |
+ |
m2v.y() = 0; |
1062 |
+ |
} else if (m2v.y() < 0) { |
1063 |
+ |
m2v.y() = nCells_.y() - 1; |
1064 |
+ |
} |
1065 |
+ |
|
1066 |
+ |
if (m2v.z() >= nCells_.z()) { |
1067 |
+ |
m2v.z() = 0; |
1068 |
+ |
} else if (m2v.z() < 0) { |
1069 |
+ |
m2v.z() = nCells_.z() - 1; |
1070 |
+ |
} |
1071 |
+ |
|
1072 |
+ |
int m2 = Vlinear (m2v, nCells_); |
1073 |
+ |
|
1074 |
+ |
#ifdef IS_MPI |
1075 |
+ |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1076 |
+ |
j1 != cellListRow_[m1].end(); ++j1) { |
1077 |
+ |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1078 |
+ |
j2 != cellListCol_[m2].end(); ++j2) { |
1079 |
+ |
|
1080 |
+ |
// Always do this if we're in different cells or if |
1081 |
+ |
// we're in the same cell and the global index of the |
1082 |
+ |
// j2 cutoff group is less than the j1 cutoff group |
1083 |
+ |
|
1084 |
+ |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1085 |
+ |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1086 |
+ |
snap_->wrapVector(dr); |
1087 |
+ |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1088 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1089 |
+ |
neighborList.push_back(make_pair((*j1), (*j2))); |
1090 |
+ |
} |
1091 |
+ |
} |
1092 |
+ |
} |
1093 |
+ |
} |
1094 |
+ |
#else |
1095 |
+ |
|
1096 |
+ |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1097 |
+ |
j1 != cellList_[m1].end(); ++j1) { |
1098 |
+ |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1099 |
+ |
j2 != cellList_[m2].end(); ++j2) { |
1100 |
+ |
|
1101 |
+ |
// Always do this if we're in different cells or if |
1102 |
+ |
// we're in the same cell and the global index of the |
1103 |
+ |
// j2 cutoff group is less than the j1 cutoff group |
1104 |
+ |
|
1105 |
+ |
if (m2 != m1 || (*j2) < (*j1)) { |
1106 |
+ |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1107 |
+ |
snap_->wrapVector(dr); |
1108 |
+ |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1109 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1110 |
+ |
neighborList.push_back(make_pair((*j1), (*j2))); |
1111 |
+ |
} |
1112 |
+ |
} |
1113 |
+ |
} |
1114 |
+ |
} |
1115 |
+ |
#endif |
1116 |
+ |
} |
1117 |
+ |
} |
1118 |
+ |
} |
1119 |
+ |
} |
1120 |
+ |
|
1121 |
+ |
// save the local cutoff group positions for the check that is |
1122 |
+ |
// done on each loop: |
1123 |
+ |
saved_CG_positions_.clear(); |
1124 |
+ |
for (int i = 0; i < nGroups_; i++) |
1125 |
+ |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1126 |
+ |
|
1127 |
+ |
return neighborList; |
1128 |
+ |
} |
1129 |
|
} //end namespace OpenMD |