ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1760
Committed: Thu Jun 21 19:26:46 2012 UTC (12 years, 10 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 51264 byte(s)
Log Message:
Some bugfixes (CholeskyDecomposition), more work on fluctuating charges,
migrating stats stuff into frameData

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include "parallel/ForceMatrixDecomposition.hpp"
43 #include "math/SquareMatrix3.hpp"
44 #include "nonbonded/NonBondedInteraction.hpp"
45 #include "brains/SnapshotManager.hpp"
46 #include "brains/PairList.hpp"
47
48 using namespace std;
49 namespace OpenMD {
50
51 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52
53 // In a parallel computation, row and colum scans must visit all
54 // surrounding cells (not just the 14 upper triangular blocks that
55 // are used when the processor can see all pairs)
56 #ifdef IS_MPI
57 cellOffsets_.clear();
58 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 #endif
86 }
87
88
89 /**
90 * distributeInitialData is essentially a copy of the older fortran
91 * SimulationSetup
92 */
93 void ForceMatrixDecomposition::distributeInitialData() {
94 snap_ = sman_->getCurrentSnapshot();
95 storageLayout_ = sman_->getStorageLayout();
96 ff_ = info_->getForceField();
97 nLocal_ = snap_->getNumberOfAtoms();
98
99 nGroups_ = info_->getNLocalCutoffGroups();
100 // gather the information for atomtype IDs (atids):
101 idents = info_->getIdentArray();
102 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 cgLocalToGlobal = info_->getGlobalGroupIndices();
104 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105
106 massFactors = info_->getMassFactors();
107
108 PairList* excludes = info_->getExcludedInteractions();
109 PairList* oneTwo = info_->getOneTwoInteractions();
110 PairList* oneThree = info_->getOneThreeInteractions();
111 PairList* oneFour = info_->getOneFourInteractions();
112
113 if (needVelocities_)
114 snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 DataStorage::dslVelocity);
116 else
117 snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118
119 #ifdef IS_MPI
120
121 MPI::Intracomm row = rowComm.getComm();
122 MPI::Intracomm col = colComm.getComm();
123
124 AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129
130 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135
136 cgPlanIntRow = new Plan<int>(row, nGroups_);
137 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140
141 nAtomsInRow_ = AtomPlanIntRow->getSize();
142 nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 nGroupsInRow_ = cgPlanIntRow->getSize();
144 nGroupsInCol_ = cgPlanIntColumn->getSize();
145
146 // Modify the data storage objects with the correct layouts and sizes:
147 atomRowData.resize(nAtomsInRow_);
148 atomRowData.setStorageLayout(storageLayout_);
149 atomColData.resize(nAtomsInCol_);
150 atomColData.setStorageLayout(storageLayout_);
151 cgRowData.resize(nGroupsInRow_);
152 cgRowData.setStorageLayout(DataStorage::dslPosition);
153 cgColData.resize(nGroupsInCol_);
154 if (needVelocities_)
155 // we only need column velocities if we need them.
156 cgColData.setStorageLayout(DataStorage::dslPosition |
157 DataStorage::dslVelocity);
158 else
159 cgColData.setStorageLayout(DataStorage::dslPosition);
160
161 identsRow.resize(nAtomsInRow_);
162 identsCol.resize(nAtomsInCol_);
163
164 AtomPlanIntRow->gather(idents, identsRow);
165 AtomPlanIntColumn->gather(idents, identsCol);
166
167 // allocate memory for the parallel objects
168 atypesRow.resize(nAtomsInRow_);
169 atypesCol.resize(nAtomsInCol_);
170
171 for (int i = 0; i < nAtomsInRow_; i++)
172 atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 for (int i = 0; i < nAtomsInCol_; i++)
174 atypesCol[i] = ff_->getAtomType(identsCol[i]);
175
176 pot_row.resize(nAtomsInRow_);
177 pot_col.resize(nAtomsInCol_);
178
179 expot_row.resize(nAtomsInRow_);
180 expot_col.resize(nAtomsInCol_);
181
182 AtomRowToGlobal.resize(nAtomsInRow_);
183 AtomColToGlobal.resize(nAtomsInCol_);
184 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186
187 cgRowToGlobal.resize(nGroupsInRow_);
188 cgColToGlobal.resize(nGroupsInCol_);
189 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191
192 massFactorsRow.resize(nAtomsInRow_);
193 massFactorsCol.resize(nAtomsInCol_);
194 AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196
197 groupListRow_.clear();
198 groupListRow_.resize(nGroupsInRow_);
199 for (int i = 0; i < nGroupsInRow_; i++) {
200 int gid = cgRowToGlobal[i];
201 for (int j = 0; j < nAtomsInRow_; j++) {
202 int aid = AtomRowToGlobal[j];
203 if (globalGroupMembership[aid] == gid)
204 groupListRow_[i].push_back(j);
205 }
206 }
207
208 groupListCol_.clear();
209 groupListCol_.resize(nGroupsInCol_);
210 for (int i = 0; i < nGroupsInCol_; i++) {
211 int gid = cgColToGlobal[i];
212 for (int j = 0; j < nAtomsInCol_; j++) {
213 int aid = AtomColToGlobal[j];
214 if (globalGroupMembership[aid] == gid)
215 groupListCol_[i].push_back(j);
216 }
217 }
218
219 excludesForAtom.clear();
220 excludesForAtom.resize(nAtomsInRow_);
221 toposForAtom.clear();
222 toposForAtom.resize(nAtomsInRow_);
223 topoDist.clear();
224 topoDist.resize(nAtomsInRow_);
225 for (int i = 0; i < nAtomsInRow_; i++) {
226 int iglob = AtomRowToGlobal[i];
227
228 for (int j = 0; j < nAtomsInCol_; j++) {
229 int jglob = AtomColToGlobal[j];
230
231 if (excludes->hasPair(iglob, jglob))
232 excludesForAtom[i].push_back(j);
233
234 if (oneTwo->hasPair(iglob, jglob)) {
235 toposForAtom[i].push_back(j);
236 topoDist[i].push_back(1);
237 } else {
238 if (oneThree->hasPair(iglob, jglob)) {
239 toposForAtom[i].push_back(j);
240 topoDist[i].push_back(2);
241 } else {
242 if (oneFour->hasPair(iglob, jglob)) {
243 toposForAtom[i].push_back(j);
244 topoDist[i].push_back(3);
245 }
246 }
247 }
248 }
249 }
250
251 #else
252 excludesForAtom.clear();
253 excludesForAtom.resize(nLocal_);
254 toposForAtom.clear();
255 toposForAtom.resize(nLocal_);
256 topoDist.clear();
257 topoDist.resize(nLocal_);
258
259 for (int i = 0; i < nLocal_; i++) {
260 int iglob = AtomLocalToGlobal[i];
261
262 for (int j = 0; j < nLocal_; j++) {
263 int jglob = AtomLocalToGlobal[j];
264
265 if (excludes->hasPair(iglob, jglob))
266 excludesForAtom[i].push_back(j);
267
268 if (oneTwo->hasPair(iglob, jglob)) {
269 toposForAtom[i].push_back(j);
270 topoDist[i].push_back(1);
271 } else {
272 if (oneThree->hasPair(iglob, jglob)) {
273 toposForAtom[i].push_back(j);
274 topoDist[i].push_back(2);
275 } else {
276 if (oneFour->hasPair(iglob, jglob)) {
277 toposForAtom[i].push_back(j);
278 topoDist[i].push_back(3);
279 }
280 }
281 }
282 }
283 }
284 #endif
285
286 // allocate memory for the parallel objects
287 atypesLocal.resize(nLocal_);
288
289 for (int i = 0; i < nLocal_; i++)
290 atypesLocal[i] = ff_->getAtomType(idents[i]);
291
292 groupList_.clear();
293 groupList_.resize(nGroups_);
294 for (int i = 0; i < nGroups_; i++) {
295 int gid = cgLocalToGlobal[i];
296 for (int j = 0; j < nLocal_; j++) {
297 int aid = AtomLocalToGlobal[j];
298 if (globalGroupMembership[aid] == gid) {
299 groupList_[i].push_back(j);
300 }
301 }
302 }
303
304
305 createGtypeCutoffMap();
306
307 }
308
309 void ForceMatrixDecomposition::createGtypeCutoffMap() {
310
311 RealType tol = 1e-6;
312 largestRcut_ = 0.0;
313 RealType rc;
314 int atid;
315 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
316
317 map<int, RealType> atypeCutoff;
318
319 for (set<AtomType*>::iterator at = atypes.begin();
320 at != atypes.end(); ++at){
321 atid = (*at)->getIdent();
322 if (userChoseCutoff_)
323 atypeCutoff[atid] = userCutoff_;
324 else
325 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
326 }
327
328 vector<RealType> gTypeCutoffs;
329 // first we do a single loop over the cutoff groups to find the
330 // largest cutoff for any atypes present in this group.
331 #ifdef IS_MPI
332 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
333 groupRowToGtype.resize(nGroupsInRow_);
334 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
335 vector<int> atomListRow = getAtomsInGroupRow(cg1);
336 for (vector<int>::iterator ia = atomListRow.begin();
337 ia != atomListRow.end(); ++ia) {
338 int atom1 = (*ia);
339 atid = identsRow[atom1];
340 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
341 groupCutoffRow[cg1] = atypeCutoff[atid];
342 }
343 }
344
345 bool gTypeFound = false;
346 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
347 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
348 groupRowToGtype[cg1] = gt;
349 gTypeFound = true;
350 }
351 }
352 if (!gTypeFound) {
353 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
354 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
355 }
356
357 }
358 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
359 groupColToGtype.resize(nGroupsInCol_);
360 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
361 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
362 for (vector<int>::iterator jb = atomListCol.begin();
363 jb != atomListCol.end(); ++jb) {
364 int atom2 = (*jb);
365 atid = identsCol[atom2];
366 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
367 groupCutoffCol[cg2] = atypeCutoff[atid];
368 }
369 }
370 bool gTypeFound = false;
371 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
372 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
373 groupColToGtype[cg2] = gt;
374 gTypeFound = true;
375 }
376 }
377 if (!gTypeFound) {
378 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
379 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
380 }
381 }
382 #else
383
384 vector<RealType> groupCutoff(nGroups_, 0.0);
385 groupToGtype.resize(nGroups_);
386 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
387 groupCutoff[cg1] = 0.0;
388 vector<int> atomList = getAtomsInGroupRow(cg1);
389 for (vector<int>::iterator ia = atomList.begin();
390 ia != atomList.end(); ++ia) {
391 int atom1 = (*ia);
392 atid = idents[atom1];
393 if (atypeCutoff[atid] > groupCutoff[cg1])
394 groupCutoff[cg1] = atypeCutoff[atid];
395 }
396
397 bool gTypeFound = false;
398 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
399 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
400 groupToGtype[cg1] = gt;
401 gTypeFound = true;
402 }
403 }
404 if (!gTypeFound) {
405 gTypeCutoffs.push_back( groupCutoff[cg1] );
406 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
407 }
408 }
409 #endif
410
411 // Now we find the maximum group cutoff value present in the simulation
412
413 RealType groupMax = *max_element(gTypeCutoffs.begin(),
414 gTypeCutoffs.end());
415
416 #ifdef IS_MPI
417 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
418 MPI::MAX);
419 #endif
420
421 RealType tradRcut = groupMax;
422
423 for (int i = 0; i < gTypeCutoffs.size(); i++) {
424 for (int j = 0; j < gTypeCutoffs.size(); j++) {
425 RealType thisRcut;
426 switch(cutoffPolicy_) {
427 case TRADITIONAL:
428 thisRcut = tradRcut;
429 break;
430 case MIX:
431 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
432 break;
433 case MAX:
434 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
435 break;
436 default:
437 sprintf(painCave.errMsg,
438 "ForceMatrixDecomposition::createGtypeCutoffMap "
439 "hit an unknown cutoff policy!\n");
440 painCave.severity = OPENMD_ERROR;
441 painCave.isFatal = 1;
442 simError();
443 break;
444 }
445
446 pair<int,int> key = make_pair(i,j);
447 gTypeCutoffMap[key].first = thisRcut;
448 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
449 gTypeCutoffMap[key].second = thisRcut*thisRcut;
450 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
451 // sanity check
452
453 if (userChoseCutoff_) {
454 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
455 sprintf(painCave.errMsg,
456 "ForceMatrixDecomposition::createGtypeCutoffMap "
457 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
458 painCave.severity = OPENMD_ERROR;
459 painCave.isFatal = 1;
460 simError();
461 }
462 }
463 }
464 }
465 }
466
467 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
468 int i, j;
469 #ifdef IS_MPI
470 i = groupRowToGtype[cg1];
471 j = groupColToGtype[cg2];
472 #else
473 i = groupToGtype[cg1];
474 j = groupToGtype[cg2];
475 #endif
476 return gTypeCutoffMap[make_pair(i,j)];
477 }
478
479 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
480 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
481 if (toposForAtom[atom1][j] == atom2)
482 return topoDist[atom1][j];
483 }
484 return 0;
485 }
486
487 void ForceMatrixDecomposition::zeroWorkArrays() {
488 pairwisePot = 0.0;
489 embeddingPot = 0.0;
490 excludedPot = 0.0;
491
492 #ifdef IS_MPI
493 if (storageLayout_ & DataStorage::dslForce) {
494 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 }
497
498 if (storageLayout_ & DataStorage::dslTorque) {
499 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 }
502
503 fill(pot_row.begin(), pot_row.end(),
504 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505
506 fill(pot_col.begin(), pot_col.end(),
507 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
508
509 fill(expot_row.begin(), expot_row.end(),
510 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511
512 fill(expot_col.begin(), expot_col.end(),
513 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
514
515 if (storageLayout_ & DataStorage::dslParticlePot) {
516 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 0.0);
518 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 0.0);
520 }
521
522 if (storageLayout_ & DataStorage::dslDensity) {
523 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 }
526
527 if (storageLayout_ & DataStorage::dslFunctional) {
528 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 0.0);
530 fill(atomColData.functional.begin(), atomColData.functional.end(),
531 0.0);
532 }
533
534 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
535 fill(atomRowData.functionalDerivative.begin(),
536 atomRowData.functionalDerivative.end(), 0.0);
537 fill(atomColData.functionalDerivative.begin(),
538 atomColData.functionalDerivative.end(), 0.0);
539 }
540
541 if (storageLayout_ & DataStorage::dslSkippedCharge) {
542 fill(atomRowData.skippedCharge.begin(),
543 atomRowData.skippedCharge.end(), 0.0);
544 fill(atomColData.skippedCharge.begin(),
545 atomColData.skippedCharge.end(), 0.0);
546 }
547
548 if (storageLayout_ & DataStorage::dslFlucQForce) {
549 fill(atomRowData.flucQFrc.begin(),
550 atomRowData.flucQFrc.end(), 0.0);
551 fill(atomColData.flucQFrc.begin(),
552 atomColData.flucQFrc.end(), 0.0);
553 }
554
555 if (storageLayout_ & DataStorage::dslElectricField) {
556 fill(atomRowData.electricField.begin(),
557 atomRowData.electricField.end(), V3Zero);
558 fill(atomColData.electricField.begin(),
559 atomColData.electricField.end(), V3Zero);
560 }
561
562 if (storageLayout_ & DataStorage::dslFlucQForce) {
563 fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
564 0.0);
565 fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
566 0.0);
567 }
568
569 #endif
570 // even in parallel, we need to zero out the local arrays:
571
572 if (storageLayout_ & DataStorage::dslParticlePot) {
573 fill(snap_->atomData.particlePot.begin(),
574 snap_->atomData.particlePot.end(), 0.0);
575 }
576
577 if (storageLayout_ & DataStorage::dslDensity) {
578 fill(snap_->atomData.density.begin(),
579 snap_->atomData.density.end(), 0.0);
580 }
581
582 if (storageLayout_ & DataStorage::dslFunctional) {
583 fill(snap_->atomData.functional.begin(),
584 snap_->atomData.functional.end(), 0.0);
585 }
586
587 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
588 fill(snap_->atomData.functionalDerivative.begin(),
589 snap_->atomData.functionalDerivative.end(), 0.0);
590 }
591
592 if (storageLayout_ & DataStorage::dslSkippedCharge) {
593 fill(snap_->atomData.skippedCharge.begin(),
594 snap_->atomData.skippedCharge.end(), 0.0);
595 }
596
597 if (storageLayout_ & DataStorage::dslElectricField) {
598 fill(snap_->atomData.electricField.begin(),
599 snap_->atomData.electricField.end(), V3Zero);
600 }
601 }
602
603
604 void ForceMatrixDecomposition::distributeData() {
605 snap_ = sman_->getCurrentSnapshot();
606 storageLayout_ = sman_->getStorageLayout();
607 #ifdef IS_MPI
608
609 // gather up the atomic positions
610 AtomPlanVectorRow->gather(snap_->atomData.position,
611 atomRowData.position);
612 AtomPlanVectorColumn->gather(snap_->atomData.position,
613 atomColData.position);
614
615 // gather up the cutoff group positions
616
617 cgPlanVectorRow->gather(snap_->cgData.position,
618 cgRowData.position);
619
620 cgPlanVectorColumn->gather(snap_->cgData.position,
621 cgColData.position);
622
623
624
625 if (needVelocities_) {
626 // gather up the atomic velocities
627 AtomPlanVectorColumn->gather(snap_->atomData.velocity,
628 atomColData.velocity);
629
630 cgPlanVectorColumn->gather(snap_->cgData.velocity,
631 cgColData.velocity);
632 }
633
634
635 // if needed, gather the atomic rotation matrices
636 if (storageLayout_ & DataStorage::dslAmat) {
637 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
638 atomRowData.aMat);
639 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
640 atomColData.aMat);
641 }
642
643 // if needed, gather the atomic eletrostatic frames
644 if (storageLayout_ & DataStorage::dslElectroFrame) {
645 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
646 atomRowData.electroFrame);
647 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
648 atomColData.electroFrame);
649 }
650
651 // if needed, gather the atomic fluctuating charge values
652 if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 atomRowData.flucQPos);
655 AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 atomColData.flucQPos);
657 }
658
659 #endif
660 }
661
662 /* collects information obtained during the pre-pair loop onto local
663 * data structures.
664 */
665 void ForceMatrixDecomposition::collectIntermediateData() {
666 snap_ = sman_->getCurrentSnapshot();
667 storageLayout_ = sman_->getStorageLayout();
668 #ifdef IS_MPI
669
670 if (storageLayout_ & DataStorage::dslDensity) {
671
672 AtomPlanRealRow->scatter(atomRowData.density,
673 snap_->atomData.density);
674
675 int n = snap_->atomData.density.size();
676 vector<RealType> rho_tmp(n, 0.0);
677 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 for (int i = 0; i < n; i++)
679 snap_->atomData.density[i] += rho_tmp[i];
680 }
681
682 if (storageLayout_ & DataStorage::dslElectricField) {
683
684 AtomPlanVectorRow->scatter(atomRowData.electricField,
685 snap_->atomData.electricField);
686
687 int n = snap_->atomData.electricField.size();
688 vector<Vector3d> field_tmp(n, V3Zero);
689 AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
690 for (int i = 0; i < n; i++)
691 snap_->atomData.electricField[i] += field_tmp[i];
692 }
693 #endif
694 }
695
696 /*
697 * redistributes information obtained during the pre-pair loop out to
698 * row and column-indexed data structures
699 */
700 void ForceMatrixDecomposition::distributeIntermediateData() {
701 snap_ = sman_->getCurrentSnapshot();
702 storageLayout_ = sman_->getStorageLayout();
703 #ifdef IS_MPI
704 if (storageLayout_ & DataStorage::dslFunctional) {
705 AtomPlanRealRow->gather(snap_->atomData.functional,
706 atomRowData.functional);
707 AtomPlanRealColumn->gather(snap_->atomData.functional,
708 atomColData.functional);
709 }
710
711 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
712 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
713 atomRowData.functionalDerivative);
714 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
715 atomColData.functionalDerivative);
716 }
717 #endif
718 }
719
720
721 void ForceMatrixDecomposition::collectData() {
722 snap_ = sman_->getCurrentSnapshot();
723 storageLayout_ = sman_->getStorageLayout();
724 #ifdef IS_MPI
725 int n = snap_->atomData.force.size();
726 vector<Vector3d> frc_tmp(n, V3Zero);
727
728 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
729 for (int i = 0; i < n; i++) {
730 snap_->atomData.force[i] += frc_tmp[i];
731 frc_tmp[i] = 0.0;
732 }
733
734 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
735 for (int i = 0; i < n; i++) {
736 snap_->atomData.force[i] += frc_tmp[i];
737 }
738
739 if (storageLayout_ & DataStorage::dslTorque) {
740
741 int nt = snap_->atomData.torque.size();
742 vector<Vector3d> trq_tmp(nt, V3Zero);
743
744 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
745 for (int i = 0; i < nt; i++) {
746 snap_->atomData.torque[i] += trq_tmp[i];
747 trq_tmp[i] = 0.0;
748 }
749
750 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
751 for (int i = 0; i < nt; i++)
752 snap_->atomData.torque[i] += trq_tmp[i];
753 }
754
755 if (storageLayout_ & DataStorage::dslSkippedCharge) {
756
757 int ns = snap_->atomData.skippedCharge.size();
758 vector<RealType> skch_tmp(ns, 0.0);
759
760 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
761 for (int i = 0; i < ns; i++) {
762 snap_->atomData.skippedCharge[i] += skch_tmp[i];
763 skch_tmp[i] = 0.0;
764 }
765
766 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
767 for (int i = 0; i < ns; i++)
768 snap_->atomData.skippedCharge[i] += skch_tmp[i];
769
770 }
771
772 if (storageLayout_ & DataStorage::dslFlucQForce) {
773
774 int nq = snap_->atomData.flucQFrc.size();
775 vector<RealType> fqfrc_tmp(nq, 0.0);
776
777 AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
778 for (int i = 0; i < nq; i++) {
779 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
780 fqfrc_tmp[i] = 0.0;
781 }
782
783 AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
784 for (int i = 0; i < nq; i++)
785 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
786
787 }
788
789 nLocal_ = snap_->getNumberOfAtoms();
790
791 vector<potVec> pot_temp(nLocal_,
792 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
793 vector<potVec> expot_temp(nLocal_,
794 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
795
796 // scatter/gather pot_row into the members of my column
797
798 AtomPlanPotRow->scatter(pot_row, pot_temp);
799 AtomPlanPotRow->scatter(expot_row, expot_temp);
800
801 for (int ii = 0; ii < pot_temp.size(); ii++ )
802 pairwisePot += pot_temp[ii];
803
804 for (int ii = 0; ii < expot_temp.size(); ii++ )
805 excludedPot += expot_temp[ii];
806
807 if (storageLayout_ & DataStorage::dslParticlePot) {
808 // This is the pairwise contribution to the particle pot. The
809 // embedding contribution is added in each of the low level
810 // non-bonded routines. In single processor, this is done in
811 // unpackInteractionData, not in collectData.
812 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
813 for (int i = 0; i < nLocal_; i++) {
814 // factor of two is because the total potential terms are divided
815 // by 2 in parallel due to row/ column scatter
816 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
817 }
818 }
819 }
820
821 fill(pot_temp.begin(), pot_temp.end(),
822 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
823 fill(expot_temp.begin(), expot_temp.end(),
824 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
825
826 AtomPlanPotColumn->scatter(pot_col, pot_temp);
827 AtomPlanPotColumn->scatter(expot_col, expot_temp);
828
829 for (int ii = 0; ii < pot_temp.size(); ii++ )
830 pairwisePot += pot_temp[ii];
831
832 for (int ii = 0; ii < expot_temp.size(); ii++ )
833 excludedPot += expot_temp[ii];
834
835 if (storageLayout_ & DataStorage::dslParticlePot) {
836 // This is the pairwise contribution to the particle pot. The
837 // embedding contribution is added in each of the low level
838 // non-bonded routines. In single processor, this is done in
839 // unpackInteractionData, not in collectData.
840 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
841 for (int i = 0; i < nLocal_; i++) {
842 // factor of two is because the total potential terms are divided
843 // by 2 in parallel due to row/ column scatter
844 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
845 }
846 }
847 }
848
849 if (storageLayout_ & DataStorage::dslParticlePot) {
850 int npp = snap_->atomData.particlePot.size();
851 vector<RealType> ppot_temp(npp, 0.0);
852
853 // This is the direct or embedding contribution to the particle
854 // pot.
855
856 AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
857 for (int i = 0; i < npp; i++) {
858 snap_->atomData.particlePot[i] += ppot_temp[i];
859 }
860
861 fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
862
863 AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
864 for (int i = 0; i < npp; i++) {
865 snap_->atomData.particlePot[i] += ppot_temp[i];
866 }
867 }
868
869 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
870 RealType ploc1 = pairwisePot[ii];
871 RealType ploc2 = 0.0;
872 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
873 pairwisePot[ii] = ploc2;
874 }
875
876 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
877 RealType ploc1 = excludedPot[ii];
878 RealType ploc2 = 0.0;
879 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
880 excludedPot[ii] = ploc2;
881 }
882
883 // Here be dragons.
884 MPI::Intracomm col = colComm.getComm();
885
886 col.Allreduce(MPI::IN_PLACE,
887 &snap_->frameData.conductiveHeatFlux[0], 3,
888 MPI::REALTYPE, MPI::SUM);
889
890
891 #endif
892
893 }
894
895 /**
896 * Collects information obtained during the post-pair (and embedding
897 * functional) loops onto local data structures.
898 */
899 void ForceMatrixDecomposition::collectSelfData() {
900 snap_ = sman_->getCurrentSnapshot();
901 storageLayout_ = sman_->getStorageLayout();
902
903 #ifdef IS_MPI
904 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
905 RealType ploc1 = embeddingPot[ii];
906 RealType ploc2 = 0.0;
907 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
908 embeddingPot[ii] = ploc2;
909 }
910 #endif
911
912 }
913
914
915
916 int ForceMatrixDecomposition::getNAtomsInRow() {
917 #ifdef IS_MPI
918 return nAtomsInRow_;
919 #else
920 return nLocal_;
921 #endif
922 }
923
924 /**
925 * returns the list of atoms belonging to this group.
926 */
927 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
928 #ifdef IS_MPI
929 return groupListRow_[cg1];
930 #else
931 return groupList_[cg1];
932 #endif
933 }
934
935 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
936 #ifdef IS_MPI
937 return groupListCol_[cg2];
938 #else
939 return groupList_[cg2];
940 #endif
941 }
942
943 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
944 Vector3d d;
945
946 #ifdef IS_MPI
947 d = cgColData.position[cg2] - cgRowData.position[cg1];
948 #else
949 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
950 #endif
951
952 snap_->wrapVector(d);
953 return d;
954 }
955
956 Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
957 #ifdef IS_MPI
958 return cgColData.velocity[cg2];
959 #else
960 return snap_->cgData.velocity[cg2];
961 #endif
962 }
963
964 Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
965 #ifdef IS_MPI
966 return atomColData.velocity[atom2];
967 #else
968 return snap_->atomData.velocity[atom2];
969 #endif
970 }
971
972
973 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
974
975 Vector3d d;
976
977 #ifdef IS_MPI
978 d = cgRowData.position[cg1] - atomRowData.position[atom1];
979 #else
980 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
981 #endif
982
983 snap_->wrapVector(d);
984 return d;
985 }
986
987 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
988 Vector3d d;
989
990 #ifdef IS_MPI
991 d = cgColData.position[cg2] - atomColData.position[atom2];
992 #else
993 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
994 #endif
995
996 snap_->wrapVector(d);
997 return d;
998 }
999
1000 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1001 #ifdef IS_MPI
1002 return massFactorsRow[atom1];
1003 #else
1004 return massFactors[atom1];
1005 #endif
1006 }
1007
1008 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1009 #ifdef IS_MPI
1010 return massFactorsCol[atom2];
1011 #else
1012 return massFactors[atom2];
1013 #endif
1014
1015 }
1016
1017 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1018 Vector3d d;
1019
1020 #ifdef IS_MPI
1021 d = atomColData.position[atom2] - atomRowData.position[atom1];
1022 #else
1023 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1024 #endif
1025
1026 snap_->wrapVector(d);
1027 return d;
1028 }
1029
1030 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1031 return excludesForAtom[atom1];
1032 }
1033
1034 /**
1035 * We need to exclude some overcounted interactions that result from
1036 * the parallel decomposition.
1037 */
1038 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1039 int unique_id_1, unique_id_2, group1, group2;
1040
1041 #ifdef IS_MPI
1042 // in MPI, we have to look up the unique IDs for each atom
1043 unique_id_1 = AtomRowToGlobal[atom1];
1044 unique_id_2 = AtomColToGlobal[atom2];
1045 group1 = cgRowToGlobal[cg1];
1046 group2 = cgColToGlobal[cg2];
1047 #else
1048 unique_id_1 = AtomLocalToGlobal[atom1];
1049 unique_id_2 = AtomLocalToGlobal[atom2];
1050 group1 = cgLocalToGlobal[cg1];
1051 group2 = cgLocalToGlobal[cg2];
1052 #endif
1053
1054 if (unique_id_1 == unique_id_2) return true;
1055
1056 #ifdef IS_MPI
1057 // this prevents us from doing the pair on multiple processors
1058 if (unique_id_1 < unique_id_2) {
1059 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1060 } else {
1061 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1062 }
1063 #endif
1064
1065 #ifndef IS_MPI
1066 if (group1 == group2) {
1067 if (unique_id_1 < unique_id_2) return true;
1068 }
1069 #endif
1070
1071 return false;
1072 }
1073
1074 /**
1075 * We need to handle the interactions for atoms who are involved in
1076 * the same rigid body as well as some short range interactions
1077 * (bonds, bends, torsions) differently from other interactions.
1078 * We'll still visit the pairwise routines, but with a flag that
1079 * tells those routines to exclude the pair from direct long range
1080 * interactions. Some indirect interactions (notably reaction
1081 * field) must still be handled for these pairs.
1082 */
1083 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1084
1085 // excludesForAtom was constructed to use row/column indices in the MPI
1086 // version, and to use local IDs in the non-MPI version:
1087
1088 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1089 i != excludesForAtom[atom1].end(); ++i) {
1090 if ( (*i) == atom2 ) return true;
1091 }
1092
1093 return false;
1094 }
1095
1096
1097 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1098 #ifdef IS_MPI
1099 atomRowData.force[atom1] += fg;
1100 #else
1101 snap_->atomData.force[atom1] += fg;
1102 #endif
1103 }
1104
1105 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1106 #ifdef IS_MPI
1107 atomColData.force[atom2] += fg;
1108 #else
1109 snap_->atomData.force[atom2] += fg;
1110 #endif
1111 }
1112
1113 // filling interaction blocks with pointers
1114 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1115 int atom1, int atom2) {
1116
1117 idat.excluded = excludeAtomPair(atom1, atom2);
1118
1119 #ifdef IS_MPI
1120 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1121 //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1122 // ff_->getAtomType(identsCol[atom2]) );
1123
1124 if (storageLayout_ & DataStorage::dslAmat) {
1125 idat.A1 = &(atomRowData.aMat[atom1]);
1126 idat.A2 = &(atomColData.aMat[atom2]);
1127 }
1128
1129 if (storageLayout_ & DataStorage::dslElectroFrame) {
1130 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1131 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1132 }
1133
1134 if (storageLayout_ & DataStorage::dslTorque) {
1135 idat.t1 = &(atomRowData.torque[atom1]);
1136 idat.t2 = &(atomColData.torque[atom2]);
1137 }
1138
1139 if (storageLayout_ & DataStorage::dslDensity) {
1140 idat.rho1 = &(atomRowData.density[atom1]);
1141 idat.rho2 = &(atomColData.density[atom2]);
1142 }
1143
1144 if (storageLayout_ & DataStorage::dslFunctional) {
1145 idat.frho1 = &(atomRowData.functional[atom1]);
1146 idat.frho2 = &(atomColData.functional[atom2]);
1147 }
1148
1149 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1150 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1151 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1152 }
1153
1154 if (storageLayout_ & DataStorage::dslParticlePot) {
1155 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1156 idat.particlePot2 = &(atomColData.particlePot[atom2]);
1157 }
1158
1159 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1160 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1161 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1162 }
1163
1164 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1165 idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1166 idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1167 }
1168
1169 #else
1170
1171 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1172
1173 if (storageLayout_ & DataStorage::dslAmat) {
1174 idat.A1 = &(snap_->atomData.aMat[atom1]);
1175 idat.A2 = &(snap_->atomData.aMat[atom2]);
1176 }
1177
1178 if (storageLayout_ & DataStorage::dslElectroFrame) {
1179 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1180 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1181 }
1182
1183 if (storageLayout_ & DataStorage::dslTorque) {
1184 idat.t1 = &(snap_->atomData.torque[atom1]);
1185 idat.t2 = &(snap_->atomData.torque[atom2]);
1186 }
1187
1188 if (storageLayout_ & DataStorage::dslDensity) {
1189 idat.rho1 = &(snap_->atomData.density[atom1]);
1190 idat.rho2 = &(snap_->atomData.density[atom2]);
1191 }
1192
1193 if (storageLayout_ & DataStorage::dslFunctional) {
1194 idat.frho1 = &(snap_->atomData.functional[atom1]);
1195 idat.frho2 = &(snap_->atomData.functional[atom2]);
1196 }
1197
1198 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1199 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1200 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1201 }
1202
1203 if (storageLayout_ & DataStorage::dslParticlePot) {
1204 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1205 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1206 }
1207
1208 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1209 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1210 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1211 }
1212
1213 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1214 idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1215 idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1216 }
1217
1218 #endif
1219 }
1220
1221
1222 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1223 #ifdef IS_MPI
1224 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1225 pot_col[atom2] += RealType(0.5) * *(idat.pot);
1226 expot_row[atom1] += RealType(0.5) * *(idat.excludedPot);
1227 expot_col[atom2] += RealType(0.5) * *(idat.excludedPot);
1228
1229 atomRowData.force[atom1] += *(idat.f1);
1230 atomColData.force[atom2] -= *(idat.f1);
1231
1232 if (storageLayout_ & DataStorage::dslFlucQForce) {
1233 atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1234 atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1235 }
1236
1237 if (storageLayout_ & DataStorage::dslElectricField) {
1238 atomRowData.electricField[atom1] += *(idat.eField1);
1239 atomColData.electricField[atom2] += *(idat.eField2);
1240 }
1241
1242 #else
1243 pairwisePot += *(idat.pot);
1244 excludedPot += *(idat.excludedPot);
1245
1246 snap_->atomData.force[atom1] += *(idat.f1);
1247 snap_->atomData.force[atom2] -= *(idat.f1);
1248
1249 if (idat.doParticlePot) {
1250 // This is the pairwise contribution to the particle pot. The
1251 // embedding contribution is added in each of the low level
1252 // non-bonded routines. In parallel, this calculation is done
1253 // in collectData, not in unpackInteractionData.
1254 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1255 snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1256 }
1257
1258 if (storageLayout_ & DataStorage::dslFlucQForce) {
1259 snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1260 snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1261 }
1262
1263 if (storageLayout_ & DataStorage::dslElectricField) {
1264 snap_->atomData.electricField[atom1] += *(idat.eField1);
1265 snap_->atomData.electricField[atom2] += *(idat.eField2);
1266 }
1267
1268 #endif
1269
1270 }
1271
1272 /*
1273 * buildNeighborList
1274 *
1275 * first element of pair is row-indexed CutoffGroup
1276 * second element of pair is column-indexed CutoffGroup
1277 */
1278 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1279
1280 vector<pair<int, int> > neighborList;
1281 groupCutoffs cuts;
1282 bool doAllPairs = false;
1283
1284 #ifdef IS_MPI
1285 cellListRow_.clear();
1286 cellListCol_.clear();
1287 #else
1288 cellList_.clear();
1289 #endif
1290
1291 RealType rList_ = (largestRcut_ + skinThickness_);
1292 RealType rl2 = rList_ * rList_;
1293 Snapshot* snap_ = sman_->getCurrentSnapshot();
1294 Mat3x3d Hmat = snap_->getHmat();
1295 Vector3d Hx = Hmat.getColumn(0);
1296 Vector3d Hy = Hmat.getColumn(1);
1297 Vector3d Hz = Hmat.getColumn(2);
1298
1299 nCells_.x() = (int) ( Hx.length() )/ rList_;
1300 nCells_.y() = (int) ( Hy.length() )/ rList_;
1301 nCells_.z() = (int) ( Hz.length() )/ rList_;
1302
1303 // handle small boxes where the cell offsets can end up repeating cells
1304
1305 if (nCells_.x() < 3) doAllPairs = true;
1306 if (nCells_.y() < 3) doAllPairs = true;
1307 if (nCells_.z() < 3) doAllPairs = true;
1308
1309 Mat3x3d invHmat = snap_->getInvHmat();
1310 Vector3d rs, scaled, dr;
1311 Vector3i whichCell;
1312 int cellIndex;
1313 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1314
1315 #ifdef IS_MPI
1316 cellListRow_.resize(nCtot);
1317 cellListCol_.resize(nCtot);
1318 #else
1319 cellList_.resize(nCtot);
1320 #endif
1321
1322 if (!doAllPairs) {
1323 #ifdef IS_MPI
1324
1325 for (int i = 0; i < nGroupsInRow_; i++) {
1326 rs = cgRowData.position[i];
1327
1328 // scaled positions relative to the box vectors
1329 scaled = invHmat * rs;
1330
1331 // wrap the vector back into the unit box by subtracting integer box
1332 // numbers
1333 for (int j = 0; j < 3; j++) {
1334 scaled[j] -= roundMe(scaled[j]);
1335 scaled[j] += 0.5;
1336 }
1337
1338 // find xyz-indices of cell that cutoffGroup is in.
1339 whichCell.x() = nCells_.x() * scaled.x();
1340 whichCell.y() = nCells_.y() * scaled.y();
1341 whichCell.z() = nCells_.z() * scaled.z();
1342
1343 // find single index of this cell:
1344 cellIndex = Vlinear(whichCell, nCells_);
1345
1346 // add this cutoff group to the list of groups in this cell;
1347 cellListRow_[cellIndex].push_back(i);
1348 }
1349 for (int i = 0; i < nGroupsInCol_; i++) {
1350 rs = cgColData.position[i];
1351
1352 // scaled positions relative to the box vectors
1353 scaled = invHmat * rs;
1354
1355 // wrap the vector back into the unit box by subtracting integer box
1356 // numbers
1357 for (int j = 0; j < 3; j++) {
1358 scaled[j] -= roundMe(scaled[j]);
1359 scaled[j] += 0.5;
1360 }
1361
1362 // find xyz-indices of cell that cutoffGroup is in.
1363 whichCell.x() = nCells_.x() * scaled.x();
1364 whichCell.y() = nCells_.y() * scaled.y();
1365 whichCell.z() = nCells_.z() * scaled.z();
1366
1367 // find single index of this cell:
1368 cellIndex = Vlinear(whichCell, nCells_);
1369
1370 // add this cutoff group to the list of groups in this cell;
1371 cellListCol_[cellIndex].push_back(i);
1372 }
1373
1374 #else
1375 for (int i = 0; i < nGroups_; i++) {
1376 rs = snap_->cgData.position[i];
1377
1378 // scaled positions relative to the box vectors
1379 scaled = invHmat * rs;
1380
1381 // wrap the vector back into the unit box by subtracting integer box
1382 // numbers
1383 for (int j = 0; j < 3; j++) {
1384 scaled[j] -= roundMe(scaled[j]);
1385 scaled[j] += 0.5;
1386 }
1387
1388 // find xyz-indices of cell that cutoffGroup is in.
1389 whichCell.x() = nCells_.x() * scaled.x();
1390 whichCell.y() = nCells_.y() * scaled.y();
1391 whichCell.z() = nCells_.z() * scaled.z();
1392
1393 // find single index of this cell:
1394 cellIndex = Vlinear(whichCell, nCells_);
1395
1396 // add this cutoff group to the list of groups in this cell;
1397 cellList_[cellIndex].push_back(i);
1398 }
1399
1400 #endif
1401
1402 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1403 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1404 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1405 Vector3i m1v(m1x, m1y, m1z);
1406 int m1 = Vlinear(m1v, nCells_);
1407
1408 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1409 os != cellOffsets_.end(); ++os) {
1410
1411 Vector3i m2v = m1v + (*os);
1412
1413
1414 if (m2v.x() >= nCells_.x()) {
1415 m2v.x() = 0;
1416 } else if (m2v.x() < 0) {
1417 m2v.x() = nCells_.x() - 1;
1418 }
1419
1420 if (m2v.y() >= nCells_.y()) {
1421 m2v.y() = 0;
1422 } else if (m2v.y() < 0) {
1423 m2v.y() = nCells_.y() - 1;
1424 }
1425
1426 if (m2v.z() >= nCells_.z()) {
1427 m2v.z() = 0;
1428 } else if (m2v.z() < 0) {
1429 m2v.z() = nCells_.z() - 1;
1430 }
1431
1432 int m2 = Vlinear (m2v, nCells_);
1433
1434 #ifdef IS_MPI
1435 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1436 j1 != cellListRow_[m1].end(); ++j1) {
1437 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1438 j2 != cellListCol_[m2].end(); ++j2) {
1439
1440 // In parallel, we need to visit *all* pairs of row
1441 // & column indicies and will divide labor in the
1442 // force evaluation later.
1443 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1444 snap_->wrapVector(dr);
1445 cuts = getGroupCutoffs( (*j1), (*j2) );
1446 if (dr.lengthSquare() < cuts.third) {
1447 neighborList.push_back(make_pair((*j1), (*j2)));
1448 }
1449 }
1450 }
1451 #else
1452 for (vector<int>::iterator j1 = cellList_[m1].begin();
1453 j1 != cellList_[m1].end(); ++j1) {
1454 for (vector<int>::iterator j2 = cellList_[m2].begin();
1455 j2 != cellList_[m2].end(); ++j2) {
1456
1457 // Always do this if we're in different cells or if
1458 // we're in the same cell and the global index of
1459 // the j2 cutoff group is greater than or equal to
1460 // the j1 cutoff group. Note that Rappaport's code
1461 // has a "less than" conditional here, but that
1462 // deals with atom-by-atom computation. OpenMD
1463 // allows atoms within a single cutoff group to
1464 // interact with each other.
1465
1466
1467
1468 if (m2 != m1 || (*j2) >= (*j1) ) {
1469
1470 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1471 snap_->wrapVector(dr);
1472 cuts = getGroupCutoffs( (*j1), (*j2) );
1473 if (dr.lengthSquare() < cuts.third) {
1474 neighborList.push_back(make_pair((*j1), (*j2)));
1475 }
1476 }
1477 }
1478 }
1479 #endif
1480 }
1481 }
1482 }
1483 }
1484 } else {
1485 // branch to do all cutoff group pairs
1486 #ifdef IS_MPI
1487 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1488 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1489 dr = cgColData.position[j2] - cgRowData.position[j1];
1490 snap_->wrapVector(dr);
1491 cuts = getGroupCutoffs( j1, j2 );
1492 if (dr.lengthSquare() < cuts.third) {
1493 neighborList.push_back(make_pair(j1, j2));
1494 }
1495 }
1496 }
1497 #else
1498 // include all groups here.
1499 for (int j1 = 0; j1 < nGroups_; j1++) {
1500 // include self group interactions j2 == j1
1501 for (int j2 = j1; j2 < nGroups_; j2++) {
1502 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1503 snap_->wrapVector(dr);
1504 cuts = getGroupCutoffs( j1, j2 );
1505 if (dr.lengthSquare() < cuts.third) {
1506 neighborList.push_back(make_pair(j1, j2));
1507 }
1508 }
1509 }
1510 #endif
1511 }
1512
1513 // save the local cutoff group positions for the check that is
1514 // done on each loop:
1515 saved_CG_positions_.clear();
1516 for (int i = 0; i < nGroups_; i++)
1517 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1518
1519 return neighborList;
1520 }
1521 } //end namespace OpenMD