ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1589
Committed: Sun Jul 10 16:05:34 2011 UTC (13 years, 9 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 39143 byte(s)
Log Message:
Fixing some parallel bugs

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41 #include "parallel/ForceMatrixDecomposition.hpp"
42 #include "math/SquareMatrix3.hpp"
43 #include "nonbonded/NonBondedInteraction.hpp"
44 #include "brains/SnapshotManager.hpp"
45 #include "brains/PairList.hpp"
46
47 using namespace std;
48 namespace OpenMD {
49
50 /**
51 * distributeInitialData is essentially a copy of the older fortran
52 * SimulationSetup
53 */
54
55 void ForceMatrixDecomposition::distributeInitialData() {
56 snap_ = sman_->getCurrentSnapshot();
57 storageLayout_ = sman_->getStorageLayout();
58 ff_ = info_->getForceField();
59 nLocal_ = snap_->getNumberOfAtoms();
60
61 nGroups_ = info_->getNLocalCutoffGroups();
62 // gather the information for atomtype IDs (atids):
63 idents = info_->getIdentArray();
64 AtomLocalToGlobal = info_->getGlobalAtomIndices();
65 cgLocalToGlobal = info_->getGlobalGroupIndices();
66 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67
68 massFactors = info_->getMassFactors();
69
70 PairList* excludes = info_->getExcludedInteractions();
71 PairList* oneTwo = info_->getOneTwoInteractions();
72 PairList* oneThree = info_->getOneThreeInteractions();
73 PairList* oneFour = info_->getOneFourInteractions();
74
75 #ifdef IS_MPI
76
77 AtomCommIntRow = new Communicator<Row,int>(nLocal_);
78 AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79 AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80 AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
82
83 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
84 AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
85 AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
86 AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
87 AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
88
89 cgCommIntRow = new Communicator<Row,int>(nGroups_);
90 cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
91 cgCommIntColumn = new Communicator<Column,int>(nGroups_);
92 cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
93
94 nAtomsInRow_ = AtomCommIntRow->getSize();
95 nAtomsInCol_ = AtomCommIntColumn->getSize();
96 nGroupsInRow_ = cgCommIntRow->getSize();
97 nGroupsInCol_ = cgCommIntColumn->getSize();
98
99 // Modify the data storage objects with the correct layouts and sizes:
100 atomRowData.resize(nAtomsInRow_);
101 atomRowData.setStorageLayout(storageLayout_);
102 atomColData.resize(nAtomsInCol_);
103 atomColData.setStorageLayout(storageLayout_);
104 cgRowData.resize(nGroupsInRow_);
105 cgRowData.setStorageLayout(DataStorage::dslPosition);
106 cgColData.resize(nGroupsInCol_);
107 cgColData.setStorageLayout(DataStorage::dslPosition);
108
109 identsRow.resize(nAtomsInRow_);
110 identsCol.resize(nAtomsInCol_);
111
112 AtomCommIntRow->gather(idents, identsRow);
113 AtomCommIntColumn->gather(idents, identsCol);
114
115 // allocate memory for the parallel objects
116 AtomRowToGlobal.resize(nAtomsInRow_);
117 AtomColToGlobal.resize(nAtomsInCol_);
118 cgRowToGlobal.resize(nGroupsInRow_);
119 cgColToGlobal.resize(nGroupsInCol_);
120 massFactorsRow.resize(nAtomsInRow_);
121 massFactorsCol.resize(nAtomsInCol_);
122 pot_row.resize(nAtomsInRow_);
123 pot_col.resize(nAtomsInCol_);
124
125 AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
126 AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
127
128 cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
129 cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
130
131 AtomCommRealRow->gather(massFactors, massFactorsRow);
132 AtomCommRealColumn->gather(massFactors, massFactorsCol);
133
134 groupListRow_.clear();
135 groupListRow_.resize(nGroupsInRow_);
136 for (int i = 0; i < nGroupsInRow_; i++) {
137 int gid = cgRowToGlobal[i];
138 for (int j = 0; j < nAtomsInRow_; j++) {
139 int aid = AtomRowToGlobal[j];
140 if (globalGroupMembership[aid] == gid)
141 groupListRow_[i].push_back(j);
142 }
143 }
144
145 groupListCol_.clear();
146 groupListCol_.resize(nGroupsInCol_);
147 for (int i = 0; i < nGroupsInCol_; i++) {
148 int gid = cgColToGlobal[i];
149 for (int j = 0; j < nAtomsInCol_; j++) {
150 int aid = AtomColToGlobal[j];
151 if (globalGroupMembership[aid] == gid)
152 groupListCol_[i].push_back(j);
153 }
154 }
155
156 excludesForAtom.clear();
157 excludesForAtom.resize(nAtomsInRow_);
158 toposForAtom.clear();
159 toposForAtom.resize(nAtomsInRow_);
160 topoDist.clear();
161 topoDist.resize(nAtomsInRow_);
162 for (int i = 0; i < nAtomsInRow_; i++) {
163 int iglob = AtomRowToGlobal[i];
164
165 for (int j = 0; j < nAtomsInCol_; j++) {
166 int jglob = AtomColToGlobal[j];
167
168 if (excludes->hasPair(iglob, jglob))
169 excludesForAtom[i].push_back(j);
170
171 if (oneTwo->hasPair(iglob, jglob)) {
172 toposForAtom[i].push_back(j);
173 topoDist[i].push_back(1);
174 } else {
175 if (oneThree->hasPair(iglob, jglob)) {
176 toposForAtom[i].push_back(j);
177 topoDist[i].push_back(2);
178 } else {
179 if (oneFour->hasPair(iglob, jglob)) {
180 toposForAtom[i].push_back(j);
181 topoDist[i].push_back(3);
182 }
183 }
184 }
185 }
186 }
187
188 #endif
189
190 groupList_.clear();
191 groupList_.resize(nGroups_);
192 for (int i = 0; i < nGroups_; i++) {
193 int gid = cgLocalToGlobal[i];
194 for (int j = 0; j < nLocal_; j++) {
195 int aid = AtomLocalToGlobal[j];
196 if (globalGroupMembership[aid] == gid) {
197 groupList_[i].push_back(j);
198 }
199 }
200 }
201
202 excludesForAtom.clear();
203 excludesForAtom.resize(nLocal_);
204 toposForAtom.clear();
205 toposForAtom.resize(nLocal_);
206 topoDist.clear();
207 topoDist.resize(nLocal_);
208
209 for (int i = 0; i < nLocal_; i++) {
210 int iglob = AtomLocalToGlobal[i];
211
212 for (int j = 0; j < nLocal_; j++) {
213 int jglob = AtomLocalToGlobal[j];
214
215 if (excludes->hasPair(iglob, jglob))
216 excludesForAtom[i].push_back(j);
217
218 if (oneTwo->hasPair(iglob, jglob)) {
219 toposForAtom[i].push_back(j);
220 topoDist[i].push_back(1);
221 } else {
222 if (oneThree->hasPair(iglob, jglob)) {
223 toposForAtom[i].push_back(j);
224 topoDist[i].push_back(2);
225 } else {
226 if (oneFour->hasPair(iglob, jglob)) {
227 toposForAtom[i].push_back(j);
228 topoDist[i].push_back(3);
229 }
230 }
231 }
232 }
233 }
234
235 createGtypeCutoffMap();
236
237 }
238
239 void ForceMatrixDecomposition::createGtypeCutoffMap() {
240
241 RealType tol = 1e-6;
242 RealType rc;
243 int atid;
244 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
245 map<int, RealType> atypeCutoff;
246
247 for (set<AtomType*>::iterator at = atypes.begin();
248 at != atypes.end(); ++at){
249 atid = (*at)->getIdent();
250 if (userChoseCutoff_)
251 atypeCutoff[atid] = userCutoff_;
252 else
253 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
254 }
255
256 vector<RealType> gTypeCutoffs;
257 // first we do a single loop over the cutoff groups to find the
258 // largest cutoff for any atypes present in this group.
259 #ifdef IS_MPI
260 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
261 groupRowToGtype.resize(nGroupsInRow_);
262 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
263 vector<int> atomListRow = getAtomsInGroupRow(cg1);
264 for (vector<int>::iterator ia = atomListRow.begin();
265 ia != atomListRow.end(); ++ia) {
266 int atom1 = (*ia);
267 atid = identsRow[atom1];
268 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
269 groupCutoffRow[cg1] = atypeCutoff[atid];
270 }
271 }
272
273 bool gTypeFound = false;
274 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
275 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
276 groupRowToGtype[cg1] = gt;
277 gTypeFound = true;
278 }
279 }
280 if (!gTypeFound) {
281 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
282 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
283 }
284
285 }
286 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
287 groupColToGtype.resize(nGroupsInCol_);
288 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
289 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
290 for (vector<int>::iterator jb = atomListCol.begin();
291 jb != atomListCol.end(); ++jb) {
292 int atom2 = (*jb);
293 atid = identsCol[atom2];
294 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
295 groupCutoffCol[cg2] = atypeCutoff[atid];
296 }
297 }
298 bool gTypeFound = false;
299 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
300 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
301 groupColToGtype[cg2] = gt;
302 gTypeFound = true;
303 }
304 }
305 if (!gTypeFound) {
306 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
307 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
308 }
309 }
310 #else
311
312 vector<RealType> groupCutoff(nGroups_, 0.0);
313 groupToGtype.resize(nGroups_);
314 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
315
316 groupCutoff[cg1] = 0.0;
317 vector<int> atomList = getAtomsInGroupRow(cg1);
318
319 for (vector<int>::iterator ia = atomList.begin();
320 ia != atomList.end(); ++ia) {
321 int atom1 = (*ia);
322 atid = idents[atom1];
323 if (atypeCutoff[atid] > groupCutoff[cg1]) {
324 groupCutoff[cg1] = atypeCutoff[atid];
325 }
326 }
327
328 bool gTypeFound = false;
329 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
330 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
331 groupToGtype[cg1] = gt;
332 gTypeFound = true;
333 }
334 }
335 if (!gTypeFound) {
336 gTypeCutoffs.push_back( groupCutoff[cg1] );
337 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
338 }
339 }
340 #endif
341
342 // Now we find the maximum group cutoff value present in the simulation
343
344 RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
345
346 #ifdef IS_MPI
347 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
348 #endif
349
350 RealType tradRcut = groupMax;
351
352 for (int i = 0; i < gTypeCutoffs.size(); i++) {
353 for (int j = 0; j < gTypeCutoffs.size(); j++) {
354 RealType thisRcut;
355 switch(cutoffPolicy_) {
356 case TRADITIONAL:
357 thisRcut = tradRcut;
358 break;
359 case MIX:
360 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
361 break;
362 case MAX:
363 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
364 break;
365 default:
366 sprintf(painCave.errMsg,
367 "ForceMatrixDecomposition::createGtypeCutoffMap "
368 "hit an unknown cutoff policy!\n");
369 painCave.severity = OPENMD_ERROR;
370 painCave.isFatal = 1;
371 simError();
372 break;
373 }
374
375 pair<int,int> key = make_pair(i,j);
376 gTypeCutoffMap[key].first = thisRcut;
377
378 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
379
380 gTypeCutoffMap[key].second = thisRcut*thisRcut;
381
382 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
383
384 // sanity check
385
386 if (userChoseCutoff_) {
387 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
388 sprintf(painCave.errMsg,
389 "ForceMatrixDecomposition::createGtypeCutoffMap "
390 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
391 painCave.severity = OPENMD_ERROR;
392 painCave.isFatal = 1;
393 simError();
394 }
395 }
396 }
397 }
398 }
399
400
401 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
402 int i, j;
403 #ifdef IS_MPI
404 i = groupRowToGtype[cg1];
405 j = groupColToGtype[cg2];
406 #else
407 i = groupToGtype[cg1];
408 j = groupToGtype[cg2];
409 #endif
410 return gTypeCutoffMap[make_pair(i,j)];
411 }
412
413 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
414 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
415 if (toposForAtom[atom1][j] == atom2)
416 return topoDist[atom1][j];
417 }
418 return 0;
419 }
420
421 void ForceMatrixDecomposition::zeroWorkArrays() {
422 pairwisePot = 0.0;
423 embeddingPot = 0.0;
424
425 #ifdef IS_MPI
426 if (storageLayout_ & DataStorage::dslForce) {
427 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
428 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
429 }
430
431 if (storageLayout_ & DataStorage::dslTorque) {
432 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
433 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
434 }
435
436 fill(pot_row.begin(), pot_row.end(),
437 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
438
439 fill(pot_col.begin(), pot_col.end(),
440 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
441
442 if (storageLayout_ & DataStorage::dslParticlePot) {
443 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
444 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
445 }
446
447 if (storageLayout_ & DataStorage::dslDensity) {
448 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
449 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
450 }
451
452 if (storageLayout_ & DataStorage::dslFunctional) {
453 fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
454 fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
455 }
456
457 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
458 fill(atomRowData.functionalDerivative.begin(),
459 atomRowData.functionalDerivative.end(), 0.0);
460 fill(atomColData.functionalDerivative.begin(),
461 atomColData.functionalDerivative.end(), 0.0);
462 }
463
464 if (storageLayout_ & DataStorage::dslSkippedCharge) {
465 fill(atomRowData.skippedCharge.begin(),
466 atomRowData.skippedCharge.end(), 0.0);
467 fill(atomColData.skippedCharge.begin(),
468 atomColData.skippedCharge.end(), 0.0);
469 }
470
471 #else
472
473 if (storageLayout_ & DataStorage::dslParticlePot) {
474 fill(snap_->atomData.particlePot.begin(),
475 snap_->atomData.particlePot.end(), 0.0);
476 }
477
478 if (storageLayout_ & DataStorage::dslDensity) {
479 fill(snap_->atomData.density.begin(),
480 snap_->atomData.density.end(), 0.0);
481 }
482 if (storageLayout_ & DataStorage::dslFunctional) {
483 fill(snap_->atomData.functional.begin(),
484 snap_->atomData.functional.end(), 0.0);
485 }
486 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
487 fill(snap_->atomData.functionalDerivative.begin(),
488 snap_->atomData.functionalDerivative.end(), 0.0);
489 }
490 if (storageLayout_ & DataStorage::dslSkippedCharge) {
491 fill(snap_->atomData.skippedCharge.begin(),
492 snap_->atomData.skippedCharge.end(), 0.0);
493 }
494 #endif
495
496 }
497
498
499 void ForceMatrixDecomposition::distributeData() {
500 snap_ = sman_->getCurrentSnapshot();
501 storageLayout_ = sman_->getStorageLayout();
502 #ifdef IS_MPI
503
504 // gather up the atomic positions
505 AtomCommVectorRow->gather(snap_->atomData.position,
506 atomRowData.position);
507 AtomCommVectorColumn->gather(snap_->atomData.position,
508 atomColData.position);
509
510 // gather up the cutoff group positions
511 cgCommVectorRow->gather(snap_->cgData.position,
512 cgRowData.position);
513 cgCommVectorColumn->gather(snap_->cgData.position,
514 cgColData.position);
515
516 // if needed, gather the atomic rotation matrices
517 if (storageLayout_ & DataStorage::dslAmat) {
518 AtomCommMatrixRow->gather(snap_->atomData.aMat,
519 atomRowData.aMat);
520 AtomCommMatrixColumn->gather(snap_->atomData.aMat,
521 atomColData.aMat);
522 }
523
524 // if needed, gather the atomic eletrostatic frames
525 if (storageLayout_ & DataStorage::dslElectroFrame) {
526 AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
527 atomRowData.electroFrame);
528 AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
529 atomColData.electroFrame);
530 }
531 #endif
532 }
533
534 /* collects information obtained during the pre-pair loop onto local
535 * data structures.
536 */
537 void ForceMatrixDecomposition::collectIntermediateData() {
538 snap_ = sman_->getCurrentSnapshot();
539 storageLayout_ = sman_->getStorageLayout();
540 #ifdef IS_MPI
541
542 if (storageLayout_ & DataStorage::dslDensity) {
543
544 AtomCommRealRow->scatter(atomRowData.density,
545 snap_->atomData.density);
546
547 int n = snap_->atomData.density.size();
548 vector<RealType> rho_tmp(n, 0.0);
549 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
550 for (int i = 0; i < n; i++)
551 snap_->atomData.density[i] += rho_tmp[i];
552 }
553 #endif
554 }
555
556 /*
557 * redistributes information obtained during the pre-pair loop out to
558 * row and column-indexed data structures
559 */
560 void ForceMatrixDecomposition::distributeIntermediateData() {
561 snap_ = sman_->getCurrentSnapshot();
562 storageLayout_ = sman_->getStorageLayout();
563 #ifdef IS_MPI
564 if (storageLayout_ & DataStorage::dslFunctional) {
565 AtomCommRealRow->gather(snap_->atomData.functional,
566 atomRowData.functional);
567 AtomCommRealColumn->gather(snap_->atomData.functional,
568 atomColData.functional);
569 }
570
571 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
572 AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
573 atomRowData.functionalDerivative);
574 AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
575 atomColData.functionalDerivative);
576 }
577 #endif
578 }
579
580
581 void ForceMatrixDecomposition::collectData() {
582 snap_ = sman_->getCurrentSnapshot();
583 storageLayout_ = sman_->getStorageLayout();
584 #ifdef IS_MPI
585 int n = snap_->atomData.force.size();
586 vector<Vector3d> frc_tmp(n, V3Zero);
587
588 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
589 for (int i = 0; i < n; i++) {
590 snap_->atomData.force[i] += frc_tmp[i];
591 frc_tmp[i] = 0.0;
592 }
593
594 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
595 for (int i = 0; i < n; i++)
596 snap_->atomData.force[i] += frc_tmp[i];
597
598
599 if (storageLayout_ & DataStorage::dslTorque) {
600
601 int nt = snap_->atomData.torque.size();
602 vector<Vector3d> trq_tmp(nt, V3Zero);
603
604 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
605 for (int i = 0; i < nt; i++) {
606 snap_->atomData.torque[i] += trq_tmp[i];
607 trq_tmp[i] = 0.0;
608 }
609
610 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
611 for (int i = 0; i < nt; i++)
612 snap_->atomData.torque[i] += trq_tmp[i];
613 }
614
615 if (storageLayout_ & DataStorage::dslSkippedCharge) {
616
617 int ns = snap_->atomData.skippedCharge.size();
618 vector<RealType> skch_tmp(ns, 0.0);
619
620 AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
621 for (int i = 0; i < ns; i++) {
622 snap_->atomData.skippedCharge[i] = skch_tmp[i];
623 skch_tmp[i] = 0.0;
624 }
625
626 AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
627 for (int i = 0; i < ns; i++)
628 snap_->atomData.skippedCharge[i] += skch_tmp[i];
629 }
630
631 nLocal_ = snap_->getNumberOfAtoms();
632
633 vector<potVec> pot_temp(nLocal_,
634 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
635
636 // scatter/gather pot_row into the members of my column
637
638 AtomCommPotRow->scatter(pot_row, pot_temp);
639
640 for (int ii = 0; ii < pot_temp.size(); ii++ )
641 pairwisePot += pot_temp[ii];
642
643 fill(pot_temp.begin(), pot_temp.end(),
644 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
645
646 AtomCommPotColumn->scatter(pot_col, pot_temp);
647
648 for (int ii = 0; ii < pot_temp.size(); ii++ )
649 pairwisePot += pot_temp[ii];
650 #endif
651
652 }
653
654 int ForceMatrixDecomposition::getNAtomsInRow() {
655 #ifdef IS_MPI
656 return nAtomsInRow_;
657 #else
658 return nLocal_;
659 #endif
660 }
661
662 /**
663 * returns the list of atoms belonging to this group.
664 */
665 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
666 #ifdef IS_MPI
667 return groupListRow_[cg1];
668 #else
669 return groupList_[cg1];
670 #endif
671 }
672
673 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
674 #ifdef IS_MPI
675 return groupListCol_[cg2];
676 #else
677 return groupList_[cg2];
678 #endif
679 }
680
681 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
682 Vector3d d;
683
684 #ifdef IS_MPI
685 d = cgColData.position[cg2] - cgRowData.position[cg1];
686 #else
687 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
688 #endif
689
690 snap_->wrapVector(d);
691 return d;
692 }
693
694
695 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
696
697 Vector3d d;
698
699 #ifdef IS_MPI
700 d = cgRowData.position[cg1] - atomRowData.position[atom1];
701 #else
702 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
703 #endif
704
705 snap_->wrapVector(d);
706 return d;
707 }
708
709 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
710 Vector3d d;
711
712 #ifdef IS_MPI
713 d = cgColData.position[cg2] - atomColData.position[atom2];
714 #else
715 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
716 #endif
717
718 snap_->wrapVector(d);
719 return d;
720 }
721
722 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
723 #ifdef IS_MPI
724 return massFactorsRow[atom1];
725 #else
726 return massFactors[atom1];
727 #endif
728 }
729
730 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
731 #ifdef IS_MPI
732 return massFactorsCol[atom2];
733 #else
734 return massFactors[atom2];
735 #endif
736
737 }
738
739 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
740 Vector3d d;
741
742 #ifdef IS_MPI
743 d = atomColData.position[atom2] - atomRowData.position[atom1];
744 #else
745 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
746 #endif
747
748 snap_->wrapVector(d);
749 return d;
750 }
751
752 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
753 return excludesForAtom[atom1];
754 }
755
756 /**
757 * We need to exclude some overcounted interactions that result from
758 * the parallel decomposition.
759 */
760 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
761 int unique_id_1, unique_id_2;
762
763 #ifdef IS_MPI
764 // in MPI, we have to look up the unique IDs for each atom
765 unique_id_1 = AtomRowToGlobal[atom1];
766 unique_id_2 = AtomColToGlobal[atom2];
767
768 // this situation should only arise in MPI simulations
769 if (unique_id_1 == unique_id_2) return true;
770
771 // this prevents us from doing the pair on multiple processors
772 if (unique_id_1 < unique_id_2) {
773 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
774 } else {
775 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
776 }
777 #endif
778 return false;
779 }
780
781 /**
782 * We need to handle the interactions for atoms who are involved in
783 * the same rigid body as well as some short range interactions
784 * (bonds, bends, torsions) differently from other interactions.
785 * We'll still visit the pairwise routines, but with a flag that
786 * tells those routines to exclude the pair from direct long range
787 * interactions. Some indirect interactions (notably reaction
788 * field) must still be handled for these pairs.
789 */
790 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
791 int unique_id_2;
792
793 #ifdef IS_MPI
794 // in MPI, we have to look up the unique IDs for the row atom.
795 unique_id_2 = AtomColToGlobal[atom2];
796 #else
797 // in the normal loop, the atom numbers are unique
798 unique_id_2 = atom2;
799 #endif
800
801 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
802 i != excludesForAtom[atom1].end(); ++i) {
803 if ( (*i) == unique_id_2 ) return true;
804 }
805
806 return false;
807 }
808
809
810 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
811 #ifdef IS_MPI
812 atomRowData.force[atom1] += fg;
813 #else
814 snap_->atomData.force[atom1] += fg;
815 #endif
816 }
817
818 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
819 #ifdef IS_MPI
820 atomColData.force[atom2] += fg;
821 #else
822 snap_->atomData.force[atom2] += fg;
823 #endif
824 }
825
826 // filling interaction blocks with pointers
827 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
828 int atom1, int atom2) {
829
830 idat.excluded = excludeAtomPair(atom1, atom2);
831
832 #ifdef IS_MPI
833
834 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
835 ff_->getAtomType(identsCol[atom2]) );
836
837 if (storageLayout_ & DataStorage::dslAmat) {
838 idat.A1 = &(atomRowData.aMat[atom1]);
839 idat.A2 = &(atomColData.aMat[atom2]);
840 }
841
842 if (storageLayout_ & DataStorage::dslElectroFrame) {
843 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
844 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
845 }
846
847 if (storageLayout_ & DataStorage::dslTorque) {
848 idat.t1 = &(atomRowData.torque[atom1]);
849 idat.t2 = &(atomColData.torque[atom2]);
850 }
851
852 if (storageLayout_ & DataStorage::dslDensity) {
853 idat.rho1 = &(atomRowData.density[atom1]);
854 idat.rho2 = &(atomColData.density[atom2]);
855 }
856
857 if (storageLayout_ & DataStorage::dslFunctional) {
858 idat.frho1 = &(atomRowData.functional[atom1]);
859 idat.frho2 = &(atomColData.functional[atom2]);
860 }
861
862 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
863 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
864 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
865 }
866
867 if (storageLayout_ & DataStorage::dslParticlePot) {
868 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
869 idat.particlePot2 = &(atomColData.particlePot[atom2]);
870 }
871
872 if (storageLayout_ & DataStorage::dslSkippedCharge) {
873 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
874 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
875 }
876
877 #else
878
879 idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
880 ff_->getAtomType(idents[atom2]) );
881
882 if (storageLayout_ & DataStorage::dslAmat) {
883 idat.A1 = &(snap_->atomData.aMat[atom1]);
884 idat.A2 = &(snap_->atomData.aMat[atom2]);
885 }
886
887 if (storageLayout_ & DataStorage::dslElectroFrame) {
888 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
889 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
890 }
891
892 if (storageLayout_ & DataStorage::dslTorque) {
893 idat.t1 = &(snap_->atomData.torque[atom1]);
894 idat.t2 = &(snap_->atomData.torque[atom2]);
895 }
896
897 if (storageLayout_ & DataStorage::dslDensity) {
898 idat.rho1 = &(snap_->atomData.density[atom1]);
899 idat.rho2 = &(snap_->atomData.density[atom2]);
900 }
901
902 if (storageLayout_ & DataStorage::dslFunctional) {
903 idat.frho1 = &(snap_->atomData.functional[atom1]);
904 idat.frho2 = &(snap_->atomData.functional[atom2]);
905 }
906
907 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
908 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
909 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
910 }
911
912 if (storageLayout_ & DataStorage::dslParticlePot) {
913 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
914 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
915 }
916
917 if (storageLayout_ & DataStorage::dslSkippedCharge) {
918 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
919 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
920 }
921 #endif
922 }
923
924
925 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
926 #ifdef IS_MPI
927 pot_row[atom1] += 0.5 * *(idat.pot);
928 pot_col[atom2] += 0.5 * *(idat.pot);
929
930 atomRowData.force[atom1] += *(idat.f1);
931 atomColData.force[atom2] -= *(idat.f1);
932 #else
933 pairwisePot += *(idat.pot);
934
935 snap_->atomData.force[atom1] += *(idat.f1);
936 snap_->atomData.force[atom2] -= *(idat.f1);
937 #endif
938
939 }
940
941 /*
942 * buildNeighborList
943 *
944 * first element of pair is row-indexed CutoffGroup
945 * second element of pair is column-indexed CutoffGroup
946 */
947 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
948
949 vector<pair<int, int> > neighborList;
950 groupCutoffs cuts;
951 bool doAllPairs = false;
952
953 #ifdef IS_MPI
954 cellListRow_.clear();
955 cellListCol_.clear();
956 #else
957 cellList_.clear();
958 #endif
959
960 RealType rList_ = (largestRcut_ + skinThickness_);
961 RealType rl2 = rList_ * rList_;
962 Snapshot* snap_ = sman_->getCurrentSnapshot();
963 Mat3x3d Hmat = snap_->getHmat();
964 Vector3d Hx = Hmat.getColumn(0);
965 Vector3d Hy = Hmat.getColumn(1);
966 Vector3d Hz = Hmat.getColumn(2);
967
968 nCells_.x() = (int) ( Hx.length() )/ rList_;
969 nCells_.y() = (int) ( Hy.length() )/ rList_;
970 nCells_.z() = (int) ( Hz.length() )/ rList_;
971
972 // handle small boxes where the cell offsets can end up repeating cells
973
974 if (nCells_.x() < 3) doAllPairs = true;
975 if (nCells_.y() < 3) doAllPairs = true;
976 if (nCells_.z() < 3) doAllPairs = true;
977
978 Mat3x3d invHmat = snap_->getInvHmat();
979 Vector3d rs, scaled, dr;
980 Vector3i whichCell;
981 int cellIndex;
982 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
983
984 #ifdef IS_MPI
985 cellListRow_.resize(nCtot);
986 cellListCol_.resize(nCtot);
987 #else
988 cellList_.resize(nCtot);
989 #endif
990
991 if (!doAllPairs) {
992 #ifdef IS_MPI
993
994 for (int i = 0; i < nGroupsInRow_; i++) {
995 rs = cgRowData.position[i];
996
997 // scaled positions relative to the box vectors
998 scaled = invHmat * rs;
999
1000 // wrap the vector back into the unit box by subtracting integer box
1001 // numbers
1002 for (int j = 0; j < 3; j++) {
1003 scaled[j] -= roundMe(scaled[j]);
1004 scaled[j] += 0.5;
1005 }
1006
1007 // find xyz-indices of cell that cutoffGroup is in.
1008 whichCell.x() = nCells_.x() * scaled.x();
1009 whichCell.y() = nCells_.y() * scaled.y();
1010 whichCell.z() = nCells_.z() * scaled.z();
1011
1012 // find single index of this cell:
1013 cellIndex = Vlinear(whichCell, nCells_);
1014
1015 // add this cutoff group to the list of groups in this cell;
1016 cellListRow_[cellIndex].push_back(i);
1017 }
1018
1019 for (int i = 0; i < nGroupsInCol_; i++) {
1020 rs = cgColData.position[i];
1021
1022 // scaled positions relative to the box vectors
1023 scaled = invHmat * rs;
1024
1025 // wrap the vector back into the unit box by subtracting integer box
1026 // numbers
1027 for (int j = 0; j < 3; j++) {
1028 scaled[j] -= roundMe(scaled[j]);
1029 scaled[j] += 0.5;
1030 }
1031
1032 // find xyz-indices of cell that cutoffGroup is in.
1033 whichCell.x() = nCells_.x() * scaled.x();
1034 whichCell.y() = nCells_.y() * scaled.y();
1035 whichCell.z() = nCells_.z() * scaled.z();
1036
1037 // find single index of this cell:
1038 cellIndex = Vlinear(whichCell, nCells_);
1039
1040 // add this cutoff group to the list of groups in this cell;
1041 cellListCol_[cellIndex].push_back(i);
1042 }
1043 #else
1044 for (int i = 0; i < nGroups_; i++) {
1045 rs = snap_->cgData.position[i];
1046
1047 // scaled positions relative to the box vectors
1048 scaled = invHmat * rs;
1049
1050 // wrap the vector back into the unit box by subtracting integer box
1051 // numbers
1052 for (int j = 0; j < 3; j++) {
1053 scaled[j] -= roundMe(scaled[j]);
1054 scaled[j] += 0.5;
1055 }
1056
1057 // find xyz-indices of cell that cutoffGroup is in.
1058 whichCell.x() = nCells_.x() * scaled.x();
1059 whichCell.y() = nCells_.y() * scaled.y();
1060 whichCell.z() = nCells_.z() * scaled.z();
1061
1062 // find single index of this cell:
1063 cellIndex = Vlinear(whichCell, nCells_);
1064
1065 // add this cutoff group to the list of groups in this cell;
1066 cellList_[cellIndex].push_back(i);
1067 }
1068 #endif
1069
1070 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1071 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1072 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1073 Vector3i m1v(m1x, m1y, m1z);
1074 int m1 = Vlinear(m1v, nCells_);
1075
1076 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1077 os != cellOffsets_.end(); ++os) {
1078
1079 Vector3i m2v = m1v + (*os);
1080
1081 if (m2v.x() >= nCells_.x()) {
1082 m2v.x() = 0;
1083 } else if (m2v.x() < 0) {
1084 m2v.x() = nCells_.x() - 1;
1085 }
1086
1087 if (m2v.y() >= nCells_.y()) {
1088 m2v.y() = 0;
1089 } else if (m2v.y() < 0) {
1090 m2v.y() = nCells_.y() - 1;
1091 }
1092
1093 if (m2v.z() >= nCells_.z()) {
1094 m2v.z() = 0;
1095 } else if (m2v.z() < 0) {
1096 m2v.z() = nCells_.z() - 1;
1097 }
1098
1099 int m2 = Vlinear (m2v, nCells_);
1100
1101 #ifdef IS_MPI
1102 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1103 j1 != cellListRow_[m1].end(); ++j1) {
1104 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1105 j2 != cellListCol_[m2].end(); ++j2) {
1106
1107 // Always do this if we're in different cells or if
1108 // we're in the same cell and the global index of the
1109 // j2 cutoff group is less than the j1 cutoff group
1110
1111 if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1112 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1113 snap_->wrapVector(dr);
1114 cuts = getGroupCutoffs( (*j1), (*j2) );
1115 if (dr.lengthSquare() < cuts.third) {
1116 neighborList.push_back(make_pair((*j1), (*j2)));
1117 }
1118 }
1119 }
1120 }
1121 #else
1122
1123 for (vector<int>::iterator j1 = cellList_[m1].begin();
1124 j1 != cellList_[m1].end(); ++j1) {
1125 for (vector<int>::iterator j2 = cellList_[m2].begin();
1126 j2 != cellList_[m2].end(); ++j2) {
1127
1128 // Always do this if we're in different cells or if
1129 // we're in the same cell and the global index of the
1130 // j2 cutoff group is less than the j1 cutoff group
1131
1132 if (m2 != m1 || (*j2) < (*j1)) {
1133 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1134 snap_->wrapVector(dr);
1135 cuts = getGroupCutoffs( (*j1), (*j2) );
1136 if (dr.lengthSquare() < cuts.third) {
1137 neighborList.push_back(make_pair((*j1), (*j2)));
1138 }
1139 }
1140 }
1141 }
1142 #endif
1143 }
1144 }
1145 }
1146 }
1147 } else {
1148 // branch to do all cutoff group pairs
1149 #ifdef IS_MPI
1150 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1151 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1152 dr = cgColData.position[j2] - cgRowData.position[j1];
1153 snap_->wrapVector(dr);
1154 cuts = getGroupCutoffs( j1, j2 );
1155 if (dr.lengthSquare() < cuts.third) {
1156 neighborList.push_back(make_pair(j1, j2));
1157 }
1158 }
1159 }
1160 #else
1161 for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1162 for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1163 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1164 snap_->wrapVector(dr);
1165 cuts = getGroupCutoffs( j1, j2 );
1166 if (dr.lengthSquare() < cuts.third) {
1167 neighborList.push_back(make_pair(j1, j2));
1168 }
1169 }
1170 }
1171 #endif
1172 }
1173
1174 // save the local cutoff group positions for the check that is
1175 // done on each loop:
1176 saved_CG_positions_.clear();
1177 for (int i = 0; i < nGroups_; i++)
1178 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1179
1180 return neighborList;
1181 }
1182 } //end namespace OpenMD