35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
< |
|
112 |
> |
|
113 |
> |
if (needVelocities_) |
114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
> |
DataStorage::dslVelocity); |
116 |
> |
else |
117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
> |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
|
MPI::Intracomm row = rowComm.getComm(); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
176 |
|
pot_row.resize(nAtomsInRow_); |
177 |
|
pot_col.resize(nAtomsInCol_); |
178 |
|
|
179 |
+ |
expot_row.resize(nAtomsInRow_); |
180 |
+ |
expot_col.resize(nAtomsInCol_); |
181 |
+ |
|
182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
184 |
|
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
308 |
|
|
309 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
310 |
|
|
311 |
+ |
GrCut.clear(); |
312 |
+ |
GrCutSq.clear(); |
313 |
+ |
GrlistSq.clear(); |
314 |
+ |
|
315 |
|
RealType tol = 1e-6; |
316 |
|
largestRcut_ = 0.0; |
299 |
– |
RealType rc; |
317 |
|
int atid; |
318 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
319 |
|
|
398 |
|
} |
399 |
|
|
400 |
|
bool gTypeFound = false; |
401 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
401 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
402 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
403 |
|
groupToGtype[cg1] = gt; |
404 |
|
gTypeFound = true; |
423 |
|
|
424 |
|
RealType tradRcut = groupMax; |
425 |
|
|
426 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
427 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
426 |
> |
GrCut.resize( gTypeCutoffs.size() ); |
427 |
> |
GrCutSq.resize( gTypeCutoffs.size() ); |
428 |
> |
GrlistSq.resize( gTypeCutoffs.size() ); |
429 |
> |
|
430 |
> |
|
431 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
432 |
> |
GrCut[i].resize( gTypeCutoffs.size() , 0.0); |
433 |
> |
GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
434 |
> |
GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
435 |
> |
|
436 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
437 |
|
RealType thisRcut; |
438 |
|
switch(cutoffPolicy_) { |
439 |
|
case TRADITIONAL: |
455 |
|
break; |
456 |
|
} |
457 |
|
|
458 |
< |
pair<int,int> key = make_pair(i,j); |
433 |
< |
gTypeCutoffMap[key].first = thisRcut; |
458 |
> |
GrCut[i][j] = thisRcut; |
459 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
460 |
< |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
461 |
< |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
460 |
> |
GrCutSq[i][j] = thisRcut * thisRcut; |
461 |
> |
GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); |
462 |
> |
|
463 |
> |
// pair<int,int> key = make_pair(i,j); |
464 |
> |
// gTypeCutoffMap[key].first = thisRcut; |
465 |
> |
// gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
466 |
|
// sanity check |
467 |
|
|
468 |
|
if (userChoseCutoff_) { |
469 |
< |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
469 |
> |
if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { |
470 |
|
sprintf(painCave.errMsg, |
471 |
|
"ForceMatrixDecomposition::createGtypeCutoffMap " |
472 |
|
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
479 |
|
} |
480 |
|
} |
481 |
|
|
482 |
< |
|
454 |
< |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
482 |
> |
void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { |
483 |
|
int i, j; |
484 |
|
#ifdef IS_MPI |
485 |
|
i = groupRowToGtype[cg1]; |
488 |
|
i = groupToGtype[cg1]; |
489 |
|
j = groupToGtype[cg2]; |
490 |
|
#endif |
491 |
< |
return gTypeCutoffMap[make_pair(i,j)]; |
491 |
> |
rcut = GrCut[i][j]; |
492 |
> |
rcutsq = GrCutSq[i][j]; |
493 |
> |
rlistsq = GrlistSq[i][j]; |
494 |
> |
return; |
495 |
> |
//return gTypeCutoffMap[make_pair(i,j)]; |
496 |
|
} |
497 |
|
|
498 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
499 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
499 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
500 |
|
if (toposForAtom[atom1][j] == atom2) |
501 |
|
return topoDist[atom1][j]; |
502 |
< |
} |
502 |
> |
} |
503 |
|
return 0; |
504 |
|
} |
505 |
|
|
506 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
507 |
|
pairwisePot = 0.0; |
508 |
|
embeddingPot = 0.0; |
509 |
+ |
excludedPot = 0.0; |
510 |
+ |
excludedSelfPot = 0.0; |
511 |
|
|
512 |
|
#ifdef IS_MPI |
513 |
|
if (storageLayout_ & DataStorage::dslForce) { |
526 |
|
fill(pot_col.begin(), pot_col.end(), |
527 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
528 |
|
|
529 |
+ |
fill(expot_row.begin(), expot_row.end(), |
530 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
531 |
+ |
|
532 |
+ |
fill(expot_col.begin(), expot_col.end(), |
533 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
534 |
+ |
|
535 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
536 |
|
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
537 |
|
0.0); |
565 |
|
atomColData.skippedCharge.end(), 0.0); |
566 |
|
} |
567 |
|
|
568 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
569 |
+ |
fill(atomRowData.flucQFrc.begin(), |
570 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
571 |
+ |
fill(atomColData.flucQFrc.begin(), |
572 |
+ |
atomColData.flucQFrc.end(), 0.0); |
573 |
+ |
} |
574 |
+ |
|
575 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
576 |
+ |
fill(atomRowData.electricField.begin(), |
577 |
+ |
atomRowData.electricField.end(), V3Zero); |
578 |
+ |
fill(atomColData.electricField.begin(), |
579 |
+ |
atomColData.electricField.end(), V3Zero); |
580 |
+ |
} |
581 |
+ |
|
582 |
|
#endif |
583 |
|
// even in parallel, we need to zero out the local arrays: |
584 |
|
|
591 |
|
fill(snap_->atomData.density.begin(), |
592 |
|
snap_->atomData.density.end(), 0.0); |
593 |
|
} |
594 |
+ |
|
595 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
596 |
|
fill(snap_->atomData.functional.begin(), |
597 |
|
snap_->atomData.functional.end(), 0.0); |
598 |
|
} |
599 |
+ |
|
600 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
601 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
602 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
603 |
|
} |
604 |
+ |
|
605 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
606 |
|
fill(snap_->atomData.skippedCharge.begin(), |
607 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
608 |
|
} |
609 |
< |
|
609 |
> |
|
610 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
611 |
> |
fill(snap_->atomData.electricField.begin(), |
612 |
> |
snap_->atomData.electricField.end(), V3Zero); |
613 |
> |
} |
614 |
|
} |
615 |
|
|
616 |
|
|
633 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
634 |
|
cgColData.position); |
635 |
|
|
636 |
+ |
|
637 |
+ |
|
638 |
+ |
if (needVelocities_) { |
639 |
+ |
// gather up the atomic velocities |
640 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
641 |
+ |
atomColData.velocity); |
642 |
+ |
|
643 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
644 |
+ |
cgColData.velocity); |
645 |
+ |
} |
646 |
+ |
|
647 |
|
|
648 |
|
// if needed, gather the atomic rotation matrices |
649 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
652 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
653 |
|
atomColData.aMat); |
654 |
|
} |
655 |
< |
|
656 |
< |
// if needed, gather the atomic eletrostatic frames |
657 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
658 |
< |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
659 |
< |
atomRowData.electroFrame); |
660 |
< |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
661 |
< |
atomColData.electroFrame); |
655 |
> |
|
656 |
> |
// if needed, gather the atomic eletrostatic information |
657 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
658 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
659 |
> |
atomRowData.dipole); |
660 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
661 |
> |
atomColData.dipole); |
662 |
|
} |
663 |
|
|
664 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
665 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
666 |
+ |
atomRowData.quadrupole); |
667 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
668 |
+ |
atomColData.quadrupole); |
669 |
+ |
} |
670 |
+ |
|
671 |
+ |
// if needed, gather the atomic fluctuating charge values |
672 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
673 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
674 |
+ |
atomRowData.flucQPos); |
675 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
676 |
+ |
atomColData.flucQPos); |
677 |
+ |
} |
678 |
+ |
|
679 |
|
#endif |
680 |
|
} |
681 |
|
|
698 |
|
for (int i = 0; i < n; i++) |
699 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
700 |
|
} |
701 |
+ |
|
702 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
703 |
+ |
// we'll leave it here for now. |
704 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
705 |
+ |
|
706 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
707 |
+ |
snap_->atomData.electricField); |
708 |
+ |
|
709 |
+ |
int n = snap_->atomData.electricField.size(); |
710 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
711 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
712 |
+ |
field_tmp); |
713 |
+ |
for (int i = 0; i < n; i++) |
714 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
715 |
+ |
} |
716 |
|
#endif |
717 |
|
} |
718 |
|
|
792 |
|
|
793 |
|
} |
794 |
|
|
795 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
796 |
+ |
|
797 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
798 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
799 |
+ |
|
800 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
801 |
+ |
for (int i = 0; i < nq; i++) { |
802 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
803 |
+ |
fqfrc_tmp[i] = 0.0; |
804 |
+ |
} |
805 |
+ |
|
806 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
807 |
+ |
for (int i = 0; i < nq; i++) |
808 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
809 |
+ |
|
810 |
+ |
} |
811 |
+ |
|
812 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
813 |
+ |
|
814 |
+ |
int nef = snap_->atomData.electricField.size(); |
815 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
816 |
+ |
|
817 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
818 |
+ |
for (int i = 0; i < nef; i++) { |
819 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
820 |
+ |
efield_tmp[i] = 0.0; |
821 |
+ |
} |
822 |
+ |
|
823 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
824 |
+ |
for (int i = 0; i < nef; i++) |
825 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
826 |
+ |
} |
827 |
+ |
|
828 |
+ |
|
829 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
830 |
|
|
831 |
|
vector<potVec> pot_temp(nLocal_, |
832 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
833 |
+ |
vector<potVec> expot_temp(nLocal_, |
834 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
835 |
|
|
836 |
|
// scatter/gather pot_row into the members of my column |
837 |
|
|
838 |
|
AtomPlanPotRow->scatter(pot_row, pot_temp); |
839 |
+ |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
840 |
|
|
841 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
841 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
842 |
|
pairwisePot += pot_temp[ii]; |
843 |
< |
|
843 |
> |
|
844 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
845 |
> |
excludedPot += expot_temp[ii]; |
846 |
> |
|
847 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
848 |
> |
// This is the pairwise contribution to the particle pot. The |
849 |
> |
// embedding contribution is added in each of the low level |
850 |
> |
// non-bonded routines. In single processor, this is done in |
851 |
> |
// unpackInteractionData, not in collectData. |
852 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
853 |
> |
for (int i = 0; i < nLocal_; i++) { |
854 |
> |
// factor of two is because the total potential terms are divided |
855 |
> |
// by 2 in parallel due to row/ column scatter |
856 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
857 |
> |
} |
858 |
> |
} |
859 |
> |
} |
860 |
> |
|
861 |
|
fill(pot_temp.begin(), pot_temp.end(), |
862 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
863 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
864 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
865 |
|
|
866 |
|
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
867 |
+ |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
868 |
|
|
869 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
870 |
|
pairwisePot += pot_temp[ii]; |
871 |
+ |
|
872 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
873 |
+ |
excludedPot += expot_temp[ii]; |
874 |
+ |
|
875 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
876 |
+ |
// This is the pairwise contribution to the particle pot. The |
877 |
+ |
// embedding contribution is added in each of the low level |
878 |
+ |
// non-bonded routines. In single processor, this is done in |
879 |
+ |
// unpackInteractionData, not in collectData. |
880 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
881 |
+ |
for (int i = 0; i < nLocal_; i++) { |
882 |
+ |
// factor of two is because the total potential terms are divided |
883 |
+ |
// by 2 in parallel due to row/ column scatter |
884 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
885 |
+ |
} |
886 |
+ |
} |
887 |
+ |
} |
888 |
|
|
889 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
890 |
+ |
int npp = snap_->atomData.particlePot.size(); |
891 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
892 |
+ |
|
893 |
+ |
// This is the direct or embedding contribution to the particle |
894 |
+ |
// pot. |
895 |
+ |
|
896 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
897 |
+ |
for (int i = 0; i < npp; i++) { |
898 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
899 |
+ |
} |
900 |
+ |
|
901 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
902 |
+ |
|
903 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
904 |
+ |
for (int i = 0; i < npp; i++) { |
905 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
906 |
+ |
} |
907 |
+ |
} |
908 |
+ |
|
909 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
910 |
|
RealType ploc1 = pairwisePot[ii]; |
911 |
|
RealType ploc2 = 0.0; |
914 |
|
} |
915 |
|
|
916 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
917 |
< |
RealType ploc1 = embeddingPot[ii]; |
917 |
> |
RealType ploc1 = excludedPot[ii]; |
918 |
|
RealType ploc2 = 0.0; |
919 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
920 |
< |
embeddingPot[ii] = ploc2; |
920 |
> |
excludedPot[ii] = ploc2; |
921 |
|
} |
922 |
|
|
923 |
+ |
// Here be dragons. |
924 |
+ |
MPI::Intracomm col = colComm.getComm(); |
925 |
+ |
|
926 |
+ |
col.Allreduce(MPI::IN_PLACE, |
927 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
928 |
+ |
MPI::REALTYPE, MPI::SUM); |
929 |
+ |
|
930 |
+ |
|
931 |
|
#endif |
932 |
|
|
933 |
|
} |
934 |
|
|
935 |
< |
int ForceMatrixDecomposition::getNAtomsInRow() { |
935 |
> |
/** |
936 |
> |
* Collects information obtained during the post-pair (and embedding |
937 |
> |
* functional) loops onto local data structures. |
938 |
> |
*/ |
939 |
> |
void ForceMatrixDecomposition::collectSelfData() { |
940 |
> |
snap_ = sman_->getCurrentSnapshot(); |
941 |
> |
storageLayout_ = sman_->getStorageLayout(); |
942 |
> |
|
943 |
|
#ifdef IS_MPI |
944 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
945 |
+ |
RealType ploc1 = embeddingPot[ii]; |
946 |
+ |
RealType ploc2 = 0.0; |
947 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
948 |
+ |
embeddingPot[ii] = ploc2; |
949 |
+ |
} |
950 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
951 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
952 |
+ |
RealType ploc2 = 0.0; |
953 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
954 |
+ |
excludedSelfPot[ii] = ploc2; |
955 |
+ |
} |
956 |
+ |
#endif |
957 |
+ |
|
958 |
+ |
} |
959 |
+ |
|
960 |
+ |
|
961 |
+ |
|
962 |
+ |
int& ForceMatrixDecomposition::getNAtomsInRow() { |
963 |
+ |
#ifdef IS_MPI |
964 |
|
return nAtomsInRow_; |
965 |
|
#else |
966 |
|
return nLocal_; |
970 |
|
/** |
971 |
|
* returns the list of atoms belonging to this group. |
972 |
|
*/ |
973 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
973 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
974 |
|
#ifdef IS_MPI |
975 |
|
return groupListRow_[cg1]; |
976 |
|
#else |
978 |
|
#endif |
979 |
|
} |
980 |
|
|
981 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
981 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
982 |
|
#ifdef IS_MPI |
983 |
|
return groupListCol_[cg2]; |
984 |
|
#else |
995 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
996 |
|
#endif |
997 |
|
|
998 |
< |
snap_->wrapVector(d); |
998 |
> |
if (usePeriodicBoundaryConditions_) { |
999 |
> |
snap_->wrapVector(d); |
1000 |
> |
} |
1001 |
|
return d; |
1002 |
|
} |
1003 |
|
|
1004 |
+ |
Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
1005 |
+ |
#ifdef IS_MPI |
1006 |
+ |
return cgColData.velocity[cg2]; |
1007 |
+ |
#else |
1008 |
+ |
return snap_->cgData.velocity[cg2]; |
1009 |
+ |
#endif |
1010 |
+ |
} |
1011 |
|
|
1012 |
+ |
Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
1013 |
+ |
#ifdef IS_MPI |
1014 |
+ |
return atomColData.velocity[atom2]; |
1015 |
+ |
#else |
1016 |
+ |
return snap_->atomData.velocity[atom2]; |
1017 |
+ |
#endif |
1018 |
+ |
} |
1019 |
+ |
|
1020 |
+ |
|
1021 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
1022 |
|
|
1023 |
|
Vector3d d; |
1027 |
|
#else |
1028 |
|
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
1029 |
|
#endif |
1030 |
< |
|
1031 |
< |
snap_->wrapVector(d); |
1030 |
> |
if (usePeriodicBoundaryConditions_) { |
1031 |
> |
snap_->wrapVector(d); |
1032 |
> |
} |
1033 |
|
return d; |
1034 |
|
} |
1035 |
|
|
1041 |
|
#else |
1042 |
|
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
1043 |
|
#endif |
1044 |
< |
|
1045 |
< |
snap_->wrapVector(d); |
1044 |
> |
if (usePeriodicBoundaryConditions_) { |
1045 |
> |
snap_->wrapVector(d); |
1046 |
> |
} |
1047 |
|
return d; |
1048 |
|
} |
1049 |
|
|
1050 |
< |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1050 |
> |
RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1051 |
|
#ifdef IS_MPI |
1052 |
|
return massFactorsRow[atom1]; |
1053 |
|
#else |
1055 |
|
#endif |
1056 |
|
} |
1057 |
|
|
1058 |
< |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1058 |
> |
RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1059 |
|
#ifdef IS_MPI |
1060 |
|
return massFactorsCol[atom2]; |
1061 |
|
#else |
1072 |
|
#else |
1073 |
|
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
1074 |
|
#endif |
1075 |
< |
|
1076 |
< |
snap_->wrapVector(d); |
1075 |
> |
if (usePeriodicBoundaryConditions_) { |
1076 |
> |
snap_->wrapVector(d); |
1077 |
> |
} |
1078 |
|
return d; |
1079 |
|
} |
1080 |
|
|
1081 |
< |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1081 |
> |
vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1082 |
|
return excludesForAtom[atom1]; |
1083 |
|
} |
1084 |
|
|
1086 |
|
* We need to exclude some overcounted interactions that result from |
1087 |
|
* the parallel decomposition. |
1088 |
|
*/ |
1089 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1089 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1090 |
|
int unique_id_1, unique_id_2; |
1091 |
|
|
1092 |
|
#ifdef IS_MPI |
1093 |
|
// in MPI, we have to look up the unique IDs for each atom |
1094 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1095 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1096 |
+ |
// group1 = cgRowToGlobal[cg1]; |
1097 |
+ |
// group2 = cgColToGlobal[cg2]; |
1098 |
|
#else |
1099 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
1100 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
1101 |
+ |
int group1 = cgLocalToGlobal[cg1]; |
1102 |
+ |
int group2 = cgLocalToGlobal[cg2]; |
1103 |
|
#endif |
1104 |
|
|
1105 |
|
if (unique_id_1 == unique_id_2) return true; |
1110 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1111 |
|
} else { |
1112 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1113 |
+ |
} |
1114 |
+ |
#endif |
1115 |
+ |
|
1116 |
+ |
#ifndef IS_MPI |
1117 |
+ |
if (group1 == group2) { |
1118 |
+ |
if (unique_id_1 < unique_id_2) return true; |
1119 |
|
} |
1120 |
|
#endif |
1121 |
|
|
1169 |
|
|
1170 |
|
#ifdef IS_MPI |
1171 |
|
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1172 |
+ |
idat.atid1 = identsRow[atom1]; |
1173 |
+ |
idat.atid2 = identsCol[atom2]; |
1174 |
|
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1175 |
|
// ff_->getAtomType(identsCol[atom2]) ); |
1176 |
|
|
1179 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
1180 |
|
} |
1181 |
|
|
918 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
919 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
920 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
921 |
– |
} |
922 |
– |
|
1182 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1183 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
1184 |
|
idat.t2 = &(atomColData.torque[atom2]); |
1185 |
|
} |
1186 |
|
|
1187 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1188 |
+ |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
1189 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
1190 |
+ |
} |
1191 |
+ |
|
1192 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1193 |
+ |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1194 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1195 |
+ |
} |
1196 |
+ |
|
1197 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1198 |
|
idat.rho1 = &(atomRowData.density[atom1]); |
1199 |
|
idat.rho2 = &(atomColData.density[atom2]); |
1219 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1220 |
|
} |
1221 |
|
|
1222 |
< |
#else |
1222 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1223 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1224 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1225 |
> |
} |
1226 |
|
|
1227 |
+ |
#else |
1228 |
+ |
|
1229 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1230 |
< |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1231 |
< |
// ff_->getAtomType(idents[atom2]) ); |
1230 |
> |
idat.atid1 = idents[atom1]; |
1231 |
> |
idat.atid2 = idents[atom2]; |
1232 |
|
|
1233 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1234 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1235 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1236 |
|
} |
1237 |
|
|
964 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
965 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
966 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
967 |
– |
} |
968 |
– |
|
1238 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1239 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
1240 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
1241 |
|
} |
1242 |
|
|
1243 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1244 |
+ |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1245 |
+ |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1246 |
+ |
} |
1247 |
+ |
|
1248 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1249 |
+ |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1250 |
+ |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1251 |
+ |
} |
1252 |
+ |
|
1253 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1254 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
1255 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
1274 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1275 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1276 |
|
} |
1277 |
+ |
|
1278 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1279 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1280 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1281 |
+ |
} |
1282 |
+ |
|
1283 |
|
#endif |
1284 |
|
} |
1285 |
|
|
1286 |
|
|
1287 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1288 |
|
#ifdef IS_MPI |
1289 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1290 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1289 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1290 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1291 |
> |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1292 |
> |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1293 |
|
|
1294 |
|
atomRowData.force[atom1] += *(idat.f1); |
1295 |
|
atomColData.force[atom2] -= *(idat.f1); |
1296 |
+ |
|
1297 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1298 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1299 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1300 |
+ |
} |
1301 |
+ |
|
1302 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1303 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1304 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1305 |
+ |
} |
1306 |
+ |
|
1307 |
|
#else |
1308 |
|
pairwisePot += *(idat.pot); |
1309 |
+ |
excludedPot += *(idat.excludedPot); |
1310 |
|
|
1311 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1312 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1313 |
+ |
|
1314 |
+ |
if (idat.doParticlePot) { |
1315 |
+ |
// This is the pairwise contribution to the particle pot. The |
1316 |
+ |
// embedding contribution is added in each of the low level |
1317 |
+ |
// non-bonded routines. In parallel, this calculation is done |
1318 |
+ |
// in collectData, not in unpackInteractionData. |
1319 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1320 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1321 |
+ |
} |
1322 |
+ |
|
1323 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1324 |
+ |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1325 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1326 |
+ |
} |
1327 |
+ |
|
1328 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1329 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1330 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1331 |
+ |
} |
1332 |
+ |
|
1333 |
|
#endif |
1334 |
|
|
1335 |
|
} |
1340 |
|
* first element of pair is row-indexed CutoffGroup |
1341 |
|
* second element of pair is column-indexed CutoffGroup |
1342 |
|
*/ |
1343 |
< |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1344 |
< |
|
1345 |
< |
vector<pair<int, int> > neighborList; |
1343 |
> |
void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1344 |
> |
|
1345 |
> |
neighborList.clear(); |
1346 |
|
groupCutoffs cuts; |
1347 |
|
bool doAllPairs = false; |
1348 |
|
|
1349 |
+ |
RealType rList_ = (largestRcut_ + skinThickness_); |
1350 |
+ |
RealType rcut, rcutsq, rlistsq; |
1351 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1352 |
+ |
Mat3x3d box; |
1353 |
+ |
Mat3x3d invBox; |
1354 |
+ |
|
1355 |
+ |
Vector3d rs, scaled, dr; |
1356 |
+ |
Vector3i whichCell; |
1357 |
+ |
int cellIndex; |
1358 |
+ |
|
1359 |
|
#ifdef IS_MPI |
1360 |
|
cellListRow_.clear(); |
1361 |
|
cellListCol_.clear(); |
1362 |
|
#else |
1363 |
|
cellList_.clear(); |
1364 |
|
#endif |
1365 |
< |
|
1366 |
< |
RealType rList_ = (largestRcut_ + skinThickness_); |
1367 |
< |
RealType rl2 = rList_ * rList_; |
1368 |
< |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1369 |
< |
Mat3x3d Hmat = snap_->getHmat(); |
1370 |
< |
Vector3d Hx = Hmat.getColumn(0); |
1371 |
< |
Vector3d Hy = Hmat.getColumn(1); |
1372 |
< |
Vector3d Hz = Hmat.getColumn(2); |
1373 |
< |
|
1374 |
< |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1375 |
< |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1376 |
< |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1377 |
< |
|
1365 |
> |
|
1366 |
> |
if (!usePeriodicBoundaryConditions_) { |
1367 |
> |
box = snap_->getBoundingBox(); |
1368 |
> |
invBox = snap_->getInvBoundingBox(); |
1369 |
> |
} else { |
1370 |
> |
box = snap_->getHmat(); |
1371 |
> |
invBox = snap_->getInvHmat(); |
1372 |
> |
} |
1373 |
> |
|
1374 |
> |
Vector3d boxX = box.getColumn(0); |
1375 |
> |
Vector3d boxY = box.getColumn(1); |
1376 |
> |
Vector3d boxZ = box.getColumn(2); |
1377 |
> |
|
1378 |
> |
nCells_.x() = (int) ( boxX.length() )/ rList_; |
1379 |
> |
nCells_.y() = (int) ( boxY.length() )/ rList_; |
1380 |
> |
nCells_.z() = (int) ( boxZ.length() )/ rList_; |
1381 |
> |
|
1382 |
|
// handle small boxes where the cell offsets can end up repeating cells |
1383 |
|
|
1384 |
|
if (nCells_.x() < 3) doAllPairs = true; |
1385 |
|
if (nCells_.y() < 3) doAllPairs = true; |
1386 |
|
if (nCells_.z() < 3) doAllPairs = true; |
1387 |
< |
|
1055 |
< |
Mat3x3d invHmat = snap_->getInvHmat(); |
1056 |
< |
Vector3d rs, scaled, dr; |
1057 |
< |
Vector3i whichCell; |
1058 |
< |
int cellIndex; |
1387 |
> |
|
1388 |
|
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1389 |
< |
|
1389 |
> |
|
1390 |
|
#ifdef IS_MPI |
1391 |
|
cellListRow_.resize(nCtot); |
1392 |
|
cellListCol_.resize(nCtot); |
1393 |
|
#else |
1394 |
|
cellList_.resize(nCtot); |
1395 |
|
#endif |
1396 |
< |
|
1396 |
> |
|
1397 |
|
if (!doAllPairs) { |
1398 |
|
#ifdef IS_MPI |
1399 |
< |
|
1399 |
> |
|
1400 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
1401 |
|
rs = cgRowData.position[i]; |
1402 |
|
|
1403 |
|
// scaled positions relative to the box vectors |
1404 |
< |
scaled = invHmat * rs; |
1404 |
> |
scaled = invBox * rs; |
1405 |
|
|
1406 |
|
// wrap the vector back into the unit box by subtracting integer box |
1407 |
|
// numbers |
1408 |
|
for (int j = 0; j < 3; j++) { |
1409 |
|
scaled[j] -= roundMe(scaled[j]); |
1410 |
|
scaled[j] += 0.5; |
1411 |
+ |
// Handle the special case when an object is exactly on the |
1412 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1413 |
+ |
// scaled coordinate of 0.0) |
1414 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1415 |
|
} |
1416 |
|
|
1417 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1429 |
|
rs = cgColData.position[i]; |
1430 |
|
|
1431 |
|
// scaled positions relative to the box vectors |
1432 |
< |
scaled = invHmat * rs; |
1432 |
> |
scaled = invBox * rs; |
1433 |
|
|
1434 |
|
// wrap the vector back into the unit box by subtracting integer box |
1435 |
|
// numbers |
1436 |
|
for (int j = 0; j < 3; j++) { |
1437 |
|
scaled[j] -= roundMe(scaled[j]); |
1438 |
|
scaled[j] += 0.5; |
1439 |
+ |
// Handle the special case when an object is exactly on the |
1440 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1441 |
+ |
// scaled coordinate of 0.0) |
1442 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1443 |
|
} |
1444 |
|
|
1445 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1453 |
|
// add this cutoff group to the list of groups in this cell; |
1454 |
|
cellListCol_[cellIndex].push_back(i); |
1455 |
|
} |
1456 |
< |
|
1456 |
> |
|
1457 |
|
#else |
1458 |
|
for (int i = 0; i < nGroups_; i++) { |
1459 |
|
rs = snap_->cgData.position[i]; |
1460 |
|
|
1461 |
|
// scaled positions relative to the box vectors |
1462 |
< |
scaled = invHmat * rs; |
1462 |
> |
scaled = invBox * rs; |
1463 |
|
|
1464 |
|
// wrap the vector back into the unit box by subtracting integer box |
1465 |
|
// numbers |
1466 |
|
for (int j = 0; j < 3; j++) { |
1467 |
|
scaled[j] -= roundMe(scaled[j]); |
1468 |
|
scaled[j] += 0.5; |
1469 |
+ |
// Handle the special case when an object is exactly on the |
1470 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
1471 |
+ |
// scaled coordinate of 0.0) |
1472 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1473 |
|
} |
1474 |
|
|
1475 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1528 |
|
// & column indicies and will divide labor in the |
1529 |
|
// force evaluation later. |
1530 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1531 |
< |
snap_->wrapVector(dr); |
1532 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1533 |
< |
if (dr.lengthSquare() < cuts.third) { |
1531 |
> |
if (usePeriodicBoundaryConditions_) { |
1532 |
> |
snap_->wrapVector(dr); |
1533 |
> |
} |
1534 |
> |
getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1535 |
> |
if (dr.lengthSquare() < rlistsq) { |
1536 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1537 |
|
} |
1538 |
|
} |
1552 |
|
// allows atoms within a single cutoff group to |
1553 |
|
// interact with each other. |
1554 |
|
|
1212 |
– |
|
1213 |
– |
|
1555 |
|
if (m2 != m1 || (*j2) >= (*j1) ) { |
1556 |
|
|
1557 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1558 |
< |
snap_->wrapVector(dr); |
1559 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1560 |
< |
if (dr.lengthSquare() < cuts.third) { |
1558 |
> |
if (usePeriodicBoundaryConditions_) { |
1559 |
> |
snap_->wrapVector(dr); |
1560 |
> |
} |
1561 |
> |
getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1562 |
> |
if (dr.lengthSquare() < rlistsq) { |
1563 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1564 |
|
} |
1565 |
|
} |
1576 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1577 |
|
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1578 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1579 |
< |
snap_->wrapVector(dr); |
1580 |
< |
cuts = getGroupCutoffs( j1, j2 ); |
1581 |
< |
if (dr.lengthSquare() < cuts.third) { |
1579 |
> |
if (usePeriodicBoundaryConditions_) { |
1580 |
> |
snap_->wrapVector(dr); |
1581 |
> |
} |
1582 |
> |
getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); |
1583 |
> |
if (dr.lengthSquare() < rlistsq) { |
1584 |
|
neighborList.push_back(make_pair(j1, j2)); |
1585 |
|
} |
1586 |
|
} |
1591 |
|
// include self group interactions j2 == j1 |
1592 |
|
for (int j2 = j1; j2 < nGroups_; j2++) { |
1593 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1594 |
< |
snap_->wrapVector(dr); |
1595 |
< |
cuts = getGroupCutoffs( j1, j2 ); |
1596 |
< |
if (dr.lengthSquare() < cuts.third) { |
1594 |
> |
if (usePeriodicBoundaryConditions_) { |
1595 |
> |
snap_->wrapVector(dr); |
1596 |
> |
} |
1597 |
> |
getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); |
1598 |
> |
if (dr.lengthSquare() < rlistsq) { |
1599 |
|
neighborList.push_back(make_pair(j1, j2)); |
1600 |
|
} |
1601 |
|
} |
1608 |
|
saved_CG_positions_.clear(); |
1609 |
|
for (int i = 0; i < nGroups_; i++) |
1610 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1264 |
– |
|
1265 |
– |
return neighborList; |
1611 |
|
} |
1612 |
|
} //end namespace OpenMD |