ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1541 by gezelter, Fri Feb 4 20:04:56 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1796 by gezelter, Mon Sep 10 18:38:44 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 < #include "parallel/ForceDecomposition.hpp"
42 < #include "parallel/Communicator.hpp"
42 > #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44 + #include "nonbonded/NonBondedInteraction.hpp"
45 + #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 <  void ForceDecomposition::distributeInitialData() {
51 >  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 >
53 >    // In a parallel computation, row and colum scans must visit all
54 >    // surrounding cells (not just the 14 upper triangular blocks that
55 >    // are used when the processor can see all pairs)
56   #ifdef IS_MPI
57 <    Snapshot* snap = sman_->getCurrentSnapshot();
58 <    int nAtoms = snap->getNumberOfAtoms();
59 <    int nGroups = snap->getNumberOfCutoffGroups();
57 >    cellOffsets_.clear();
58 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 >    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 >    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 >    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 >    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 >    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 >    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 >    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 >    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 >    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 >    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 >    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 >    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 >    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 >    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 > #endif    
86 >  }
87  
54    AtomCommRealI = new Communicator<Row,RealType>(nAtoms);
55    AtomCommVectorI = new Communicator<Row,Vector3d>(nAtoms);
56    AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nAtoms);
88  
89 <    AtomCommRealJ = new Communicator<Column,RealType>(nAtoms);
90 <    AtomCommVectorJ = new Communicator<Column,Vector3d>(nAtoms);
91 <    AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nAtoms);
89 >  /**
90 >   * distributeInitialData is essentially a copy of the older fortran
91 >   * SimulationSetup
92 >   */
93 >  void ForceMatrixDecomposition::distributeInitialData() {
94 >    snap_ = sman_->getCurrentSnapshot();
95 >    storageLayout_ = sman_->getStorageLayout();
96 >    ff_ = info_->getForceField();
97 >    nLocal_ = snap_->getNumberOfAtoms();
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 <    cgCommVectorI = new Communicator<Row,Vector3d>(nGroups);
63 <    cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups);
106 >    massFactors = info_->getMassFactors();
107  
108 <    int nInRow = AtomCommRealI.getSize();
109 <    int nInCol = AtomCommRealJ.getSize();
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112 >    
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119 > #ifdef IS_MPI
120 >
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    vector<vector<RealType> > pot_row(LR_POT_TYPES,
125 <                                      vector<RealType> (nInRow, 0.0));
126 <    vector<vector<RealType> > pot_col(LR_POT_TYPES,
127 <                                      vector<RealType> (nInCol, 0.0));
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    vector<vector<RealType> > pot_local(LR_POT_TYPES,
131 <                                        vector<RealType> (nAtoms, 0.0));
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 +    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 +    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 +    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 +    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140 +
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146 +    // Modify the data storage objects with the correct layouts and sizes:
147 +    atomRowData.resize(nAtomsInRow_);
148 +    atomRowData.setStorageLayout(storageLayout_);
149 +    atomColData.resize(nAtomsInCol_);
150 +    atomColData.setStorageLayout(storageLayout_);
151 +    cgRowData.resize(nGroupsInRow_);
152 +    cgRowData.setStorageLayout(DataStorage::dslPosition);
153 +    cgColData.resize(nGroupsInCol_);
154 +    if (needVelocities_)
155 +      // we only need column velocities if we need them.
156 +      cgColData.setStorageLayout(DataStorage::dslPosition |
157 +                                 DataStorage::dslVelocity);
158 +    else    
159 +      cgColData.setStorageLayout(DataStorage::dslPosition);
160 +      
161 +    identsRow.resize(nAtomsInRow_);
162 +    identsCol.resize(nAtomsInCol_);
163 +    
164 +    AtomPlanIntRow->gather(idents, identsRow);
165 +    AtomPlanIntColumn->gather(idents, identsCol);
166 +    
167 +    // allocate memory for the parallel objects
168 +    atypesRow.resize(nAtomsInRow_);
169 +    atypesCol.resize(nAtomsInCol_);
170 +
171 +    for (int i = 0; i < nAtomsInRow_; i++)
172 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 +    for (int i = 0; i < nAtomsInCol_; i++)
174 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175 +
176 +    pot_row.resize(nAtomsInRow_);
177 +    pot_col.resize(nAtomsInCol_);
178 +
179 +    expot_row.resize(nAtomsInRow_);
180 +    expot_col.resize(nAtomsInCol_);
181 +
182 +    AtomRowToGlobal.resize(nAtomsInRow_);
183 +    AtomColToGlobal.resize(nAtomsInCol_);
184 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 +
187 +    cgRowToGlobal.resize(nGroupsInRow_);
188 +    cgColToGlobal.resize(nGroupsInCol_);
189 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 +
192 +    massFactorsRow.resize(nAtomsInRow_);
193 +    massFactorsCol.resize(nAtomsInCol_);
194 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 +
197 +    groupListRow_.clear();
198 +    groupListRow_.resize(nGroupsInRow_);
199 +    for (int i = 0; i < nGroupsInRow_; i++) {
200 +      int gid = cgRowToGlobal[i];
201 +      for (int j = 0; j < nAtomsInRow_; j++) {
202 +        int aid = AtomRowToGlobal[j];
203 +        if (globalGroupMembership[aid] == gid)
204 +          groupListRow_[i].push_back(j);
205 +      }      
206 +    }
207 +
208 +    groupListCol_.clear();
209 +    groupListCol_.resize(nGroupsInCol_);
210 +    for (int i = 0; i < nGroupsInCol_; i++) {
211 +      int gid = cgColToGlobal[i];
212 +      for (int j = 0; j < nAtomsInCol_; j++) {
213 +        int aid = AtomColToGlobal[j];
214 +        if (globalGroupMembership[aid] == gid)
215 +          groupListCol_[i].push_back(j);
216 +      }      
217 +    }
218 +
219 +    excludesForAtom.clear();
220 +    excludesForAtom.resize(nAtomsInRow_);
221 +    toposForAtom.clear();
222 +    toposForAtom.resize(nAtomsInRow_);
223 +    topoDist.clear();
224 +    topoDist.resize(nAtomsInRow_);
225 +    for (int i = 0; i < nAtomsInRow_; i++) {
226 +      int iglob = AtomRowToGlobal[i];
227 +
228 +      for (int j = 0; j < nAtomsInCol_; j++) {
229 +        int jglob = AtomColToGlobal[j];
230 +
231 +        if (excludes->hasPair(iglob, jglob))
232 +          excludesForAtom[i].push_back(j);      
233 +        
234 +        if (oneTwo->hasPair(iglob, jglob)) {
235 +          toposForAtom[i].push_back(j);
236 +          topoDist[i].push_back(1);
237 +        } else {
238 +          if (oneThree->hasPair(iglob, jglob)) {
239 +            toposForAtom[i].push_back(j);
240 +            topoDist[i].push_back(2);
241 +          } else {
242 +            if (oneFour->hasPair(iglob, jglob)) {
243 +              toposForAtom[i].push_back(j);
244 +              topoDist[i].push_back(3);
245 +            }
246 +          }
247 +        }
248 +      }      
249 +    }
250 +
251 + #else
252 +    excludesForAtom.clear();
253 +    excludesForAtom.resize(nLocal_);
254 +    toposForAtom.clear();
255 +    toposForAtom.resize(nLocal_);
256 +    topoDist.clear();
257 +    topoDist.resize(nLocal_);
258 +
259 +    for (int i = 0; i < nLocal_; i++) {
260 +      int iglob = AtomLocalToGlobal[i];
261 +
262 +      for (int j = 0; j < nLocal_; j++) {
263 +        int jglob = AtomLocalToGlobal[j];
264 +
265 +        if (excludes->hasPair(iglob, jglob))
266 +          excludesForAtom[i].push_back(j);              
267 +        
268 +        if (oneTwo->hasPair(iglob, jglob)) {
269 +          toposForAtom[i].push_back(j);
270 +          topoDist[i].push_back(1);
271 +        } else {
272 +          if (oneThree->hasPair(iglob, jglob)) {
273 +            toposForAtom[i].push_back(j);
274 +            topoDist[i].push_back(2);
275 +          } else {
276 +            if (oneFour->hasPair(iglob, jglob)) {
277 +              toposForAtom[i].push_back(j);
278 +              topoDist[i].push_back(3);
279 +            }
280 +          }
281 +        }
282 +      }      
283 +    }
284   #endif
285 +
286 +    // allocate memory for the parallel objects
287 +    atypesLocal.resize(nLocal_);
288 +
289 +    for (int i = 0; i < nLocal_; i++)
290 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 +
292 +    groupList_.clear();
293 +    groupList_.resize(nGroups_);
294 +    for (int i = 0; i < nGroups_; i++) {
295 +      int gid = cgLocalToGlobal[i];
296 +      for (int j = 0; j < nLocal_; j++) {
297 +        int aid = AtomLocalToGlobal[j];
298 +        if (globalGroupMembership[aid] == gid) {
299 +          groupList_[i].push_back(j);
300 +        }
301 +      }      
302 +    }
303 +
304 +
305 +    createGtypeCutoffMap();
306 +
307    }
308 +  
309 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310      
311 +    RealType tol = 1e-6;
312 +    largestRcut_ = 0.0;
313 +    int atid;
314 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315 +    
316 +    map<int, RealType> atypeCutoff;
317 +      
318 +    for (set<AtomType*>::iterator at = atypes.begin();
319 +         at != atypes.end(); ++at){
320 +      atid = (*at)->getIdent();
321 +      if (userChoseCutoff_)
322 +        atypeCutoff[atid] = userCutoff_;
323 +      else
324 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325 +    }
326 +    
327 +    vector<RealType> gTypeCutoffs;
328 +    // first we do a single loop over the cutoff groups to find the
329 +    // largest cutoff for any atypes present in this group.
330 + #ifdef IS_MPI
331 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 +    groupRowToGtype.resize(nGroupsInRow_);
333 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
335 +      for (vector<int>::iterator ia = atomListRow.begin();
336 +           ia != atomListRow.end(); ++ia) {            
337 +        int atom1 = (*ia);
338 +        atid = identsRow[atom1];
339 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340 +          groupCutoffRow[cg1] = atypeCutoff[atid];
341 +        }
342 +      }
343  
344 +      bool gTypeFound = false;
345 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347 +          groupRowToGtype[cg1] = gt;
348 +          gTypeFound = true;
349 +        }
350 +      }
351 +      if (!gTypeFound) {
352 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354 +      }
355 +      
356 +    }
357 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 +    groupColToGtype.resize(nGroupsInCol_);
359 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361 +      for (vector<int>::iterator jb = atomListCol.begin();
362 +           jb != atomListCol.end(); ++jb) {            
363 +        int atom2 = (*jb);
364 +        atid = identsCol[atom2];
365 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366 +          groupCutoffCol[cg2] = atypeCutoff[atid];
367 +        }
368 +      }
369 +      bool gTypeFound = false;
370 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372 +          groupColToGtype[cg2] = gt;
373 +          gTypeFound = true;
374 +        }
375 +      }
376 +      if (!gTypeFound) {
377 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379 +      }
380 +    }
381 + #else
382  
383 <  void ForceDecomposition::distributeData()  {
383 >    vector<RealType> groupCutoff(nGroups_, 0.0);
384 >    groupToGtype.resize(nGroups_);
385 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386 >      groupCutoff[cg1] = 0.0;
387 >      vector<int> atomList = getAtomsInGroupRow(cg1);
388 >      for (vector<int>::iterator ia = atomList.begin();
389 >           ia != atomList.end(); ++ia) {            
390 >        int atom1 = (*ia);
391 >        atid = idents[atom1];
392 >        if (atypeCutoff[atid] > groupCutoff[cg1])
393 >          groupCutoff[cg1] = atypeCutoff[atid];
394 >      }
395 >      
396 >      bool gTypeFound = false;
397 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399 >          groupToGtype[cg1] = gt;
400 >          gTypeFound = true;
401 >        }
402 >      }
403 >      if (!gTypeFound) {      
404 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
405 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406 >      }      
407 >    }
408 > #endif
409 >
410 >    // Now we find the maximum group cutoff value present in the simulation
411 >
412 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 >                                     gTypeCutoffs.end());
414 >
415   #ifdef IS_MPI
416 <    Snapshot* snap = sman_->getCurrentSnapshot();
416 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 >                              MPI::MAX);
418 > #endif
419 >    
420 >    RealType tradRcut = groupMax;
421 >
422 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
423 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
424 >        RealType thisRcut;
425 >        switch(cutoffPolicy_) {
426 >        case TRADITIONAL:
427 >          thisRcut = tradRcut;
428 >          break;
429 >        case MIX:
430 >          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 >          break;
432 >        case MAX:
433 >          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 >          break;
435 >        default:
436 >          sprintf(painCave.errMsg,
437 >                  "ForceMatrixDecomposition::createGtypeCutoffMap "
438 >                  "hit an unknown cutoff policy!\n");
439 >          painCave.severity = OPENMD_ERROR;
440 >          painCave.isFatal = 1;
441 >          simError();
442 >          break;
443 >        }
444 >
445 >        pair<int,int> key = make_pair(i,j);
446 >        gTypeCutoffMap[key].first = thisRcut;
447 >        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448 >        gTypeCutoffMap[key].second = thisRcut*thisRcut;
449 >        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450 >        // sanity check
451 >        
452 >        if (userChoseCutoff_) {
453 >          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454 >            sprintf(painCave.errMsg,
455 >                    "ForceMatrixDecomposition::createGtypeCutoffMap "
456 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 >            painCave.severity = OPENMD_ERROR;
458 >            painCave.isFatal = 1;
459 >            simError();            
460 >          }
461 >        }
462 >      }
463 >    }
464 >  }
465 >
466 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 >    int i, j;  
468 > #ifdef IS_MPI
469 >    i = groupRowToGtype[cg1];
470 >    j = groupColToGtype[cg2];
471 > #else
472 >    i = groupToGtype[cg1];
473 >    j = groupToGtype[cg2];
474 > #endif    
475 >    return gTypeCutoffMap[make_pair(i,j)];
476 >  }
477 >
478 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 >      if (toposForAtom[atom1][j] == atom2)
481 >        return topoDist[atom1][j];
482 >    }
483 >    return 0;
484 >  }
485 >
486 >  void ForceMatrixDecomposition::zeroWorkArrays() {
487 >    pairwisePot = 0.0;
488 >    embeddingPot = 0.0;
489 >    excludedPot = 0.0;
490 >    excludedSelfPot = 0.0;
491 >
492 > #ifdef IS_MPI
493 >    if (storageLayout_ & DataStorage::dslForce) {
494 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 >    }
497 >
498 >    if (storageLayout_ & DataStorage::dslTorque) {
499 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 >    }
502      
503 +    fill(pot_row.begin(), pot_row.end(),
504 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505 +
506 +    fill(pot_col.begin(), pot_col.end(),
507 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508 +
509 +    fill(expot_row.begin(), expot_row.end(),
510 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 +
512 +    fill(expot_col.begin(), expot_col.end(),
513 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 +
515 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
516 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 +           0.0);
518 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 +           0.0);
520 +    }
521 +
522 +    if (storageLayout_ & DataStorage::dslDensity) {      
523 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 +    }
526 +
527 +    if (storageLayout_ & DataStorage::dslFunctional) {  
528 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 +           0.0);
530 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 +           0.0);
532 +    }
533 +
534 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
535 +      fill(atomRowData.functionalDerivative.begin(),
536 +           atomRowData.functionalDerivative.end(), 0.0);
537 +      fill(atomColData.functionalDerivative.begin(),
538 +           atomColData.functionalDerivative.end(), 0.0);
539 +    }
540 +
541 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 +      fill(atomRowData.skippedCharge.begin(),
543 +           atomRowData.skippedCharge.end(), 0.0);
544 +      fill(atomColData.skippedCharge.begin(),
545 +           atomColData.skippedCharge.end(), 0.0);
546 +    }
547 +
548 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 +      fill(atomRowData.flucQFrc.begin(),
550 +           atomRowData.flucQFrc.end(), 0.0);
551 +      fill(atomColData.flucQFrc.begin(),
552 +           atomColData.flucQFrc.end(), 0.0);
553 +    }
554 +
555 +    if (storageLayout_ & DataStorage::dslElectricField) {    
556 +      fill(atomRowData.electricField.begin(),
557 +           atomRowData.electricField.end(), V3Zero);
558 +      fill(atomColData.electricField.begin(),
559 +           atomColData.electricField.end(), V3Zero);
560 +    }
561 +
562 +    if (storageLayout_ & DataStorage::dslFlucQForce) {    
563 +      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
564 +           0.0);
565 +      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
566 +           0.0);
567 +    }
568 +
569 + #endif
570 +    // even in parallel, we need to zero out the local arrays:
571 +
572 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
573 +      fill(snap_->atomData.particlePot.begin(),
574 +           snap_->atomData.particlePot.end(), 0.0);
575 +    }
576 +    
577 +    if (storageLayout_ & DataStorage::dslDensity) {      
578 +      fill(snap_->atomData.density.begin(),
579 +           snap_->atomData.density.end(), 0.0);
580 +    }
581 +
582 +    if (storageLayout_ & DataStorage::dslFunctional) {
583 +      fill(snap_->atomData.functional.begin(),
584 +           snap_->atomData.functional.end(), 0.0);
585 +    }
586 +
587 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
588 +      fill(snap_->atomData.functionalDerivative.begin(),
589 +           snap_->atomData.functionalDerivative.end(), 0.0);
590 +    }
591 +
592 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
593 +      fill(snap_->atomData.skippedCharge.begin(),
594 +           snap_->atomData.skippedCharge.end(), 0.0);
595 +    }
596 +
597 +    if (storageLayout_ & DataStorage::dslElectricField) {      
598 +      fill(snap_->atomData.electricField.begin(),
599 +           snap_->atomData.electricField.end(), V3Zero);
600 +    }
601 +  }
602 +
603 +
604 +  void ForceMatrixDecomposition::distributeData()  {
605 +    snap_ = sman_->getCurrentSnapshot();
606 +    storageLayout_ = sman_->getStorageLayout();
607 + #ifdef IS_MPI
608 +    
609      // gather up the atomic positions
610 <    AtomCommVectorI->gather(snap->atomData.position,
611 <                            snap->atomIData.position);
612 <    AtomCommVectorJ->gather(snap->atomData.position,
613 <                            snap->atomJData.position);
610 >    AtomPlanVectorRow->gather(snap_->atomData.position,
611 >                              atomRowData.position);
612 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
613 >                                 atomColData.position);
614      
615      // gather up the cutoff group positions
616 <    cgCommVectorI->gather(snap->cgData.position,
617 <                          snap->cgIData.position);
618 <    cgCommVectorJ->gather(snap->cgData.position,
619 <                          snap->cgJData.position);
616 >
617 >    cgPlanVectorRow->gather(snap_->cgData.position,
618 >                            cgRowData.position);
619 >
620 >    cgPlanVectorColumn->gather(snap_->cgData.position,
621 >                               cgColData.position);
622 >
623 >
624 >
625 >    if (needVelocities_) {
626 >      // gather up the atomic velocities
627 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
628 >                                   atomColData.velocity);
629 >      
630 >      cgPlanVectorColumn->gather(snap_->cgData.velocity,
631 >                                 cgColData.velocity);
632 >    }
633 >
634      
635      // if needed, gather the atomic rotation matrices
636 <    if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) {
637 <      AtomCommMatrixI->gather(snap->atomData.aMat,
638 <                              snap->atomIData.aMat);
639 <      AtomCommMatrixJ->gather(snap->atomData.aMat,
640 <                              snap->atomJData.aMat);
636 >    if (storageLayout_ & DataStorage::dslAmat) {
637 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
638 >                                atomRowData.aMat);
639 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
640 >                                   atomColData.aMat);
641      }
642      
643      // if needed, gather the atomic eletrostatic frames
644 <    if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) {
645 <      AtomCommMatrixI->gather(snap->atomData.electroFrame,
646 <                              snap->atomIData.electroFrame);
647 <      AtomCommMatrixJ->gather(snap->atomData.electroFrame,
648 <                              snap->atomJData.electroFrame);
644 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
645 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
646 >                                atomRowData.electroFrame);
647 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
648 >                                   atomColData.electroFrame);
649      }
650 +
651 +    // if needed, gather the atomic fluctuating charge values
652 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 +                              atomRowData.flucQPos);
655 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 +                                 atomColData.flucQPos);
657 +    }
658 +
659   #endif      
660    }
661    
662 <  void ForceDecomposition::collectIntermediateData() {
662 >  /* collects information obtained during the pre-pair loop onto local
663 >   * data structures.
664 >   */
665 >  void ForceMatrixDecomposition::collectIntermediateData() {
666 >    snap_ = sman_->getCurrentSnapshot();
667 >    storageLayout_ = sman_->getStorageLayout();
668   #ifdef IS_MPI
117    Snapshot* snap = sman_->getCurrentSnapshot();
669      
670 <    if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) {
670 >    if (storageLayout_ & DataStorage::dslDensity) {
671 >      
672 >      AtomPlanRealRow->scatter(atomRowData.density,
673 >                               snap_->atomData.density);
674 >      
675 >      int n = snap_->atomData.density.size();
676 >      vector<RealType> rho_tmp(n, 0.0);
677 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 >      for (int i = 0; i < n; i++)
679 >        snap_->atomData.density[i] += rho_tmp[i];
680 >    }
681  
682 <      AtomCommRealI->scatter(snap->atomIData.density,
683 <                             snap->atomData.density);
684 <
685 <      int n = snap->atomData.density.size();
686 <      std::vector<RealType> rho_tmp(n, 0.0);
687 <      AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp);
682 >    if (storageLayout_ & DataStorage::dslElectricField) {
683 >      
684 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
685 >                                 snap_->atomData.electricField);
686 >      
687 >      int n = snap_->atomData.electricField.size();
688 >      vector<Vector3d> field_tmp(n, V3Zero);
689 >      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
690        for (int i = 0; i < n; i++)
691 <        snap->atomData.density[i] += rho_tmp[i];
691 >        snap_->atomData.electricField[i] += field_tmp[i];
692      }
693   #endif
694    }
695 <  
696 <  void ForceDecomposition::distributeIntermediateData() {
695 >
696 >  /*
697 >   * redistributes information obtained during the pre-pair loop out to
698 >   * row and column-indexed data structures
699 >   */
700 >  void ForceMatrixDecomposition::distributeIntermediateData() {
701 >    snap_ = sman_->getCurrentSnapshot();
702 >    storageLayout_ = sman_->getStorageLayout();
703   #ifdef IS_MPI
704 <    Snapshot* snap = sman_->getCurrentSnapshot();
705 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) {
706 <      AtomCommRealI->gather(snap->atomData.functional,
707 <                            snap->atomIData.functional);
708 <      AtomCommRealJ->gather(snap->atomData.functional,
140 <                            snap->atomJData.functional);
704 >    if (storageLayout_ & DataStorage::dslFunctional) {
705 >      AtomPlanRealRow->gather(snap_->atomData.functional,
706 >                              atomRowData.functional);
707 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
708 >                                 atomColData.functional);
709      }
710      
711 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) {
712 <      AtomCommRealI->gather(snap->atomData.functionalDerivative,
713 <                            snap->atomIData.functionalDerivative);
714 <      AtomCommRealJ->gather(snap->atomData.functionalDerivative,
715 <                            snap->atomJData.functionalDerivative);
711 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
712 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
713 >                              atomRowData.functionalDerivative);
714 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
715 >                                 atomColData.functionalDerivative);
716      }
717   #endif
718    }
719    
720    
721 <  void ForceDecomposition::collectData() {
722 < #ifdef IS_MPI
723 <    Snapshot* snap = sman_->getCurrentSnapshot();
721 >  void ForceMatrixDecomposition::collectData() {
722 >    snap_ = sman_->getCurrentSnapshot();
723 >    storageLayout_ = sman_->getStorageLayout();
724 > #ifdef IS_MPI    
725 >    int n = snap_->atomData.force.size();
726 >    vector<Vector3d> frc_tmp(n, V3Zero);
727      
728 <    int n = snap->atomData.force.size();
158 <    std::vector<Vector3d> frc_tmp(n, 0.0);
159 <    
160 <    AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp);
728 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
729      for (int i = 0; i < n; i++) {
730 <      snap->atomData.force[i] += frc_tmp[i];
730 >      snap_->atomData.force[i] += frc_tmp[i];
731        frc_tmp[i] = 0.0;
732      }
733      
734 <    AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp);
735 <    for (int i = 0; i < n; i++)
736 <      snap->atomData.force[i] += frc_tmp[i];
737 <    
738 <    
739 <    if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) {
734 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
735 >    for (int i = 0; i < n; i++) {
736 >      snap_->atomData.force[i] += frc_tmp[i];
737 >    }
738 >        
739 >    if (storageLayout_ & DataStorage::dslTorque) {
740  
741 <      int nt = snap->atomData.force.size();
742 <      std::vector<Vector3d> trq_tmp(nt, 0.0);
741 >      int nt = snap_->atomData.torque.size();
742 >      vector<Vector3d> trq_tmp(nt, V3Zero);
743  
744 <      AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp);
745 <      for (int i = 0; i < n; i++) {
746 <        snap->atomData.torque[i] += trq_tmp[i];
744 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
745 >      for (int i = 0; i < nt; i++) {
746 >        snap_->atomData.torque[i] += trq_tmp[i];
747          trq_tmp[i] = 0.0;
748        }
749        
750 <      AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp);
751 <      for (int i = 0; i < n; i++)
752 <        snap->atomData.torque[i] += trq_tmp[i];
750 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
751 >      for (int i = 0; i < nt; i++)
752 >        snap_->atomData.torque[i] += trq_tmp[i];
753      }
754 +
755 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
756 +
757 +      int ns = snap_->atomData.skippedCharge.size();
758 +      vector<RealType> skch_tmp(ns, 0.0);
759 +
760 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
761 +      for (int i = 0; i < ns; i++) {
762 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
763 +        skch_tmp[i] = 0.0;
764 +      }
765 +      
766 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
767 +      for (int i = 0; i < ns; i++)
768 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
769 +            
770 +    }
771      
772 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
773 +
774 +      int nq = snap_->atomData.flucQFrc.size();
775 +      vector<RealType> fqfrc_tmp(nq, 0.0);
776 +
777 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
778 +      for (int i = 0; i < nq; i++) {
779 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
780 +        fqfrc_tmp[i] = 0.0;
781 +      }
782 +      
783 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
784 +      for (int i = 0; i < nq; i++)
785 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
786 +            
787 +    }
788 +
789 +    nLocal_ = snap_->getNumberOfAtoms();
790 +
791 +    vector<potVec> pot_temp(nLocal_,
792 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
793 +    vector<potVec> expot_temp(nLocal_,
794 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
795 +
796 +    // scatter/gather pot_row into the members of my column
797 +          
798 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
799 +    AtomPlanPotRow->scatter(expot_row, expot_temp);
800 +
801 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
802 +      pairwisePot += pot_temp[ii];
803 +
804 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
805 +      excludedPot += expot_temp[ii];
806 +        
807 +    if (storageLayout_ & DataStorage::dslParticlePot) {
808 +      // This is the pairwise contribution to the particle pot.  The
809 +      // embedding contribution is added in each of the low level
810 +      // non-bonded routines.  In single processor, this is done in
811 +      // unpackInteractionData, not in collectData.
812 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
813 +        for (int i = 0; i < nLocal_; i++) {
814 +          // factor of two is because the total potential terms are divided
815 +          // by 2 in parallel due to row/ column scatter      
816 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
817 +        }
818 +      }
819 +    }
820 +
821 +    fill(pot_temp.begin(), pot_temp.end(),
822 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
823 +    fill(expot_temp.begin(), expot_temp.end(),
824 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
825 +      
826 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
827 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
828      
829 <    vector<vector<RealType> > pot_temp(LR_POT_TYPES,
830 <                                       vector<RealType> (nAtoms, 0.0));
829 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
830 >      pairwisePot += pot_temp[ii];    
831 >
832 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
833 >      excludedPot += expot_temp[ii];    
834 >
835 >    if (storageLayout_ & DataStorage::dslParticlePot) {
836 >      // This is the pairwise contribution to the particle pot.  The
837 >      // embedding contribution is added in each of the low level
838 >      // non-bonded routines.  In single processor, this is done in
839 >      // unpackInteractionData, not in collectData.
840 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
841 >        for (int i = 0; i < nLocal_; i++) {
842 >          // factor of two is because the total potential terms are divided
843 >          // by 2 in parallel due to row/ column scatter      
844 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
845 >        }
846 >      }
847 >    }
848      
849 <    for (int i = 0; i < LR_POT_TYPES; i++) {
850 <      AtomCommRealI->scatter(pot_row[i], pot_temp[i]);
851 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
852 <        pot_local[i] += pot_temp[i][ii];
849 >    if (storageLayout_ & DataStorage::dslParticlePot) {
850 >      int npp = snap_->atomData.particlePot.size();
851 >      vector<RealType> ppot_temp(npp, 0.0);
852 >
853 >      // This is the direct or embedding contribution to the particle
854 >      // pot.
855 >      
856 >      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
857 >      for (int i = 0; i < npp; i++) {
858 >        snap_->atomData.particlePot[i] += ppot_temp[i];
859        }
860 +
861 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
862 +      
863 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
864 +      for (int i = 0; i < npp; i++) {
865 +        snap_->atomData.particlePot[i] += ppot_temp[i];
866 +      }
867 +    }
868 +
869 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
870 +      RealType ploc1 = pairwisePot[ii];
871 +      RealType ploc2 = 0.0;
872 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
873 +      pairwisePot[ii] = ploc2;
874 +    }
875 +
876 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
877 +      RealType ploc1 = excludedPot[ii];
878 +      RealType ploc2 = 0.0;
879 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
880 +      excludedPot[ii] = ploc2;
881 +    }
882 +
883 +    // Here be dragons.
884 +    MPI::Intracomm col = colComm.getComm();
885 +
886 +    col.Allreduce(MPI::IN_PLACE,
887 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
888 +                  MPI::REALTYPE, MPI::SUM);
889 +
890 +
891 + #endif
892 +
893 +  }
894 +
895 +  /**
896 +   * Collects information obtained during the post-pair (and embedding
897 +   * functional) loops onto local data structures.
898 +   */
899 +  void ForceMatrixDecomposition::collectSelfData() {
900 +    snap_ = sman_->getCurrentSnapshot();
901 +    storageLayout_ = sman_->getStorageLayout();
902 +
903 + #ifdef IS_MPI
904 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
905 +      RealType ploc1 = embeddingPot[ii];
906 +      RealType ploc2 = 0.0;
907 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
908 +      embeddingPot[ii] = ploc2;
909 +    }    
910 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
911 +      RealType ploc1 = excludedSelfPot[ii];
912 +      RealType ploc2 = 0.0;
913 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
914 +      excludedSelfPot[ii] = ploc2;
915 +    }    
916 + #endif
917 +    
918 +  }
919 +
920 +
921 +
922 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
923 + #ifdef IS_MPI
924 +    return nAtomsInRow_;
925 + #else
926 +    return nLocal_;
927 + #endif
928 +  }
929 +
930 +  /**
931 +   * returns the list of atoms belonging to this group.  
932 +   */
933 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
934 + #ifdef IS_MPI
935 +    return groupListRow_[cg1];
936 + #else
937 +    return groupList_[cg1];
938 + #endif
939 +  }
940 +
941 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
942 + #ifdef IS_MPI
943 +    return groupListCol_[cg2];
944 + #else
945 +    return groupList_[cg2];
946 + #endif
947 +  }
948 +  
949 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
950 +    Vector3d d;
951 +    
952 + #ifdef IS_MPI
953 +    d = cgColData.position[cg2] - cgRowData.position[cg1];
954 + #else
955 +    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
956 + #endif
957 +    
958 +    snap_->wrapVector(d);
959 +    return d;    
960 +  }
961 +
962 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
963 + #ifdef IS_MPI
964 +    return cgColData.velocity[cg2];
965 + #else
966 +    return snap_->cgData.velocity[cg2];
967 + #endif
968 +  }
969 +
970 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
971 + #ifdef IS_MPI
972 +    return atomColData.velocity[atom2];
973 + #else
974 +    return snap_->atomData.velocity[atom2];
975 + #endif
976 +  }
977 +
978 +
979 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
980 +
981 +    Vector3d d;
982 +    
983 + #ifdef IS_MPI
984 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
985 + #else
986 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
987 + #endif
988 +
989 +    snap_->wrapVector(d);
990 +    return d;    
991 +  }
992 +  
993 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
994 +    Vector3d d;
995 +    
996 + #ifdef IS_MPI
997 +    d = cgColData.position[cg2] - atomColData.position[atom2];
998 + #else
999 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1000 + #endif
1001 +    
1002 +    snap_->wrapVector(d);
1003 +    return d;    
1004 +  }
1005 +
1006 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1007 + #ifdef IS_MPI
1008 +    return massFactorsRow[atom1];
1009 + #else
1010 +    return massFactors[atom1];
1011 + #endif
1012 +  }
1013 +
1014 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1015 + #ifdef IS_MPI
1016 +    return massFactorsCol[atom2];
1017 + #else
1018 +    return massFactors[atom2];
1019 + #endif
1020 +
1021 +  }
1022 +    
1023 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1024 +    Vector3d d;
1025 +    
1026 + #ifdef IS_MPI
1027 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
1028 + #else
1029 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1030 + #endif
1031 +
1032 +    snap_->wrapVector(d);
1033 +    return d;    
1034 +  }
1035 +
1036 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1037 +    return excludesForAtom[atom1];
1038 +  }
1039 +
1040 +  /**
1041 +   * We need to exclude some overcounted interactions that result from
1042 +   * the parallel decomposition.
1043 +   */
1044 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1045 +    int unique_id_1, unique_id_2;
1046 +        
1047 + #ifdef IS_MPI
1048 +    // in MPI, we have to look up the unique IDs for each atom
1049 +    unique_id_1 = AtomRowToGlobal[atom1];
1050 +    unique_id_2 = AtomColToGlobal[atom2];
1051 +    // group1 = cgRowToGlobal[cg1];
1052 +    // group2 = cgColToGlobal[cg2];
1053 + #else
1054 +    unique_id_1 = AtomLocalToGlobal[atom1];
1055 +    unique_id_2 = AtomLocalToGlobal[atom2];
1056 +    int group1 = cgLocalToGlobal[cg1];
1057 +    int group2 = cgLocalToGlobal[cg2];
1058 + #endif  
1059 +
1060 +    if (unique_id_1 == unique_id_2) return true;
1061 +
1062 + #ifdef IS_MPI
1063 +    // this prevents us from doing the pair on multiple processors
1064 +    if (unique_id_1 < unique_id_2) {
1065 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1066 +    } else {
1067 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1068 +    }
1069 + #endif    
1070 +
1071 + #ifndef IS_MPI
1072 +    if (group1 == group2) {
1073 +      if (unique_id_1 < unique_id_2) return true;
1074 +    }
1075 + #endif
1076 +    
1077 +    return false;
1078 +  }
1079 +
1080 +  /**
1081 +   * We need to handle the interactions for atoms who are involved in
1082 +   * the same rigid body as well as some short range interactions
1083 +   * (bonds, bends, torsions) differently from other interactions.
1084 +   * We'll still visit the pairwise routines, but with a flag that
1085 +   * tells those routines to exclude the pair from direct long range
1086 +   * interactions.  Some indirect interactions (notably reaction
1087 +   * field) must still be handled for these pairs.
1088 +   */
1089 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1090 +
1091 +    // excludesForAtom was constructed to use row/column indices in the MPI
1092 +    // version, and to use local IDs in the non-MPI version:
1093 +    
1094 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1095 +         i != excludesForAtom[atom1].end(); ++i) {
1096 +      if ( (*i) == atom2 ) return true;
1097 +    }
1098 +
1099 +    return false;
1100 +  }
1101 +
1102 +
1103 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1104 + #ifdef IS_MPI
1105 +    atomRowData.force[atom1] += fg;
1106 + #else
1107 +    snap_->atomData.force[atom1] += fg;
1108 + #endif
1109 +  }
1110 +
1111 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1112 + #ifdef IS_MPI
1113 +    atomColData.force[atom2] += fg;
1114 + #else
1115 +    snap_->atomData.force[atom2] += fg;
1116 + #endif
1117 +  }
1118 +
1119 +    // filling interaction blocks with pointers
1120 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1121 +                                                     int atom1, int atom2) {
1122 +
1123 +    idat.excluded = excludeAtomPair(atom1, atom2);
1124 +  
1125 + #ifdef IS_MPI
1126 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1127 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1128 +    //                         ff_->getAtomType(identsCol[atom2]) );
1129 +    
1130 +    if (storageLayout_ & DataStorage::dslAmat) {
1131 +      idat.A1 = &(atomRowData.aMat[atom1]);
1132 +      idat.A2 = &(atomColData.aMat[atom2]);
1133 +    }
1134 +    
1135 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
1136 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1137 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1138 +    }
1139 +
1140 +    if (storageLayout_ & DataStorage::dslTorque) {
1141 +      idat.t1 = &(atomRowData.torque[atom1]);
1142 +      idat.t2 = &(atomColData.torque[atom2]);
1143 +    }
1144 +
1145 +    if (storageLayout_ & DataStorage::dslDensity) {
1146 +      idat.rho1 = &(atomRowData.density[atom1]);
1147 +      idat.rho2 = &(atomColData.density[atom2]);
1148 +    }
1149 +
1150 +    if (storageLayout_ & DataStorage::dslFunctional) {
1151 +      idat.frho1 = &(atomRowData.functional[atom1]);
1152 +      idat.frho2 = &(atomColData.functional[atom2]);
1153      }
1154 +
1155 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1156 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1157 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1158 +    }
1159 +
1160 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1161 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1162 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1163 +    }
1164 +
1165 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1166 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1167 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1168 +    }
1169 +
1170 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1171 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1172 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1173 +    }
1174 +
1175 + #else
1176      
1177 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1178  
1179 +    if (storageLayout_ & DataStorage::dslAmat) {
1180 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
1181 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1182 +    }
1183  
1184 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
1185 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1186 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1187 +    }
1188 +
1189 +    if (storageLayout_ & DataStorage::dslTorque) {
1190 +      idat.t1 = &(snap_->atomData.torque[atom1]);
1191 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1192 +    }
1193 +
1194 +    if (storageLayout_ & DataStorage::dslDensity) {    
1195 +      idat.rho1 = &(snap_->atomData.density[atom1]);
1196 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1197 +    }
1198 +
1199 +    if (storageLayout_ & DataStorage::dslFunctional) {
1200 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1201 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1202 +    }
1203 +
1204 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1205 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1206 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1207 +    }
1208 +
1209 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1210 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1211 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1212 +    }
1213 +
1214 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1215 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1216 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1217 +    }
1218 +
1219 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1220 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1221 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1222 +    }
1223 +
1224   #endif
1225    }
1226 +
1227    
1228 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1229 + #ifdef IS_MPI
1230 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1231 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1232 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1233 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1234 +
1235 +    atomRowData.force[atom1] += *(idat.f1);
1236 +    atomColData.force[atom2] -= *(idat.f1);
1237 +
1238 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1239 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1240 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1241 +    }
1242 +
1243 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1244 +      atomRowData.electricField[atom1] += *(idat.eField1);
1245 +      atomColData.electricField[atom2] += *(idat.eField2);
1246 +    }
1247 +
1248 + #else
1249 +    pairwisePot += *(idat.pot);
1250 +    excludedPot += *(idat.excludedPot);
1251 +
1252 +    snap_->atomData.force[atom1] += *(idat.f1);
1253 +    snap_->atomData.force[atom2] -= *(idat.f1);
1254 +
1255 +    if (idat.doParticlePot) {
1256 +      // This is the pairwise contribution to the particle pot.  The
1257 +      // embedding contribution is added in each of the low level
1258 +      // non-bonded routines.  In parallel, this calculation is done
1259 +      // in collectData, not in unpackInteractionData.
1260 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1261 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1262 +    }
1263 +    
1264 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1265 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1266 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1267 +    }
1268 +
1269 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1270 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1271 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1272 +    }
1273 +
1274 + #endif
1275 +    
1276 +  }
1277 +
1278 +  /*
1279 +   * buildNeighborList
1280 +   *
1281 +   * first element of pair is row-indexed CutoffGroup
1282 +   * second element of pair is column-indexed CutoffGroup
1283 +   */
1284 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1285 +      
1286 +    vector<pair<int, int> > neighborList;
1287 +    groupCutoffs cuts;
1288 +    bool doAllPairs = false;
1289 +
1290 + #ifdef IS_MPI
1291 +    cellListRow_.clear();
1292 +    cellListCol_.clear();
1293 + #else
1294 +    cellList_.clear();
1295 + #endif
1296 +
1297 +    RealType rList_ = (largestRcut_ + skinThickness_);
1298 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1299 +    Mat3x3d Hmat = snap_->getHmat();
1300 +    Vector3d Hx = Hmat.getColumn(0);
1301 +    Vector3d Hy = Hmat.getColumn(1);
1302 +    Vector3d Hz = Hmat.getColumn(2);
1303 +
1304 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1305 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1306 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1307 +
1308 +    // handle small boxes where the cell offsets can end up repeating cells
1309 +    
1310 +    if (nCells_.x() < 3) doAllPairs = true;
1311 +    if (nCells_.y() < 3) doAllPairs = true;
1312 +    if (nCells_.z() < 3) doAllPairs = true;
1313 +
1314 +    Mat3x3d invHmat = snap_->getInvHmat();
1315 +    Vector3d rs, scaled, dr;
1316 +    Vector3i whichCell;
1317 +    int cellIndex;
1318 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1319 +
1320 + #ifdef IS_MPI
1321 +    cellListRow_.resize(nCtot);
1322 +    cellListCol_.resize(nCtot);
1323 + #else
1324 +    cellList_.resize(nCtot);
1325 + #endif
1326 +
1327 +    if (!doAllPairs) {
1328 + #ifdef IS_MPI
1329 +
1330 +      for (int i = 0; i < nGroupsInRow_; i++) {
1331 +        rs = cgRowData.position[i];
1332 +        
1333 +        // scaled positions relative to the box vectors
1334 +        scaled = invHmat * rs;
1335 +        
1336 +        // wrap the vector back into the unit box by subtracting integer box
1337 +        // numbers
1338 +        for (int j = 0; j < 3; j++) {
1339 +          scaled[j] -= roundMe(scaled[j]);
1340 +          scaled[j] += 0.5;
1341 +          // Handle the special case when an object is exactly on the
1342 +          // boundary (a scaled coordinate of 1.0 is the same as
1343 +          // scaled coordinate of 0.0)
1344 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1345 +        }
1346 +        
1347 +        // find xyz-indices of cell that cutoffGroup is in.
1348 +        whichCell.x() = nCells_.x() * scaled.x();
1349 +        whichCell.y() = nCells_.y() * scaled.y();
1350 +        whichCell.z() = nCells_.z() * scaled.z();
1351 +        
1352 +        // find single index of this cell:
1353 +        cellIndex = Vlinear(whichCell, nCells_);
1354 +        
1355 +        // add this cutoff group to the list of groups in this cell;
1356 +        cellListRow_[cellIndex].push_back(i);
1357 +      }
1358 +      for (int i = 0; i < nGroupsInCol_; i++) {
1359 +        rs = cgColData.position[i];
1360 +        
1361 +        // scaled positions relative to the box vectors
1362 +        scaled = invHmat * rs;
1363 +        
1364 +        // wrap the vector back into the unit box by subtracting integer box
1365 +        // numbers
1366 +        for (int j = 0; j < 3; j++) {
1367 +          scaled[j] -= roundMe(scaled[j]);
1368 +          scaled[j] += 0.5;
1369 +          // Handle the special case when an object is exactly on the
1370 +          // boundary (a scaled coordinate of 1.0 is the same as
1371 +          // scaled coordinate of 0.0)
1372 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1373 +        }
1374 +        
1375 +        // find xyz-indices of cell that cutoffGroup is in.
1376 +        whichCell.x() = nCells_.x() * scaled.x();
1377 +        whichCell.y() = nCells_.y() * scaled.y();
1378 +        whichCell.z() = nCells_.z() * scaled.z();
1379 +        
1380 +        // find single index of this cell:
1381 +        cellIndex = Vlinear(whichCell, nCells_);
1382 +        
1383 +        // add this cutoff group to the list of groups in this cell;
1384 +        cellListCol_[cellIndex].push_back(i);
1385 +      }
1386 +    
1387 + #else
1388 +      for (int i = 0; i < nGroups_; i++) {
1389 +        rs = snap_->cgData.position[i];
1390 +        
1391 +        // scaled positions relative to the box vectors
1392 +        scaled = invHmat * rs;
1393 +        
1394 +        // wrap the vector back into the unit box by subtracting integer box
1395 +        // numbers
1396 +        for (int j = 0; j < 3; j++) {
1397 +          scaled[j] -= roundMe(scaled[j]);
1398 +          scaled[j] += 0.5;
1399 +          // Handle the special case when an object is exactly on the
1400 +          // boundary (a scaled coordinate of 1.0 is the same as
1401 +          // scaled coordinate of 0.0)
1402 +          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1403 +        }
1404 +        
1405 +        // find xyz-indices of cell that cutoffGroup is in.
1406 +        whichCell.x() = nCells_.x() * scaled.x();
1407 +        whichCell.y() = nCells_.y() * scaled.y();
1408 +        whichCell.z() = nCells_.z() * scaled.z();
1409 +        
1410 +        // find single index of this cell:
1411 +        cellIndex = Vlinear(whichCell, nCells_);
1412 +        
1413 +        // add this cutoff group to the list of groups in this cell;
1414 +        cellList_[cellIndex].push_back(i);
1415 +      }
1416 +
1417 + #endif
1418 +
1419 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1420 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1421 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1422 +            Vector3i m1v(m1x, m1y, m1z);
1423 +            int m1 = Vlinear(m1v, nCells_);
1424 +            
1425 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1426 +                 os != cellOffsets_.end(); ++os) {
1427 +              
1428 +              Vector3i m2v = m1v + (*os);
1429 +            
1430 +
1431 +              if (m2v.x() >= nCells_.x()) {
1432 +                m2v.x() = 0;          
1433 +              } else if (m2v.x() < 0) {
1434 +                m2v.x() = nCells_.x() - 1;
1435 +              }
1436 +              
1437 +              if (m2v.y() >= nCells_.y()) {
1438 +                m2v.y() = 0;          
1439 +              } else if (m2v.y() < 0) {
1440 +                m2v.y() = nCells_.y() - 1;
1441 +              }
1442 +              
1443 +              if (m2v.z() >= nCells_.z()) {
1444 +                m2v.z() = 0;          
1445 +              } else if (m2v.z() < 0) {
1446 +                m2v.z() = nCells_.z() - 1;
1447 +              }
1448 +
1449 +              int m2 = Vlinear (m2v, nCells_);
1450 +              
1451 + #ifdef IS_MPI
1452 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1453 +                   j1 != cellListRow_[m1].end(); ++j1) {
1454 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1455 +                     j2 != cellListCol_[m2].end(); ++j2) {
1456 +                  
1457 +                  // In parallel, we need to visit *all* pairs of row
1458 +                  // & column indicies and will divide labor in the
1459 +                  // force evaluation later.
1460 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1461 +                  snap_->wrapVector(dr);
1462 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1463 +                  if (dr.lengthSquare() < cuts.third) {
1464 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1465 +                  }                  
1466 +                }
1467 +              }
1468 + #else
1469 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1470 +                   j1 != cellList_[m1].end(); ++j1) {
1471 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1472 +                     j2 != cellList_[m2].end(); ++j2) {
1473 +    
1474 +                  // Always do this if we're in different cells or if
1475 +                  // we're in the same cell and the global index of
1476 +                  // the j2 cutoff group is greater than or equal to
1477 +                  // the j1 cutoff group.  Note that Rappaport's code
1478 +                  // has a "less than" conditional here, but that
1479 +                  // deals with atom-by-atom computation.  OpenMD
1480 +                  // allows atoms within a single cutoff group to
1481 +                  // interact with each other.
1482 +
1483 +
1484 +
1485 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1486 +
1487 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1488 +                    snap_->wrapVector(dr);
1489 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1490 +                    if (dr.lengthSquare() < cuts.third) {
1491 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1492 +                    }
1493 +                  }
1494 +                }
1495 +              }
1496 + #endif
1497 +            }
1498 +          }
1499 +        }
1500 +      }
1501 +    } else {
1502 +      // branch to do all cutoff group pairs
1503 + #ifdef IS_MPI
1504 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1505 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1506 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1507 +          snap_->wrapVector(dr);
1508 +          cuts = getGroupCutoffs( j1, j2 );
1509 +          if (dr.lengthSquare() < cuts.third) {
1510 +            neighborList.push_back(make_pair(j1, j2));
1511 +          }
1512 +        }
1513 +      }      
1514 + #else
1515 +      // include all groups here.
1516 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1517 +        // include self group interactions j2 == j1
1518 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1519 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1520 +          snap_->wrapVector(dr);
1521 +          cuts = getGroupCutoffs( j1, j2 );
1522 +          if (dr.lengthSquare() < cuts.third) {
1523 +            neighborList.push_back(make_pair(j1, j2));
1524 +          }
1525 +        }    
1526 +      }
1527 + #endif
1528 +    }
1529 +      
1530 +    // save the local cutoff group positions for the check that is
1531 +    // done on each loop:
1532 +    saved_CG_positions_.clear();
1533 +    for (int i = 0; i < nGroups_; i++)
1534 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1535 +    
1536 +    return neighborList;
1537 +  }
1538   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines