36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
230 |
|
topoDist[i].push_back(3); |
231 |
|
} |
232 |
|
} |
232 |
– |
} |
233 |
– |
} |
234 |
– |
} |
235 |
– |
|
236 |
– |
#endif |
237 |
– |
|
238 |
– |
// allocate memory for the parallel objects |
239 |
– |
atypesLocal.resize(nLocal_); |
240 |
– |
|
241 |
– |
for (int i = 0; i < nLocal_; i++) |
242 |
– |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
243 |
– |
|
244 |
– |
groupList_.clear(); |
245 |
– |
groupList_.resize(nGroups_); |
246 |
– |
for (int i = 0; i < nGroups_; i++) { |
247 |
– |
int gid = cgLocalToGlobal[i]; |
248 |
– |
for (int j = 0; j < nLocal_; j++) { |
249 |
– |
int aid = AtomLocalToGlobal[j]; |
250 |
– |
if (globalGroupMembership[aid] == gid) { |
251 |
– |
groupList_[i].push_back(j); |
233 |
|
} |
234 |
|
} |
235 |
|
} |
236 |
|
|
237 |
+ |
#else |
238 |
|
excludesForAtom.clear(); |
239 |
|
excludesForAtom.resize(nLocal_); |
240 |
|
toposForAtom.clear(); |
267 |
|
} |
268 |
|
} |
269 |
|
} |
270 |
< |
|
270 |
> |
#endif |
271 |
> |
|
272 |
> |
// allocate memory for the parallel objects |
273 |
> |
atypesLocal.resize(nLocal_); |
274 |
> |
|
275 |
> |
for (int i = 0; i < nLocal_; i++) |
276 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 |
> |
|
278 |
> |
groupList_.clear(); |
279 |
> |
groupList_.resize(nGroups_); |
280 |
> |
for (int i = 0; i < nGroups_; i++) { |
281 |
> |
int gid = cgLocalToGlobal[i]; |
282 |
> |
for (int j = 0; j < nLocal_; j++) { |
283 |
> |
int aid = AtomLocalToGlobal[j]; |
284 |
> |
if (globalGroupMembership[aid] == gid) { |
285 |
> |
groupList_[i].push_back(j); |
286 |
> |
} |
287 |
> |
} |
288 |
> |
} |
289 |
> |
|
290 |
> |
|
291 |
|
createGtypeCutoffMap(); |
292 |
|
|
293 |
|
} |
537 |
|
fill(snap_->atomData.density.begin(), |
538 |
|
snap_->atomData.density.end(), 0.0); |
539 |
|
} |
540 |
+ |
|
541 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
542 |
|
fill(snap_->atomData.functional.begin(), |
543 |
|
snap_->atomData.functional.end(), 0.0); |
544 |
|
} |
545 |
+ |
|
546 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
547 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
548 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
549 |
|
} |
550 |
+ |
|
551 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
552 |
|
fill(snap_->atomData.skippedCharge.begin(), |
553 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
554 |
|
} |
550 |
– |
|
555 |
|
} |
556 |
|
|
557 |
|
|
687 |
|
} |
688 |
|
|
689 |
|
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
690 |
< |
for (int i = 0; i < ns; i++) |
690 |
> |
for (int i = 0; i < ns; i++) |
691 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
692 |
+ |
|
693 |
|
} |
694 |
|
|
695 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
719 |
|
pairwisePot[ii] = ploc2; |
720 |
|
} |
721 |
|
|
722 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
723 |
+ |
RealType ploc1 = embeddingPot[ii]; |
724 |
+ |
RealType ploc2 = 0.0; |
725 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
726 |
+ |
embeddingPot[ii] = ploc2; |
727 |
+ |
} |
728 |
+ |
|
729 |
|
#endif |
730 |
|
|
731 |
|
} |
838 |
|
*/ |
839 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
840 |
|
int unique_id_1, unique_id_2; |
841 |
< |
|
841 |
> |
|
842 |
|
#ifdef IS_MPI |
843 |
|
// in MPI, we have to look up the unique IDs for each atom |
844 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
845 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
846 |
< |
|
847 |
< |
// this situation should only arise in MPI simulations |
846 |
> |
#else |
847 |
> |
unique_id_1 = AtomLocalToGlobal[atom1]; |
848 |
> |
unique_id_2 = AtomLocalToGlobal[atom2]; |
849 |
> |
#endif |
850 |
> |
|
851 |
|
if (unique_id_1 == unique_id_2) return true; |
852 |
< |
|
852 |
> |
|
853 |
> |
#ifdef IS_MPI |
854 |
|
// this prevents us from doing the pair on multiple processors |
855 |
|
if (unique_id_1 < unique_id_2) { |
856 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
857 |
|
} else { |
858 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
858 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
859 |
|
} |
860 |
|
#endif |
861 |
+ |
|
862 |
|
return false; |
863 |
|
} |
864 |
|
|
872 |
|
* field) must still be handled for these pairs. |
873 |
|
*/ |
874 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
875 |
< |
int unique_id_2; |
876 |
< |
#ifdef IS_MPI |
877 |
< |
// in MPI, we have to look up the unique IDs for the row atom. |
861 |
< |
unique_id_2 = AtomColToGlobal[atom2]; |
862 |
< |
#else |
863 |
< |
// in the normal loop, the atom numbers are unique |
864 |
< |
unique_id_2 = atom2; |
865 |
< |
#endif |
875 |
> |
|
876 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
877 |
> |
// version, and to use local IDs in the non-MPI version: |
878 |
|
|
879 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
880 |
|
i != excludesForAtom[atom1].end(); ++i) { |
881 |
< |
if ( (*i) == unique_id_2 ) return true; |
881 |
> |
if ( (*i) == atom2 ) return true; |
882 |
|
} |
883 |
|
|
884 |
|
return false; |
953 |
|
} |
954 |
|
|
955 |
|
#else |
956 |
+ |
|
957 |
|
|
958 |
+ |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
959 |
+ |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
960 |
+ |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
961 |
+ |
|
962 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
963 |
|
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
964 |
|
// ff_->getAtomType(idents[atom2]) ); |
1008 |
|
|
1009 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1010 |
|
#ifdef IS_MPI |
1011 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1012 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1011 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1012 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1013 |
|
|
1014 |
|
atomRowData.force[atom1] += *(idat.f1); |
1015 |
|
atomColData.force[atom2] -= *(idat.f1); |
1202 |
|
} |
1203 |
|
} |
1204 |
|
#else |
1188 |
– |
|
1205 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1206 |
|
j1 != cellList_[m1].end(); ++j1) { |
1207 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1208 |
|
j2 != cellList_[m2].end(); ++j2) { |
1209 |
< |
|
1209 |
> |
|
1210 |
|
// Always do this if we're in different cells or if |
1211 |
< |
// we're in the same cell and the global index of the |
1212 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1213 |
< |
|
1214 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1211 |
> |
// we're in the same cell and the global index of |
1212 |
> |
// the j2 cutoff group is greater than or equal to |
1213 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1214 |
> |
// has a "less than" conditional here, but that |
1215 |
> |
// deals with atom-by-atom computation. OpenMD |
1216 |
> |
// allows atoms within a single cutoff group to |
1217 |
> |
// interact with each other. |
1218 |
> |
|
1219 |
> |
|
1220 |
> |
|
1221 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1222 |
> |
|
1223 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1224 |
|
snap_->wrapVector(dr); |
1225 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1238 |
|
// branch to do all cutoff group pairs |
1239 |
|
#ifdef IS_MPI |
1240 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1241 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1241 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1242 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1243 |
|
snap_->wrapVector(dr); |
1244 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1246 |
|
neighborList.push_back(make_pair(j1, j2)); |
1247 |
|
} |
1248 |
|
} |
1249 |
< |
} |
1249 |
> |
} |
1250 |
|
#else |
1251 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1252 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1251 |
> |
// include all groups here. |
1252 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1253 |
> |
// include self group interactions j2 == j1 |
1254 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1255 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1256 |
|
snap_->wrapVector(dr); |
1257 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1258 |
|
if (dr.lengthSquare() < cuts.third) { |
1259 |
|
neighborList.push_back(make_pair(j1, j2)); |
1260 |
|
} |
1261 |
< |
} |
1262 |
< |
} |
1261 |
> |
} |
1262 |
> |
} |
1263 |
|
#endif |
1264 |
|
} |
1265 |
|
|