ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1586 by gezelter, Tue Jun 21 06:34:35 2011 UTC vs.
Revision 1706 by gezelter, Fri Apr 27 20:44:16 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <
98 >    
99      nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101      idents = info_->getIdentArray();
# Line 67 | Line 105 | namespace OpenMD {
105  
106      massFactors = info_->getMassFactors();
107  
108 <    PairList excludes = info_->getExcludedInteractions();
109 <    PairList oneTwo = info_->getOneTwoInteractions();
110 <    PairList oneThree = info_->getOneThreeInteractions();
111 <    PairList oneFour = info_->getOneFourInteractions();
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112  
113   #ifdef IS_MPI
114  
115 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
116 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
115 >    MPI::Intracomm row = rowComm.getComm();
116 >    MPI::Intracomm col = colComm.getComm();
117  
118 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
119 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
120 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
121 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
122 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
118 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
119 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123  
124 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
125 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
126 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
127 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
124 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129  
130 <    nAtomsInRow_ = AtomCommIntRow->getSize();
131 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
132 <    nGroupsInRow_ = cgCommIntRow->getSize();
133 <    nGroupsInCol_ = cgCommIntColumn->getSize();
130 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
131 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
133 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134  
135 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
136 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
137 +    nGroupsInRow_ = cgPlanIntRow->getSize();
138 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
139 +
140      // Modify the data storage objects with the correct layouts and sizes:
141      atomRowData.resize(nAtomsInRow_);
142      atomRowData.setStorageLayout(storageLayout_);
# Line 109 | Line 150 | namespace OpenMD {
150      identsRow.resize(nAtomsInRow_);
151      identsCol.resize(nAtomsInCol_);
152      
153 <    AtomCommIntRow->gather(idents, identsRow);
154 <    AtomCommIntColumn->gather(idents, identsCol);
153 >    AtomPlanIntRow->gather(idents, identsRow);
154 >    AtomPlanIntColumn->gather(idents, identsCol);
155      
156 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
157 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
158 <    
118 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
119 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
156 >    // allocate memory for the parallel objects
157 >    atypesRow.resize(nAtomsInRow_);
158 >    atypesCol.resize(nAtomsInCol_);
159  
160 <    AtomCommRealRow->gather(massFactors, massFactorsRow);
161 <    AtomCommRealColumn->gather(massFactors, massFactorsCol);
160 >    for (int i = 0; i < nAtomsInRow_; i++)
161 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
162 >    for (int i = 0; i < nAtomsInCol_; i++)
163 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
164  
165 +    pot_row.resize(nAtomsInRow_);
166 +    pot_col.resize(nAtomsInCol_);
167 +
168 +    AtomRowToGlobal.resize(nAtomsInRow_);
169 +    AtomColToGlobal.resize(nAtomsInCol_);
170 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172 +
173 +    cgRowToGlobal.resize(nGroupsInRow_);
174 +    cgColToGlobal.resize(nGroupsInCol_);
175 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 +
178 +    massFactorsRow.resize(nAtomsInRow_);
179 +    massFactorsCol.resize(nAtomsInCol_);
180 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
181 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182 +
183      groupListRow_.clear();
184      groupListRow_.resize(nGroupsInRow_);
185      for (int i = 0; i < nGroupsInRow_; i++) {
# Line 143 | Line 202 | namespace OpenMD {
202        }      
203      }
204  
205 <    skipsForAtom.clear();
206 <    skipsForAtom.resize(nAtomsInRow_);
205 >    excludesForAtom.clear();
206 >    excludesForAtom.resize(nAtomsInRow_);
207      toposForAtom.clear();
208      toposForAtom.resize(nAtomsInRow_);
209      topoDist.clear();
# Line 155 | Line 214 | namespace OpenMD {
214        for (int j = 0; j < nAtomsInCol_; j++) {
215          int jglob = AtomColToGlobal[j];
216  
217 <        if (excludes.hasPair(iglob, jglob))
218 <          skipsForAtom[i].push_back(j);      
217 >        if (excludes->hasPair(iglob, jglob))
218 >          excludesForAtom[i].push_back(j);      
219          
220 <        if (oneTwo.hasPair(iglob, jglob)) {
220 >        if (oneTwo->hasPair(iglob, jglob)) {
221            toposForAtom[i].push_back(j);
222            topoDist[i].push_back(1);
223          } else {
224 <          if (oneThree.hasPair(iglob, jglob)) {
224 >          if (oneThree->hasPair(iglob, jglob)) {
225              toposForAtom[i].push_back(j);
226              topoDist[i].push_back(2);
227            } else {
228 <            if (oneFour.hasPair(iglob, jglob)) {
228 >            if (oneFour->hasPair(iglob, jglob)) {
229                toposForAtom[i].push_back(j);
230                topoDist[i].push_back(3);
231              }
# Line 175 | Line 234 | namespace OpenMD {
234        }      
235      }
236  
237 < #endif
238 <
239 <    groupList_.clear();
181 <    groupList_.resize(nGroups_);
182 <    for (int i = 0; i < nGroups_; i++) {
183 <      int gid = cgLocalToGlobal[i];
184 <      for (int j = 0; j < nLocal_; j++) {
185 <        int aid = AtomLocalToGlobal[j];
186 <        if (globalGroupMembership[aid] == gid) {
187 <          groupList_[i].push_back(j);
188 <        }
189 <      }      
190 <    }
191 <
192 <    skipsForAtom.clear();
193 <    skipsForAtom.resize(nLocal_);
237 > #else
238 >    excludesForAtom.clear();
239 >    excludesForAtom.resize(nLocal_);
240      toposForAtom.clear();
241      toposForAtom.resize(nLocal_);
242      topoDist.clear();
# Line 202 | Line 248 | namespace OpenMD {
248        for (int j = 0; j < nLocal_; j++) {
249          int jglob = AtomLocalToGlobal[j];
250  
251 <        if (excludes.hasPair(iglob, jglob))
252 <          skipsForAtom[i].push_back(j);              
251 >        if (excludes->hasPair(iglob, jglob))
252 >          excludesForAtom[i].push_back(j);              
253          
254 <        if (oneTwo.hasPair(iglob, jglob)) {
254 >        if (oneTwo->hasPair(iglob, jglob)) {
255            toposForAtom[i].push_back(j);
256            topoDist[i].push_back(1);
257          } else {
258 <          if (oneThree.hasPair(iglob, jglob)) {
258 >          if (oneThree->hasPair(iglob, jglob)) {
259              toposForAtom[i].push_back(j);
260              topoDist[i].push_back(2);
261            } else {
262 <            if (oneFour.hasPair(iglob, jglob)) {
262 >            if (oneFour->hasPair(iglob, jglob)) {
263                toposForAtom[i].push_back(j);
264                topoDist[i].push_back(3);
265              }
# Line 221 | Line 267 | namespace OpenMD {
267          }
268        }      
269      }
270 <    
270 > #endif
271 >
272 >    // allocate memory for the parallel objects
273 >    atypesLocal.resize(nLocal_);
274 >
275 >    for (int i = 0; i < nLocal_; i++)
276 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
277 >
278 >    groupList_.clear();
279 >    groupList_.resize(nGroups_);
280 >    for (int i = 0; i < nGroups_; i++) {
281 >      int gid = cgLocalToGlobal[i];
282 >      for (int j = 0; j < nLocal_; j++) {
283 >        int aid = AtomLocalToGlobal[j];
284 >        if (globalGroupMembership[aid] == gid) {
285 >          groupList_[i].push_back(j);
286 >        }
287 >      }      
288 >    }
289 >
290 >
291      createGtypeCutoffMap();
292 +
293    }
294    
295    void ForceMatrixDecomposition::createGtypeCutoffMap() {
296      
297      RealType tol = 1e-6;
298 +    largestRcut_ = 0.0;
299      RealType rc;
300      int atid;
301      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302 <    vector<RealType> atypeCutoff;
303 <    atypeCutoff.resize( atypes.size() );
302 >    
303 >    map<int, RealType> atypeCutoff;
304        
305      for (set<AtomType*>::iterator at = atypes.begin();
306           at != atypes.end(); ++at){
307        atid = (*at)->getIdent();
308 <
241 <      if (userChoseCutoff_)
308 >      if (userChoseCutoff_)
309          atypeCutoff[atid] = userCutoff_;
310        else
311          atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312      }
313 <
313 >    
314      vector<RealType> gTypeCutoffs;
248
315      // first we do a single loop over the cutoff groups to find the
316      // largest cutoff for any atypes present in this group.
317   #ifdef IS_MPI
# Line 303 | Line 369 | namespace OpenMD {
369  
370      vector<RealType> groupCutoff(nGroups_, 0.0);
371      groupToGtype.resize(nGroups_);
306
372      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
308
373        groupCutoff[cg1] = 0.0;
374        vector<int> atomList = getAtomsInGroupRow(cg1);
311
375        for (vector<int>::iterator ia = atomList.begin();
376             ia != atomList.end(); ++ia) {            
377          int atom1 = (*ia);
378          atid = idents[atom1];
379 <        if (atypeCutoff[atid] > groupCutoff[cg1]) {
379 >        if (atypeCutoff[atid] > groupCutoff[cg1])
380            groupCutoff[cg1] = atypeCutoff[atid];
318        }
381        }
382 <
382 >      
383        bool gTypeFound = false;
384        for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
# Line 325 | Line 387 | namespace OpenMD {
387            gTypeFound = true;
388          }
389        }
390 <      if (!gTypeFound) {
390 >      if (!gTypeFound) {      
391          gTypeCutoffs.push_back( groupCutoff[cg1] );
392          groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393        }      
# Line 334 | Line 396 | namespace OpenMD {
396  
397      // Now we find the maximum group cutoff value present in the simulation
398  
399 <    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
399 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 >                                     gTypeCutoffs.end());
401  
402   #ifdef IS_MPI
403 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
403 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 >                              MPI::MAX);
405   #endif
406      
407      RealType tradRcut = groupMax;
# Line 367 | Line 431 | namespace OpenMD {
431  
432          pair<int,int> key = make_pair(i,j);
433          gTypeCutoffMap[key].first = thisRcut;
370
434          if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
372
435          gTypeCutoffMap[key].second = thisRcut*thisRcut;
374        
436          gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
376
437          // sanity check
438          
439          if (userChoseCutoff_) {
# Line 433 | Line 493 | namespace OpenMD {
493           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
494  
495      if (storageLayout_ & DataStorage::dslParticlePot) {    
496 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
497 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
496 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 >           0.0);
498 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 >           0.0);
500      }
501  
502      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 443 | Line 505 | namespace OpenMD {
505      }
506  
507      if (storageLayout_ & DataStorage::dslFunctional) {  
508 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
509 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
508 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 >           0.0);
510 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
511 >           0.0);
512      }
513  
514      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 455 | Line 519 | namespace OpenMD {
519      }
520  
521      if (storageLayout_ & DataStorage::dslSkippedCharge) {      
522 <      fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0);
523 <      fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0);
522 >      fill(atomRowData.skippedCharge.begin(),
523 >           atomRowData.skippedCharge.end(), 0.0);
524 >      fill(atomColData.skippedCharge.begin(),
525 >           atomColData.skippedCharge.end(), 0.0);
526      }
527  
528 < #else
529 <    
528 > #endif
529 >    // even in parallel, we need to zero out the local arrays:
530 >
531      if (storageLayout_ & DataStorage::dslParticlePot) {      
532        fill(snap_->atomData.particlePot.begin(),
533             snap_->atomData.particlePot.end(), 0.0);
# Line 470 | Line 537 | namespace OpenMD {
537        fill(snap_->atomData.density.begin(),
538             snap_->atomData.density.end(), 0.0);
539      }
540 +
541      if (storageLayout_ & DataStorage::dslFunctional) {
542        fill(snap_->atomData.functional.begin(),
543             snap_->atomData.functional.end(), 0.0);
544      }
545 +
546      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
547        fill(snap_->atomData.functionalDerivative.begin(),
548             snap_->atomData.functionalDerivative.end(), 0.0);
549      }
550 +
551      if (storageLayout_ & DataStorage::dslSkippedCharge) {      
552        fill(snap_->atomData.skippedCharge.begin(),
553             snap_->atomData.skippedCharge.end(), 0.0);
554      }
485 #endif
486    
555    }
556  
557  
# Line 493 | Line 561 | namespace OpenMD {
561   #ifdef IS_MPI
562      
563      // gather up the atomic positions
564 <    AtomCommVectorRow->gather(snap_->atomData.position,
564 >    AtomPlanVectorRow->gather(snap_->atomData.position,
565                                atomRowData.position);
566 <    AtomCommVectorColumn->gather(snap_->atomData.position,
566 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
567                                   atomColData.position);
568      
569      // gather up the cutoff group positions
570 <    cgCommVectorRow->gather(snap_->cgData.position,
570 >
571 >    cgPlanVectorRow->gather(snap_->cgData.position,
572                              cgRowData.position);
573 <    cgCommVectorColumn->gather(snap_->cgData.position,
573 >
574 >    cgPlanVectorColumn->gather(snap_->cgData.position,
575                                 cgColData.position);
576 +
577      
578      // if needed, gather the atomic rotation matrices
579      if (storageLayout_ & DataStorage::dslAmat) {
580 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
580 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
581                                  atomRowData.aMat);
582 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
582 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
583                                     atomColData.aMat);
584      }
585      
586      // if needed, gather the atomic eletrostatic frames
587      if (storageLayout_ & DataStorage::dslElectroFrame) {
588 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
588 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
589                                  atomRowData.electroFrame);
590 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
590 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
591                                     atomColData.electroFrame);
592      }
593 +
594   #endif      
595    }
596    
# Line 532 | Line 604 | namespace OpenMD {
604      
605      if (storageLayout_ & DataStorage::dslDensity) {
606        
607 <      AtomCommRealRow->scatter(atomRowData.density,
607 >      AtomPlanRealRow->scatter(atomRowData.density,
608                                 snap_->atomData.density);
609        
610        int n = snap_->atomData.density.size();
611        vector<RealType> rho_tmp(n, 0.0);
612 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
612 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
613        for (int i = 0; i < n; i++)
614          snap_->atomData.density[i] += rho_tmp[i];
615      }
# Line 553 | Line 625 | namespace OpenMD {
625      storageLayout_ = sman_->getStorageLayout();
626   #ifdef IS_MPI
627      if (storageLayout_ & DataStorage::dslFunctional) {
628 <      AtomCommRealRow->gather(snap_->atomData.functional,
628 >      AtomPlanRealRow->gather(snap_->atomData.functional,
629                                atomRowData.functional);
630 <      AtomCommRealColumn->gather(snap_->atomData.functional,
630 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
631                                   atomColData.functional);
632      }
633      
634      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
635 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
635 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
636                                atomRowData.functionalDerivative);
637 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
637 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
638                                   atomColData.functionalDerivative);
639      }
640   #endif
# Line 576 | Line 648 | namespace OpenMD {
648      int n = snap_->atomData.force.size();
649      vector<Vector3d> frc_tmp(n, V3Zero);
650      
651 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
651 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
652      for (int i = 0; i < n; i++) {
653        snap_->atomData.force[i] += frc_tmp[i];
654        frc_tmp[i] = 0.0;
655      }
656      
657 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
658 <    for (int i = 0; i < n; i++)
657 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
658 >    for (int i = 0; i < n; i++) {
659        snap_->atomData.force[i] += frc_tmp[i];
660 <    
661 <    
660 >    }
661 >        
662      if (storageLayout_ & DataStorage::dslTorque) {
663  
664 <      int nt = snap_->atomData.force.size();
664 >      int nt = snap_->atomData.torque.size();
665        vector<Vector3d> trq_tmp(nt, V3Zero);
666  
667 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
668 <      for (int i = 0; i < n; i++) {
667 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
668 >      for (int i = 0; i < nt; i++) {
669          snap_->atomData.torque[i] += trq_tmp[i];
670          trq_tmp[i] = 0.0;
671        }
672        
673 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
674 <      for (int i = 0; i < n; i++)
673 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
674 >      for (int i = 0; i < nt; i++)
675          snap_->atomData.torque[i] += trq_tmp[i];
676      }
677 +
678 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
679 +
680 +      int ns = snap_->atomData.skippedCharge.size();
681 +      vector<RealType> skch_tmp(ns, 0.0);
682 +
683 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
684 +      for (int i = 0; i < ns; i++) {
685 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
686 +        skch_tmp[i] = 0.0;
687 +      }
688 +      
689 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
690 +      for (int i = 0; i < ns; i++)
691 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
692 +            
693 +    }
694      
695      nLocal_ = snap_->getNumberOfAtoms();
696  
# Line 610 | Line 699 | namespace OpenMD {
699  
700      // scatter/gather pot_row into the members of my column
701            
702 <    AtomCommPotRow->scatter(pot_row, pot_temp);
702 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
703  
704      for (int ii = 0;  ii < pot_temp.size(); ii++ )
705        pairwisePot += pot_temp[ii];
# Line 618 | Line 707 | namespace OpenMD {
707      fill(pot_temp.begin(), pot_temp.end(),
708           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
709        
710 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
710 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
711      
712      for (int ii = 0;  ii < pot_temp.size(); ii++ )
713        pairwisePot += pot_temp[ii];    
714 +    
715 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
716 +      RealType ploc1 = pairwisePot[ii];
717 +      RealType ploc2 = 0.0;
718 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
719 +      pairwisePot[ii] = ploc2;
720 +    }
721 +
722 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
723 +      RealType ploc1 = embeddingPot[ii];
724 +      RealType ploc2 = 0.0;
725 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
726 +      embeddingPot[ii] = ploc2;
727 +    }
728 +
729   #endif
730  
731    }
# Line 724 | Line 828 | namespace OpenMD {
828      return d;    
829    }
830  
831 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
832 <    return skipsForAtom[atom1];
831 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
832 >    return excludesForAtom[atom1];
833    }
834  
835    /**
836 <   * There are a number of reasons to skip a pair or a
733 <   * particle. Mostly we do this to exclude atoms who are involved in
734 <   * short range interactions (bonds, bends, torsions), but we also
735 <   * need to exclude some overcounted interactions that result from
836 >   * We need to exclude some overcounted interactions that result from
837     * the parallel decomposition.
838     */
839    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
840      int unique_id_1, unique_id_2;
841 <
841 >        
842   #ifdef IS_MPI
843      // in MPI, we have to look up the unique IDs for each atom
844      unique_id_1 = AtomRowToGlobal[atom1];
845      unique_id_2 = AtomColToGlobal[atom2];
846 + #else
847 +    unique_id_1 = AtomLocalToGlobal[atom1];
848 +    unique_id_2 = AtomLocalToGlobal[atom2];
849 + #endif  
850  
746    // this situation should only arise in MPI simulations
851      if (unique_id_1 == unique_id_2) return true;
852 <    
852 >
853 > #ifdef IS_MPI
854      // this prevents us from doing the pair on multiple processors
855      if (unique_id_1 < unique_id_2) {
856        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
857      } else {
858 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
858 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
859      }
755 #else
756    // in the normal loop, the atom numbers are unique
757    unique_id_1 = atom1;
758    unique_id_2 = atom2;
860   #endif
861      
862 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
863 <         i != skipsForAtom[atom1].end(); ++i) {
864 <      if ( (*i) == unique_id_2 ) return true;
862 >    return false;
863 >  }
864 >
865 >  /**
866 >   * We need to handle the interactions for atoms who are involved in
867 >   * the same rigid body as well as some short range interactions
868 >   * (bonds, bends, torsions) differently from other interactions.
869 >   * We'll still visit the pairwise routines, but with a flag that
870 >   * tells those routines to exclude the pair from direct long range
871 >   * interactions.  Some indirect interactions (notably reaction
872 >   * field) must still be handled for these pairs.
873 >   */
874 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
875 >
876 >    // excludesForAtom was constructed to use row/column indices in the MPI
877 >    // version, and to use local IDs in the non-MPI version:
878 >    
879 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
880 >         i != excludesForAtom[atom1].end(); ++i) {
881 >      if ( (*i) == atom2 ) return true;
882      }
883  
884      return false;
# Line 785 | Line 903 | namespace OpenMD {
903  
904      // filling interaction blocks with pointers
905    void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
906 <                                                     int atom1, int atom2) {    
906 >                                                     int atom1, int atom2) {
907 >
908 >    idat.excluded = excludeAtomPair(atom1, atom2);
909 >  
910   #ifdef IS_MPI
911 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
912 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
913 +    //                         ff_->getAtomType(identsCol[atom2]) );
914      
791    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
792                             ff_->getAtomType(identsCol[atom2]) );
793    
915      if (storageLayout_ & DataStorage::dslAmat) {
916        idat.A1 = &(atomRowData.aMat[atom1]);
917        idat.A2 = &(atomColData.aMat[atom2]);
# Line 826 | Line 947 | namespace OpenMD {
947        idat.particlePot2 = &(atomColData.particlePot[atom2]);
948      }
949  
950 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
951 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
952 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
953 +    }
954 +
955   #else
956 +    
957  
958 <    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
959 <                             ff_->getAtomType(idents[atom2]) );
958 >    // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
959 >    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
960 >    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
961  
962 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
963 +    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
964 +    //                         ff_->getAtomType(idents[atom2]) );
965 +
966      if (storageLayout_ & DataStorage::dslAmat) {
967        idat.A1 = &(snap_->atomData.aMat[atom1]);
968        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 866 | Line 998 | namespace OpenMD {
998        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
999      }
1000  
1001 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1002 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1003 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1004 +    }
1005   #endif
1006    }
1007  
1008    
1009    void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1010   #ifdef IS_MPI
1011 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1012 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1011 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1012 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1013  
1014      atomRowData.force[atom1] += *(idat.f1);
1015      atomColData.force[atom2] -= *(idat.f1);
# Line 886 | Line 1022 | namespace OpenMD {
1022      
1023    }
1024  
889
890  void ForceMatrixDecomposition::fillSkipData(InteractionData &idat,
891                                              int atom1, int atom2) {
892 #ifdef IS_MPI
893    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
894                             ff_->getAtomType(identsCol[atom2]) );
895
896    if (storageLayout_ & DataStorage::dslElectroFrame) {
897      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
898      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
899    }
900
901    if (storageLayout_ & DataStorage::dslTorque) {
902      idat.t1 = &(atomRowData.torque[atom1]);
903      idat.t2 = &(atomColData.torque[atom2]);
904    }
905
906    if (storageLayout_ & DataStorage::dslSkippedCharge) {
907      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
908      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
909    }
910 #else
911    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
912                             ff_->getAtomType(idents[atom2]) );
913
914    if (storageLayout_ & DataStorage::dslElectroFrame) {
915      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
916      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
917    }
918
919    if (storageLayout_ & DataStorage::dslTorque) {
920      idat.t1 = &(snap_->atomData.torque[atom1]);
921      idat.t2 = &(snap_->atomData.torque[atom2]);
922    }
923
924    if (storageLayout_ & DataStorage::dslSkippedCharge) {
925      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
926      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
927    }
928 #endif    
929  }
930
931
932  void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) {    
933 #ifdef IS_MPI
934    pot_row[atom1] += 0.5 *  *(idat.pot);
935    pot_col[atom2] += 0.5 *  *(idat.pot);
936 #else
937    pairwisePot += *(idat.pot);  
938 #endif
939
940  }
941
942
1025    /*
1026     * buildNeighborList
1027     *
# Line 950 | Line 1032 | namespace OpenMD {
1032        
1033      vector<pair<int, int> > neighborList;
1034      groupCutoffs cuts;
1035 +    bool doAllPairs = false;
1036 +
1037   #ifdef IS_MPI
1038      cellListRow_.clear();
1039      cellListCol_.clear();
# Line 969 | Line 1053 | namespace OpenMD {
1053      nCells_.y() = (int) ( Hy.length() )/ rList_;
1054      nCells_.z() = (int) ( Hz.length() )/ rList_;
1055  
1056 +    // handle small boxes where the cell offsets can end up repeating cells
1057 +    
1058 +    if (nCells_.x() < 3) doAllPairs = true;
1059 +    if (nCells_.y() < 3) doAllPairs = true;
1060 +    if (nCells_.z() < 3) doAllPairs = true;
1061 +
1062      Mat3x3d invHmat = snap_->getInvHmat();
1063      Vector3d rs, scaled, dr;
1064      Vector3i whichCell;
# Line 982 | Line 1072 | namespace OpenMD {
1072      cellList_.resize(nCtot);
1073   #endif
1074  
1075 +    if (!doAllPairs) {
1076   #ifdef IS_MPI
986    for (int i = 0; i < nGroupsInRow_; i++) {
987      rs = cgRowData.position[i];
1077  
1078 <      // scaled positions relative to the box vectors
1079 <      scaled = invHmat * rs;
1080 <
1081 <      // wrap the vector back into the unit box by subtracting integer box
1082 <      // numbers
1083 <      for (int j = 0; j < 3; j++) {
1084 <        scaled[j] -= roundMe(scaled[j]);
1085 <        scaled[j] += 0.5;
1078 >      for (int i = 0; i < nGroupsInRow_; i++) {
1079 >        rs = cgRowData.position[i];
1080 >        
1081 >        // scaled positions relative to the box vectors
1082 >        scaled = invHmat * rs;
1083 >        
1084 >        // wrap the vector back into the unit box by subtracting integer box
1085 >        // numbers
1086 >        for (int j = 0; j < 3; j++) {
1087 >          scaled[j] -= roundMe(scaled[j]);
1088 >          scaled[j] += 0.5;
1089 >        }
1090 >        
1091 >        // find xyz-indices of cell that cutoffGroup is in.
1092 >        whichCell.x() = nCells_.x() * scaled.x();
1093 >        whichCell.y() = nCells_.y() * scaled.y();
1094 >        whichCell.z() = nCells_.z() * scaled.z();
1095 >        
1096 >        // find single index of this cell:
1097 >        cellIndex = Vlinear(whichCell, nCells_);
1098 >        
1099 >        // add this cutoff group to the list of groups in this cell;
1100 >        cellListRow_[cellIndex].push_back(i);
1101        }
1102 <    
1103 <      // find xyz-indices of cell that cutoffGroup is in.
1104 <      whichCell.x() = nCells_.x() * scaled.x();
1105 <      whichCell.y() = nCells_.y() * scaled.y();
1106 <      whichCell.z() = nCells_.z() * scaled.z();
1107 <
1108 <      // find single index of this cell:
1109 <      cellIndex = Vlinear(whichCell, nCells_);
1110 <
1111 <      // add this cutoff group to the list of groups in this cell;
1112 <      cellListRow_[cellIndex].push_back(i);
1113 <    }
1114 <
1115 <    for (int i = 0; i < nGroupsInCol_; i++) {
1116 <      rs = cgColData.position[i];
1117 <
1118 <      // scaled positions relative to the box vectors
1119 <      scaled = invHmat * rs;
1120 <
1121 <      // wrap the vector back into the unit box by subtracting integer box
1122 <      // numbers
1123 <      for (int j = 0; j < 3; j++) {
1124 <        scaled[j] -= roundMe(scaled[j]);
1021 <        scaled[j] += 0.5;
1102 >      for (int i = 0; i < nGroupsInCol_; i++) {
1103 >        rs = cgColData.position[i];
1104 >        
1105 >        // scaled positions relative to the box vectors
1106 >        scaled = invHmat * rs;
1107 >        
1108 >        // wrap the vector back into the unit box by subtracting integer box
1109 >        // numbers
1110 >        for (int j = 0; j < 3; j++) {
1111 >          scaled[j] -= roundMe(scaled[j]);
1112 >          scaled[j] += 0.5;
1113 >        }
1114 >        
1115 >        // find xyz-indices of cell that cutoffGroup is in.
1116 >        whichCell.x() = nCells_.x() * scaled.x();
1117 >        whichCell.y() = nCells_.y() * scaled.y();
1118 >        whichCell.z() = nCells_.z() * scaled.z();
1119 >        
1120 >        // find single index of this cell:
1121 >        cellIndex = Vlinear(whichCell, nCells_);
1122 >        
1123 >        // add this cutoff group to the list of groups in this cell;
1124 >        cellListCol_[cellIndex].push_back(i);
1125        }
1126 <
1024 <      // find xyz-indices of cell that cutoffGroup is in.
1025 <      whichCell.x() = nCells_.x() * scaled.x();
1026 <      whichCell.y() = nCells_.y() * scaled.y();
1027 <      whichCell.z() = nCells_.z() * scaled.z();
1028 <
1029 <      // find single index of this cell:
1030 <      cellIndex = Vlinear(whichCell, nCells_);
1031 <
1032 <      // add this cutoff group to the list of groups in this cell;
1033 <      cellListCol_[cellIndex].push_back(i);
1034 <    }
1126 >    
1127   #else
1128 <    for (int i = 0; i < nGroups_; i++) {
1129 <      rs = snap_->cgData.position[i];
1130 <
1131 <      // scaled positions relative to the box vectors
1132 <      scaled = invHmat * rs;
1133 <
1134 <      // wrap the vector back into the unit box by subtracting integer box
1135 <      // numbers
1136 <      for (int j = 0; j < 3; j++) {
1137 <        scaled[j] -= roundMe(scaled[j]);
1138 <        scaled[j] += 0.5;
1128 >      for (int i = 0; i < nGroups_; i++) {
1129 >        rs = snap_->cgData.position[i];
1130 >        
1131 >        // scaled positions relative to the box vectors
1132 >        scaled = invHmat * rs;
1133 >        
1134 >        // wrap the vector back into the unit box by subtracting integer box
1135 >        // numbers
1136 >        for (int j = 0; j < 3; j++) {
1137 >          scaled[j] -= roundMe(scaled[j]);
1138 >          scaled[j] += 0.5;
1139 >        }
1140 >        
1141 >        // find xyz-indices of cell that cutoffGroup is in.
1142 >        whichCell.x() = nCells_.x() * scaled.x();
1143 >        whichCell.y() = nCells_.y() * scaled.y();
1144 >        whichCell.z() = nCells_.z() * scaled.z();
1145 >        
1146 >        // find single index of this cell:
1147 >        cellIndex = Vlinear(whichCell, nCells_);
1148 >        
1149 >        // add this cutoff group to the list of groups in this cell;
1150 >        cellList_[cellIndex].push_back(i);
1151        }
1152  
1049      // find xyz-indices of cell that cutoffGroup is in.
1050      whichCell.x() = nCells_.x() * scaled.x();
1051      whichCell.y() = nCells_.y() * scaled.y();
1052      whichCell.z() = nCells_.z() * scaled.z();
1053
1054      // find single index of this cell:
1055      cellIndex = Vlinear(whichCell, nCells_);      
1056
1057      // add this cutoff group to the list of groups in this cell;
1058      cellList_[cellIndex].push_back(i);
1059    }
1153   #endif
1154  
1155 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1156 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1157 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1158 <          Vector3i m1v(m1x, m1y, m1z);
1159 <          int m1 = Vlinear(m1v, nCells_);
1067 <
1068 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1069 <               os != cellOffsets_.end(); ++os) {
1155 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1156 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1157 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1158 >            Vector3i m1v(m1x, m1y, m1z);
1159 >            int m1 = Vlinear(m1v, nCells_);
1160              
1161 <            Vector3i m2v = m1v + (*os);
1162 <            
1163 <            if (m2v.x() >= nCells_.x()) {
1164 <              m2v.x() = 0;          
1165 <            } else if (m2v.x() < 0) {
1076 <              m2v.x() = nCells_.x() - 1;
1077 <            }
1078 <            
1079 <            if (m2v.y() >= nCells_.y()) {
1080 <              m2v.y() = 0;          
1081 <            } else if (m2v.y() < 0) {
1082 <              m2v.y() = nCells_.y() - 1;
1083 <            }
1084 <            
1085 <            if (m2v.z() >= nCells_.z()) {
1086 <              m2v.z() = 0;          
1087 <            } else if (m2v.z() < 0) {
1088 <              m2v.z() = nCells_.z() - 1;
1089 <            }
1090 <            
1091 <            int m2 = Vlinear (m2v, nCells_);
1161 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1162 >                 os != cellOffsets_.end(); ++os) {
1163 >              
1164 >              Vector3i m2v = m1v + (*os);
1165 >            
1166  
1167 < #ifdef IS_MPI
1168 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1169 <                 j1 != cellListRow_[m1].end(); ++j1) {
1170 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1171 <                   j2 != cellListCol_[m2].end(); ++j2) {
1172 <                              
1173 <                // Always do this if we're in different cells or if
1174 <                // we're in the same cell and the global index of the
1175 <                // j2 cutoff group is less than the j1 cutoff group
1167 >              if (m2v.x() >= nCells_.x()) {
1168 >                m2v.x() = 0;          
1169 >              } else if (m2v.x() < 0) {
1170 >                m2v.x() = nCells_.x() - 1;
1171 >              }
1172 >              
1173 >              if (m2v.y() >= nCells_.y()) {
1174 >                m2v.y() = 0;          
1175 >              } else if (m2v.y() < 0) {
1176 >                m2v.y() = nCells_.y() - 1;
1177 >              }
1178 >              
1179 >              if (m2v.z() >= nCells_.z()) {
1180 >                m2v.z() = 0;          
1181 >              } else if (m2v.z() < 0) {
1182 >                m2v.z() = nCells_.z() - 1;
1183 >              }
1184  
1185 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1185 >              int m2 = Vlinear (m2v, nCells_);
1186 >              
1187 > #ifdef IS_MPI
1188 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1189 >                   j1 != cellListRow_[m1].end(); ++j1) {
1190 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1191 >                     j2 != cellListCol_[m2].end(); ++j2) {
1192 >                  
1193 >                  // In parallel, we need to visit *all* pairs of row
1194 >                  // & column indicies and will divide labor in the
1195 >                  // force evaluation later.
1196                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1197                    snap_->wrapVector(dr);
1198                    cuts = getGroupCutoffs( (*j1), (*j2) );
1199                    if (dr.lengthSquare() < cuts.third) {
1200                      neighborList.push_back(make_pair((*j1), (*j2)));
1201 <                  }
1201 >                  }                  
1202                  }
1203                }
1112            }
1204   #else
1205 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1206 +                   j1 != cellList_[m1].end(); ++j1) {
1207 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1208 +                     j2 != cellList_[m2].end(); ++j2) {
1209 +    
1210 +                  // Always do this if we're in different cells or if
1211 +                  // we're in the same cell and the global index of
1212 +                  // the j2 cutoff group is greater than or equal to
1213 +                  // the j1 cutoff group.  Note that Rappaport's code
1214 +                  // has a "less than" conditional here, but that
1215 +                  // deals with atom-by-atom computation.  OpenMD
1216 +                  // allows atoms within a single cutoff group to
1217 +                  // interact with each other.
1218  
1115            for (vector<int>::iterator j1 = cellList_[m1].begin();
1116                 j1 != cellList_[m1].end(); ++j1) {
1117              for (vector<int>::iterator j2 = cellList_[m2].begin();
1118                   j2 != cellList_[m2].end(); ++j2) {
1219  
1120                // Always do this if we're in different cells or if
1121                // we're in the same cell and the global index of the
1122                // j2 cutoff group is less than the j1 cutoff group
1220  
1221 <                if (m2 != m1 || (*j2) < (*j1)) {
1222 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1223 <                  snap_->wrapVector(dr);
1224 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1225 <                  if (dr.lengthSquare() < cuts.third) {
1226 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1221 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1222 >
1223 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1224 >                    snap_->wrapVector(dr);
1225 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1226 >                    if (dr.lengthSquare() < cuts.third) {
1227 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1228 >                    }
1229                    }
1230                  }
1231                }
1133            }
1232   #endif
1233 +            }
1234            }
1235          }
1236        }
1237 +    } else {
1238 +      // branch to do all cutoff group pairs
1239 + #ifdef IS_MPI
1240 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1241 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1242 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1243 +          snap_->wrapVector(dr);
1244 +          cuts = getGroupCutoffs( j1, j2 );
1245 +          if (dr.lengthSquare() < cuts.third) {
1246 +            neighborList.push_back(make_pair(j1, j2));
1247 +          }
1248 +        }
1249 +      }      
1250 + #else
1251 +      // include all groups here.
1252 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1253 +        // include self group interactions j2 == j1
1254 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1255 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1256 +          snap_->wrapVector(dr);
1257 +          cuts = getGroupCutoffs( j1, j2 );
1258 +          if (dr.lengthSquare() < cuts.third) {
1259 +            neighborList.push_back(make_pair(j1, j2));
1260 +          }
1261 +        }    
1262 +      }
1263 + #endif
1264      }
1265 <    
1265 >      
1266      // save the local cutoff group positions for the check that is
1267      // done on each loop:
1268      saved_CG_positions_.clear();
1269      for (int i = 0; i < nGroups_; i++)
1270        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1271 <  
1271 >    
1272      return neighborList;
1273    }
1274   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines