55 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
|
snap_ = sman_->getCurrentSnapshot(); |
57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
+ |
ff_ = info_->getForceField(); |
59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
< |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
61 |
< |
|
60 |
> |
|
61 |
> |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
|
// gather the information for atomtype IDs (atids): |
63 |
< |
vector<int> identsLocal = info_->getIdentArray(); |
63 |
> |
idents = info_->getIdentArray(); |
64 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
66 |
– |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
67 |
– |
PairList excludes = info_->getExcludedInteractions(); |
68 |
– |
PairList oneTwo = info_->getOneTwoInteractions(); |
69 |
– |
PairList oneThree = info_->getOneThreeInteractions(); |
70 |
– |
PairList oneFour = info_->getOneFourInteractions(); |
71 |
– |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
67 |
|
|
68 |
+ |
massFactors = info_->getMassFactors(); |
69 |
+ |
|
70 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
71 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
72 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
73 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
74 |
+ |
|
75 |
|
#ifdef IS_MPI |
76 |
|
|
77 |
|
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 |
|
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
|
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
|
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
+ |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 |
|
|
83 |
|
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 |
|
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 |
|
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 |
|
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 |
+ |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 |
|
|
89 |
|
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 |
|
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
105 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 |
|
cgColData.resize(nGroupsInCol_); |
107 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
108 |
+ |
|
109 |
+ |
identsRow.resize(nAtomsInRow_); |
110 |
+ |
identsCol.resize(nAtomsInCol_); |
111 |
|
|
112 |
< |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
113 |
< |
vector<RealType> (nAtomsInRow_, 0.0)); |
107 |
< |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
108 |
< |
vector<RealType> (nAtomsInCol_, 0.0)); |
112 |
> |
AtomCommIntRow->gather(idents, identsRow); |
113 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
114 |
|
|
115 |
< |
identsRow.reserve(nAtomsInRow_); |
116 |
< |
identsCol.reserve(nAtomsInCol_); |
117 |
< |
|
118 |
< |
AtomCommIntRow->gather(identsLocal, identsRow); |
119 |
< |
AtomCommIntColumn->gather(identsLocal, identsCol); |
120 |
< |
|
115 |
> |
// allocate memory for the parallel objects |
116 |
> |
AtomRowToGlobal.resize(nAtomsInRow_); |
117 |
> |
AtomColToGlobal.resize(nAtomsInCol_); |
118 |
> |
cgRowToGlobal.resize(nGroupsInRow_); |
119 |
> |
cgColToGlobal.resize(nGroupsInCol_); |
120 |
> |
massFactorsRow.resize(nAtomsInRow_); |
121 |
> |
massFactorsCol.resize(nAtomsInCol_); |
122 |
> |
pot_row.resize(nAtomsInRow_); |
123 |
> |
pot_col.resize(nAtomsInCol_); |
124 |
> |
|
125 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
126 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
127 |
|
|
128 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
129 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
130 |
|
|
131 |
< |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
132 |
< |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
131 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
132 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
133 |
|
|
134 |
|
groupListRow_.clear(); |
135 |
< |
groupListRow_.reserve(nGroupsInRow_); |
135 |
> |
groupListRow_.resize(nGroupsInRow_); |
136 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
137 |
|
int gid = cgRowToGlobal[i]; |
138 |
|
for (int j = 0; j < nAtomsInRow_; j++) { |
143 |
|
} |
144 |
|
|
145 |
|
groupListCol_.clear(); |
146 |
< |
groupListCol_.reserve(nGroupsInCol_); |
146 |
> |
groupListCol_.resize(nGroupsInCol_); |
147 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
148 |
|
int gid = cgColToGlobal[i]; |
149 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
153 |
|
} |
154 |
|
} |
155 |
|
|
156 |
< |
skipsForRowAtom.clear(); |
157 |
< |
skipsForRowAtom.reserve(nAtomsInRow_); |
156 |
> |
excludesForAtom.clear(); |
157 |
> |
excludesForAtom.resize(nAtomsInRow_); |
158 |
> |
toposForAtom.clear(); |
159 |
> |
toposForAtom.resize(nAtomsInRow_); |
160 |
> |
topoDist.clear(); |
161 |
> |
topoDist.resize(nAtomsInRow_); |
162 |
|
for (int i = 0; i < nAtomsInRow_; i++) { |
163 |
< |
int iglob = AtomColToGlobal[i]; |
151 |
< |
for (int j = 0; j < nAtomsInCol_; j++) { |
152 |
< |
int jglob = AtomRowToGlobal[j]; |
153 |
< |
if (excludes.hasPair(iglob, jglob)) |
154 |
< |
skipsForRowAtom[i].push_back(j); |
155 |
< |
} |
156 |
< |
} |
163 |
> |
int iglob = AtomRowToGlobal[i]; |
164 |
|
|
158 |
– |
toposForRowAtom.clear(); |
159 |
– |
toposForRowAtom.reserve(nAtomsInRow_); |
160 |
– |
for (int i = 0; i < nAtomsInRow_; i++) { |
161 |
– |
int iglob = AtomColToGlobal[i]; |
162 |
– |
int nTopos = 0; |
165 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
166 |
< |
int jglob = AtomRowToGlobal[j]; |
167 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
168 |
< |
toposForRowAtom[i].push_back(j); |
169 |
< |
topoDistRow[i][nTopos] = 1; |
170 |
< |
nTopos++; |
166 |
> |
int jglob = AtomColToGlobal[j]; |
167 |
> |
|
168 |
> |
if (excludes->hasPair(iglob, jglob)) |
169 |
> |
excludesForAtom[i].push_back(j); |
170 |
> |
|
171 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
172 |
> |
toposForAtom[i].push_back(j); |
173 |
> |
topoDist[i].push_back(1); |
174 |
> |
} else { |
175 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
176 |
> |
toposForAtom[i].push_back(j); |
177 |
> |
topoDist[i].push_back(2); |
178 |
> |
} else { |
179 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
180 |
> |
toposForAtom[i].push_back(j); |
181 |
> |
topoDist[i].push_back(3); |
182 |
> |
} |
183 |
> |
} |
184 |
|
} |
170 |
– |
if (oneThree.hasPair(iglob, jglob)) { |
171 |
– |
toposForRowAtom[i].push_back(j); |
172 |
– |
topoDistRow[i][nTopos] = 2; |
173 |
– |
nTopos++; |
174 |
– |
} |
175 |
– |
if (oneFour.hasPair(iglob, jglob)) { |
176 |
– |
toposForRowAtom[i].push_back(j); |
177 |
– |
topoDistRow[i][nTopos] = 3; |
178 |
– |
nTopos++; |
179 |
– |
} |
185 |
|
} |
186 |
|
} |
187 |
|
|
188 |
|
#endif |
189 |
|
|
190 |
|
groupList_.clear(); |
191 |
< |
groupList_.reserve(nGroups_); |
191 |
> |
groupList_.resize(nGroups_); |
192 |
|
for (int i = 0; i < nGroups_; i++) { |
193 |
|
int gid = cgLocalToGlobal[i]; |
194 |
|
for (int j = 0; j < nLocal_; j++) { |
195 |
|
int aid = AtomLocalToGlobal[j]; |
196 |
< |
if (globalGroupMembership[aid] == gid) |
196 |
> |
if (globalGroupMembership[aid] == gid) { |
197 |
|
groupList_[i].push_back(j); |
198 |
+ |
} |
199 |
|
} |
200 |
|
} |
201 |
|
|
202 |
< |
skipsForLocalAtom.clear(); |
203 |
< |
skipsForLocalAtom.reserve(nLocal_); |
202 |
> |
excludesForAtom.clear(); |
203 |
> |
excludesForAtom.resize(nLocal_); |
204 |
> |
toposForAtom.clear(); |
205 |
> |
toposForAtom.resize(nLocal_); |
206 |
> |
topoDist.clear(); |
207 |
> |
topoDist.resize(nLocal_); |
208 |
|
|
209 |
|
for (int i = 0; i < nLocal_; i++) { |
210 |
|
int iglob = AtomLocalToGlobal[i]; |
211 |
+ |
|
212 |
|
for (int j = 0; j < nLocal_; j++) { |
213 |
< |
int jglob = AtomLocalToGlobal[j]; |
214 |
< |
if (excludes.hasPair(iglob, jglob)) |
215 |
< |
skipsForLocalAtom[i].push_back(j); |
213 |
> |
int jglob = AtomLocalToGlobal[j]; |
214 |
> |
|
215 |
> |
if (excludes->hasPair(iglob, jglob)) |
216 |
> |
excludesForAtom[i].push_back(j); |
217 |
> |
|
218 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
219 |
> |
toposForAtom[i].push_back(j); |
220 |
> |
topoDist[i].push_back(1); |
221 |
> |
} else { |
222 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
223 |
> |
toposForAtom[i].push_back(j); |
224 |
> |
topoDist[i].push_back(2); |
225 |
> |
} else { |
226 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
227 |
> |
toposForAtom[i].push_back(j); |
228 |
> |
topoDist[i].push_back(3); |
229 |
> |
} |
230 |
> |
} |
231 |
> |
} |
232 |
|
} |
233 |
|
} |
234 |
+ |
|
235 |
+ |
createGtypeCutoffMap(); |
236 |
|
|
237 |
< |
toposForLocalAtom.clear(); |
238 |
< |
toposForLocalAtom.reserve(nLocal_); |
239 |
< |
for (int i = 0; i < nLocal_; i++) { |
240 |
< |
int iglob = AtomLocalToGlobal[i]; |
241 |
< |
int nTopos = 0; |
242 |
< |
for (int j = 0; j < nLocal_; j++) { |
243 |
< |
int jglob = AtomLocalToGlobal[j]; |
244 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
245 |
< |
toposForLocalAtom[i].push_back(j); |
246 |
< |
topoDistLocal[i][nTopos] = 1; |
247 |
< |
nTopos++; |
237 |
> |
} |
238 |
> |
|
239 |
> |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
240 |
> |
|
241 |
> |
RealType tol = 1e-6; |
242 |
> |
RealType rc; |
243 |
> |
int atid; |
244 |
> |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
245 |
> |
map<int, RealType> atypeCutoff; |
246 |
> |
|
247 |
> |
for (set<AtomType*>::iterator at = atypes.begin(); |
248 |
> |
at != atypes.end(); ++at){ |
249 |
> |
atid = (*at)->getIdent(); |
250 |
> |
if (userChoseCutoff_) |
251 |
> |
atypeCutoff[atid] = userCutoff_; |
252 |
> |
else |
253 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
254 |
> |
} |
255 |
> |
|
256 |
> |
vector<RealType> gTypeCutoffs; |
257 |
> |
// first we do a single loop over the cutoff groups to find the |
258 |
> |
// largest cutoff for any atypes present in this group. |
259 |
> |
#ifdef IS_MPI |
260 |
> |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
261 |
> |
groupRowToGtype.resize(nGroupsInRow_); |
262 |
> |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
263 |
> |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
264 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
265 |
> |
ia != atomListRow.end(); ++ia) { |
266 |
> |
int atom1 = (*ia); |
267 |
> |
atid = identsRow[atom1]; |
268 |
> |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
269 |
> |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
270 |
|
} |
271 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
272 |
< |
toposForLocalAtom[i].push_back(j); |
273 |
< |
topoDistLocal[i][nTopos] = 2; |
274 |
< |
nTopos++; |
271 |
> |
} |
272 |
> |
|
273 |
> |
bool gTypeFound = false; |
274 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
275 |
> |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
276 |
> |
groupRowToGtype[cg1] = gt; |
277 |
> |
gTypeFound = true; |
278 |
> |
} |
279 |
> |
} |
280 |
> |
if (!gTypeFound) { |
281 |
> |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
282 |
> |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
283 |
> |
} |
284 |
> |
|
285 |
> |
} |
286 |
> |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
287 |
> |
groupColToGtype.resize(nGroupsInCol_); |
288 |
> |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
289 |
> |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
290 |
> |
for (vector<int>::iterator jb = atomListCol.begin(); |
291 |
> |
jb != atomListCol.end(); ++jb) { |
292 |
> |
int atom2 = (*jb); |
293 |
> |
atid = identsCol[atom2]; |
294 |
> |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
295 |
> |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
296 |
|
} |
297 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
298 |
< |
toposForLocalAtom[i].push_back(j); |
299 |
< |
topoDistLocal[i][nTopos] = 3; |
300 |
< |
nTopos++; |
297 |
> |
} |
298 |
> |
bool gTypeFound = false; |
299 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
300 |
> |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
301 |
> |
groupColToGtype[cg2] = gt; |
302 |
> |
gTypeFound = true; |
303 |
> |
} |
304 |
> |
} |
305 |
> |
if (!gTypeFound) { |
306 |
> |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
307 |
> |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
308 |
> |
} |
309 |
> |
} |
310 |
> |
#else |
311 |
> |
|
312 |
> |
vector<RealType> groupCutoff(nGroups_, 0.0); |
313 |
> |
groupToGtype.resize(nGroups_); |
314 |
> |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
315 |
> |
|
316 |
> |
groupCutoff[cg1] = 0.0; |
317 |
> |
vector<int> atomList = getAtomsInGroupRow(cg1); |
318 |
> |
|
319 |
> |
for (vector<int>::iterator ia = atomList.begin(); |
320 |
> |
ia != atomList.end(); ++ia) { |
321 |
> |
int atom1 = (*ia); |
322 |
> |
atid = idents[atom1]; |
323 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
324 |
> |
groupCutoff[cg1] = atypeCutoff[atid]; |
325 |
|
} |
326 |
+ |
} |
327 |
+ |
|
328 |
+ |
bool gTypeFound = false; |
329 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
330 |
+ |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
331 |
+ |
groupToGtype[cg1] = gt; |
332 |
+ |
gTypeFound = true; |
333 |
+ |
} |
334 |
+ |
} |
335 |
+ |
if (!gTypeFound) { |
336 |
+ |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
337 |
+ |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
338 |
|
} |
339 |
|
} |
340 |
+ |
#endif |
341 |
+ |
|
342 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
343 |
+ |
|
344 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
345 |
+ |
|
346 |
+ |
#ifdef IS_MPI |
347 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
348 |
+ |
#endif |
349 |
+ |
|
350 |
+ |
RealType tradRcut = groupMax; |
351 |
+ |
|
352 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
353 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
354 |
+ |
RealType thisRcut; |
355 |
+ |
switch(cutoffPolicy_) { |
356 |
+ |
case TRADITIONAL: |
357 |
+ |
thisRcut = tradRcut; |
358 |
+ |
break; |
359 |
+ |
case MIX: |
360 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
361 |
+ |
break; |
362 |
+ |
case MAX: |
363 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
364 |
+ |
break; |
365 |
+ |
default: |
366 |
+ |
sprintf(painCave.errMsg, |
367 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
368 |
+ |
"hit an unknown cutoff policy!\n"); |
369 |
+ |
painCave.severity = OPENMD_ERROR; |
370 |
+ |
painCave.isFatal = 1; |
371 |
+ |
simError(); |
372 |
+ |
break; |
373 |
+ |
} |
374 |
+ |
|
375 |
+ |
pair<int,int> key = make_pair(i,j); |
376 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
377 |
+ |
|
378 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
379 |
+ |
|
380 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
381 |
+ |
|
382 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
383 |
+ |
|
384 |
+ |
// sanity check |
385 |
+ |
|
386 |
+ |
if (userChoseCutoff_) { |
387 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
388 |
+ |
sprintf(painCave.errMsg, |
389 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
390 |
+ |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
391 |
+ |
painCave.severity = OPENMD_ERROR; |
392 |
+ |
painCave.isFatal = 1; |
393 |
+ |
simError(); |
394 |
+ |
} |
395 |
+ |
} |
396 |
+ |
} |
397 |
+ |
} |
398 |
|
} |
399 |
< |
|
399 |
> |
|
400 |
> |
|
401 |
> |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
402 |
> |
int i, j; |
403 |
> |
#ifdef IS_MPI |
404 |
> |
i = groupRowToGtype[cg1]; |
405 |
> |
j = groupColToGtype[cg2]; |
406 |
> |
#else |
407 |
> |
i = groupToGtype[cg1]; |
408 |
> |
j = groupToGtype[cg2]; |
409 |
> |
#endif |
410 |
> |
return gTypeCutoffMap[make_pair(i,j)]; |
411 |
> |
} |
412 |
> |
|
413 |
> |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
414 |
> |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
415 |
> |
if (toposForAtom[atom1][j] == atom2) |
416 |
> |
return topoDist[atom1][j]; |
417 |
> |
} |
418 |
> |
return 0; |
419 |
> |
} |
420 |
> |
|
421 |
> |
void ForceMatrixDecomposition::zeroWorkArrays() { |
422 |
> |
pairwisePot = 0.0; |
423 |
> |
embeddingPot = 0.0; |
424 |
> |
|
425 |
> |
#ifdef IS_MPI |
426 |
> |
if (storageLayout_ & DataStorage::dslForce) { |
427 |
> |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
428 |
> |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
429 |
> |
} |
430 |
> |
|
431 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
432 |
> |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
433 |
> |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
434 |
> |
} |
435 |
> |
|
436 |
> |
fill(pot_row.begin(), pot_row.end(), |
437 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
438 |
> |
|
439 |
> |
fill(pot_col.begin(), pot_col.end(), |
440 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
441 |
> |
|
442 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
443 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
444 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
445 |
> |
} |
446 |
> |
|
447 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
448 |
> |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
449 |
> |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
450 |
> |
} |
451 |
> |
|
452 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
453 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
454 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
455 |
> |
} |
456 |
> |
|
457 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
458 |
> |
fill(atomRowData.functionalDerivative.begin(), |
459 |
> |
atomRowData.functionalDerivative.end(), 0.0); |
460 |
> |
fill(atomColData.functionalDerivative.begin(), |
461 |
> |
atomColData.functionalDerivative.end(), 0.0); |
462 |
> |
} |
463 |
> |
|
464 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
465 |
> |
fill(atomRowData.skippedCharge.begin(), |
466 |
> |
atomRowData.skippedCharge.end(), 0.0); |
467 |
> |
fill(atomColData.skippedCharge.begin(), |
468 |
> |
atomColData.skippedCharge.end(), 0.0); |
469 |
> |
} |
470 |
> |
|
471 |
> |
#else |
472 |
> |
|
473 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
474 |
> |
fill(snap_->atomData.particlePot.begin(), |
475 |
> |
snap_->atomData.particlePot.end(), 0.0); |
476 |
> |
} |
477 |
> |
|
478 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
479 |
> |
fill(snap_->atomData.density.begin(), |
480 |
> |
snap_->atomData.density.end(), 0.0); |
481 |
> |
} |
482 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
483 |
> |
fill(snap_->atomData.functional.begin(), |
484 |
> |
snap_->atomData.functional.end(), 0.0); |
485 |
> |
} |
486 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
487 |
> |
fill(snap_->atomData.functionalDerivative.begin(), |
488 |
> |
snap_->atomData.functionalDerivative.end(), 0.0); |
489 |
> |
} |
490 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
491 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
492 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
493 |
> |
} |
494 |
> |
#endif |
495 |
> |
|
496 |
> |
} |
497 |
> |
|
498 |
> |
|
499 |
|
void ForceMatrixDecomposition::distributeData() { |
500 |
|
snap_ = sman_->getCurrentSnapshot(); |
501 |
|
storageLayout_ = sman_->getStorageLayout(); |
531 |
|
#endif |
532 |
|
} |
533 |
|
|
534 |
+ |
/* collects information obtained during the pre-pair loop onto local |
535 |
+ |
* data structures. |
536 |
+ |
*/ |
537 |
|
void ForceMatrixDecomposition::collectIntermediateData() { |
538 |
|
snap_ = sman_->getCurrentSnapshot(); |
539 |
|
storageLayout_ = sman_->getStorageLayout(); |
545 |
|
snap_->atomData.density); |
546 |
|
|
547 |
|
int n = snap_->atomData.density.size(); |
548 |
< |
std::vector<RealType> rho_tmp(n, 0.0); |
548 |
> |
vector<RealType> rho_tmp(n, 0.0); |
549 |
|
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
550 |
|
for (int i = 0; i < n; i++) |
551 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
552 |
|
} |
553 |
|
#endif |
554 |
|
} |
555 |
< |
|
555 |
> |
|
556 |
> |
/* |
557 |
> |
* redistributes information obtained during the pre-pair loop out to |
558 |
> |
* row and column-indexed data structures |
559 |
> |
*/ |
560 |
|
void ForceMatrixDecomposition::distributeIntermediateData() { |
561 |
|
snap_ = sman_->getCurrentSnapshot(); |
562 |
|
storageLayout_ = sman_->getStorageLayout(); |
598 |
|
|
599 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
600 |
|
|
601 |
< |
int nt = snap_->atomData.force.size(); |
601 |
> |
int nt = snap_->atomData.torque.size(); |
602 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
603 |
|
|
604 |
|
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
605 |
< |
for (int i = 0; i < n; i++) { |
605 |
> |
for (int i = 0; i < nt; i++) { |
606 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
607 |
|
trq_tmp[i] = 0.0; |
608 |
|
} |
609 |
|
|
610 |
|
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
611 |
< |
for (int i = 0; i < n; i++) |
611 |
> |
for (int i = 0; i < nt; i++) |
612 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
613 |
|
} |
614 |
+ |
|
615 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
616 |
+ |
|
617 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
618 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
619 |
+ |
|
620 |
+ |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
621 |
+ |
for (int i = 0; i < ns; i++) { |
622 |
+ |
snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
623 |
+ |
skch_tmp[i] = 0.0; |
624 |
+ |
} |
625 |
+ |
|
626 |
+ |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
627 |
+ |
for (int i = 0; i < ns; i++) |
628 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
629 |
+ |
} |
630 |
|
|
631 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
632 |
|
|
633 |
< |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
634 |
< |
vector<RealType> (nLocal_, 0.0)); |
633 |
> |
vector<potVec> pot_temp(nLocal_, |
634 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
635 |
> |
|
636 |
> |
// scatter/gather pot_row into the members of my column |
637 |
> |
|
638 |
> |
AtomCommPotRow->scatter(pot_row, pot_temp); |
639 |
> |
|
640 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
641 |
> |
pairwisePot += pot_temp[ii]; |
642 |
|
|
643 |
< |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
644 |
< |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
645 |
< |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
646 |
< |
pot_local[i] += pot_temp[i][ii]; |
647 |
< |
} |
648 |
< |
} |
643 |
> |
fill(pot_temp.begin(), pot_temp.end(), |
644 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
645 |
> |
|
646 |
> |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
647 |
> |
|
648 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
649 |
> |
pairwisePot += pot_temp[ii]; |
650 |
|
#endif |
651 |
+ |
|
652 |
|
} |
653 |
|
|
654 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
723 |
|
#ifdef IS_MPI |
724 |
|
return massFactorsRow[atom1]; |
725 |
|
#else |
726 |
< |
return massFactorsLocal[atom1]; |
726 |
> |
return massFactors[atom1]; |
727 |
|
#endif |
728 |
|
} |
729 |
|
|
731 |
|
#ifdef IS_MPI |
732 |
|
return massFactorsCol[atom2]; |
733 |
|
#else |
734 |
< |
return massFactorsLocal[atom2]; |
734 |
> |
return massFactors[atom2]; |
735 |
|
#endif |
736 |
|
|
737 |
|
} |
749 |
|
return d; |
750 |
|
} |
751 |
|
|
752 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
753 |
< |
#ifdef IS_MPI |
457 |
< |
return skipsForRowAtom[atom1]; |
458 |
< |
#else |
459 |
< |
return skipsForLocalAtom[atom1]; |
460 |
< |
#endif |
752 |
> |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
753 |
> |
return excludesForAtom[atom1]; |
754 |
|
} |
755 |
|
|
756 |
|
/** |
757 |
< |
* there are a number of reasons to skip a pair or a particle mostly |
758 |
< |
* we do this to exclude atoms who are involved in short range |
466 |
< |
* interactions (bonds, bends, torsions), but we also need to |
467 |
< |
* exclude some overcounted interactions that result from the |
468 |
< |
* parallel decomposition. |
757 |
> |
* We need to exclude some overcounted interactions that result from |
758 |
> |
* the parallel decomposition. |
759 |
|
*/ |
760 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
761 |
|
int unique_id_1, unique_id_2; |
774 |
|
} else { |
775 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
776 |
|
} |
487 |
– |
#else |
488 |
– |
// in the normal loop, the atom numbers are unique |
489 |
– |
unique_id_1 = atom1; |
490 |
– |
unique_id_2 = atom2; |
777 |
|
#endif |
778 |
< |
|
493 |
< |
#ifdef IS_MPI |
494 |
< |
for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
495 |
< |
i != skipsForRowAtom[atom1].end(); ++i) { |
496 |
< |
if ( (*i) == unique_id_2 ) return true; |
497 |
< |
} |
498 |
< |
#else |
499 |
< |
for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
500 |
< |
i != skipsForLocalAtom[atom1].end(); ++i) { |
501 |
< |
if ( (*i) == unique_id_2 ) return true; |
502 |
< |
} |
503 |
< |
#endif |
778 |
> |
return false; |
779 |
|
} |
780 |
|
|
781 |
< |
int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
781 |
> |
/** |
782 |
> |
* We need to handle the interactions for atoms who are involved in |
783 |
> |
* the same rigid body as well as some short range interactions |
784 |
> |
* (bonds, bends, torsions) differently from other interactions. |
785 |
> |
* We'll still visit the pairwise routines, but with a flag that |
786 |
> |
* tells those routines to exclude the pair from direct long range |
787 |
> |
* interactions. Some indirect interactions (notably reaction |
788 |
> |
* field) must still be handled for these pairs. |
789 |
> |
*/ |
790 |
> |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
791 |
> |
int unique_id_2; |
792 |
|
|
793 |
|
#ifdef IS_MPI |
794 |
< |
for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
795 |
< |
if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
511 |
< |
} |
794 |
> |
// in MPI, we have to look up the unique IDs for the row atom. |
795 |
> |
unique_id_2 = AtomColToGlobal[atom2]; |
796 |
|
#else |
797 |
< |
for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
798 |
< |
if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
515 |
< |
} |
797 |
> |
// in the normal loop, the atom numbers are unique |
798 |
> |
unique_id_2 = atom2; |
799 |
|
#endif |
800 |
+ |
|
801 |
+ |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
802 |
+ |
i != excludesForAtom[atom1].end(); ++i) { |
803 |
+ |
if ( (*i) == unique_id_2 ) return true; |
804 |
+ |
} |
805 |
|
|
806 |
< |
// zero is default for unconnected (i.e. normal) pair interactions |
519 |
< |
return 0; |
806 |
> |
return false; |
807 |
|
} |
808 |
|
|
809 |
+ |
|
810 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
811 |
|
#ifdef IS_MPI |
812 |
|
atomRowData.force[atom1] += fg; |
824 |
|
} |
825 |
|
|
826 |
|
// filling interaction blocks with pointers |
827 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
828 |
< |
InteractionData idat; |
827 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
828 |
> |
int atom1, int atom2) { |
829 |
|
|
830 |
+ |
idat.excluded = excludeAtomPair(atom1, atom2); |
831 |
+ |
|
832 |
|
#ifdef IS_MPI |
833 |
+ |
|
834 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
835 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
836 |
+ |
|
837 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
838 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
839 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
854 |
|
idat.rho2 = &(atomColData.density[atom2]); |
855 |
|
} |
856 |
|
|
857 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
858 |
+ |
idat.frho1 = &(atomRowData.functional[atom1]); |
859 |
+ |
idat.frho2 = &(atomColData.functional[atom2]); |
860 |
+ |
} |
861 |
+ |
|
862 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
863 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
864 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
865 |
|
} |
866 |
|
|
867 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
868 |
+ |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
869 |
+ |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
870 |
+ |
} |
871 |
+ |
|
872 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
873 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
874 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
875 |
+ |
} |
876 |
+ |
|
877 |
|
#else |
878 |
+ |
|
879 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
880 |
+ |
ff_->getAtomType(idents[atom2]) ); |
881 |
+ |
|
882 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
883 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
884 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
894 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
895 |
|
} |
896 |
|
|
897 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
897 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
898 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
899 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
900 |
|
} |
901 |
|
|
902 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
903 |
+ |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
904 |
+ |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
905 |
+ |
} |
906 |
+ |
|
907 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
908 |
|
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
909 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
910 |
|
} |
593 |
– |
#endif |
594 |
– |
return idat; |
595 |
– |
} |
911 |
|
|
912 |
< |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
913 |
< |
|
914 |
< |
InteractionData idat; |
600 |
< |
#ifdef IS_MPI |
601 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
602 |
< |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
603 |
< |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
604 |
< |
} |
605 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
606 |
< |
idat.t1 = &(atomRowData.torque[atom1]); |
607 |
< |
idat.t2 = &(atomColData.torque[atom2]); |
912 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
913 |
> |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
914 |
> |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
915 |
|
} |
916 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
917 |
< |
idat.t1 = &(atomRowData.force[atom1]); |
918 |
< |
idat.t2 = &(atomColData.force[atom2]); |
916 |
> |
|
917 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
918 |
> |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
919 |
> |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
920 |
|
} |
613 |
– |
#else |
614 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
615 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
616 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
617 |
– |
} |
618 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
619 |
– |
idat.t1 = &(snap_->atomData.torque[atom1]); |
620 |
– |
idat.t2 = &(snap_->atomData.torque[atom2]); |
621 |
– |
} |
622 |
– |
if (storageLayout_ & DataStorage::dslForce) { |
623 |
– |
idat.t1 = &(snap_->atomData.force[atom1]); |
624 |
– |
idat.t2 = &(snap_->atomData.force[atom2]); |
625 |
– |
} |
921 |
|
#endif |
627 |
– |
|
922 |
|
} |
923 |
|
|
924 |
+ |
|
925 |
+ |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
926 |
+ |
#ifdef IS_MPI |
927 |
+ |
pot_row[atom1] += 0.5 * *(idat.pot); |
928 |
+ |
pot_col[atom2] += 0.5 * *(idat.pot); |
929 |
|
|
930 |
+ |
atomRowData.force[atom1] += *(idat.f1); |
931 |
+ |
atomColData.force[atom2] -= *(idat.f1); |
932 |
+ |
#else |
933 |
+ |
pairwisePot += *(idat.pot); |
934 |
|
|
935 |
+ |
snap_->atomData.force[atom1] += *(idat.f1); |
936 |
+ |
snap_->atomData.force[atom2] -= *(idat.f1); |
937 |
+ |
#endif |
938 |
+ |
|
939 |
+ |
} |
940 |
|
|
941 |
|
/* |
942 |
|
* buildNeighborList |
947 |
|
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
948 |
|
|
949 |
|
vector<pair<int, int> > neighborList; |
950 |
+ |
groupCutoffs cuts; |
951 |
+ |
bool doAllPairs = false; |
952 |
+ |
|
953 |
|
#ifdef IS_MPI |
954 |
|
cellListRow_.clear(); |
955 |
|
cellListCol_.clear(); |
957 |
|
cellList_.clear(); |
958 |
|
#endif |
959 |
|
|
960 |
< |
// dangerous to not do error checking. |
650 |
< |
RealType rCut_; |
651 |
< |
|
652 |
< |
RealType rList_ = (rCut_ + skinThickness_); |
960 |
> |
RealType rList_ = (largestRcut_ + skinThickness_); |
961 |
|
RealType rl2 = rList_ * rList_; |
962 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
963 |
|
Mat3x3d Hmat = snap_->getHmat(); |
969 |
|
nCells_.y() = (int) ( Hy.length() )/ rList_; |
970 |
|
nCells_.z() = (int) ( Hz.length() )/ rList_; |
971 |
|
|
972 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
973 |
+ |
|
974 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
975 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
976 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
977 |
+ |
|
978 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
979 |
|
Vector3d rs, scaled, dr; |
980 |
|
Vector3i whichCell; |
981 |
|
int cellIndex; |
982 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
983 |
|
|
984 |
|
#ifdef IS_MPI |
985 |
< |
for (int i = 0; i < nGroupsInRow_; i++) { |
986 |
< |
rs = cgRowData.position[i]; |
672 |
< |
// scaled positions relative to the box vectors |
673 |
< |
scaled = invHmat * rs; |
674 |
< |
// wrap the vector back into the unit box by subtracting integer box |
675 |
< |
// numbers |
676 |
< |
for (int j = 0; j < 3; j++) |
677 |
< |
scaled[j] -= roundMe(scaled[j]); |
678 |
< |
|
679 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
680 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
681 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
682 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
683 |
< |
|
684 |
< |
// find single index of this cell: |
685 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
686 |
< |
// add this cutoff group to the list of groups in this cell; |
687 |
< |
cellListRow_[cellIndex].push_back(i); |
688 |
< |
} |
689 |
< |
|
690 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
691 |
< |
rs = cgColData.position[i]; |
692 |
< |
// scaled positions relative to the box vectors |
693 |
< |
scaled = invHmat * rs; |
694 |
< |
// wrap the vector back into the unit box by subtracting integer box |
695 |
< |
// numbers |
696 |
< |
for (int j = 0; j < 3; j++) |
697 |
< |
scaled[j] -= roundMe(scaled[j]); |
698 |
< |
|
699 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
700 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
701 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
702 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
703 |
< |
|
704 |
< |
// find single index of this cell: |
705 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
706 |
< |
// add this cutoff group to the list of groups in this cell; |
707 |
< |
cellListCol_[cellIndex].push_back(i); |
708 |
< |
} |
985 |
> |
cellListRow_.resize(nCtot); |
986 |
> |
cellListCol_.resize(nCtot); |
987 |
|
#else |
988 |
< |
for (int i = 0; i < nGroups_; i++) { |
711 |
< |
rs = snap_->cgData.position[i]; |
712 |
< |
// scaled positions relative to the box vectors |
713 |
< |
scaled = invHmat * rs; |
714 |
< |
// wrap the vector back into the unit box by subtracting integer box |
715 |
< |
// numbers |
716 |
< |
for (int j = 0; j < 3; j++) |
717 |
< |
scaled[j] -= roundMe(scaled[j]); |
718 |
< |
|
719 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
720 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
721 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
722 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
723 |
< |
|
724 |
< |
// find single index of this cell: |
725 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
726 |
< |
// add this cutoff group to the list of groups in this cell; |
727 |
< |
cellList_[cellIndex].push_back(i); |
728 |
< |
} |
988 |
> |
cellList_.resize(nCtot); |
989 |
|
#endif |
990 |
|
|
991 |
+ |
if (!doAllPairs) { |
992 |
+ |
#ifdef IS_MPI |
993 |
|
|
994 |
+ |
for (int i = 0; i < nGroupsInRow_; i++) { |
995 |
+ |
rs = cgRowData.position[i]; |
996 |
+ |
|
997 |
+ |
// scaled positions relative to the box vectors |
998 |
+ |
scaled = invHmat * rs; |
999 |
+ |
|
1000 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
1001 |
+ |
// numbers |
1002 |
+ |
for (int j = 0; j < 3; j++) { |
1003 |
+ |
scaled[j] -= roundMe(scaled[j]); |
1004 |
+ |
scaled[j] += 0.5; |
1005 |
+ |
} |
1006 |
+ |
|
1007 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
1008 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
1009 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
1010 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
1011 |
+ |
|
1012 |
+ |
// find single index of this cell: |
1013 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
1014 |
+ |
|
1015 |
+ |
// add this cutoff group to the list of groups in this cell; |
1016 |
+ |
cellListRow_[cellIndex].push_back(i); |
1017 |
+ |
} |
1018 |
+ |
|
1019 |
+ |
for (int i = 0; i < nGroupsInCol_; i++) { |
1020 |
+ |
rs = cgColData.position[i]; |
1021 |
+ |
|
1022 |
+ |
// scaled positions relative to the box vectors |
1023 |
+ |
scaled = invHmat * rs; |
1024 |
+ |
|
1025 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
1026 |
+ |
// numbers |
1027 |
+ |
for (int j = 0; j < 3; j++) { |
1028 |
+ |
scaled[j] -= roundMe(scaled[j]); |
1029 |
+ |
scaled[j] += 0.5; |
1030 |
+ |
} |
1031 |
+ |
|
1032 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
1033 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
1034 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
1035 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
1036 |
+ |
|
1037 |
+ |
// find single index of this cell: |
1038 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
1039 |
+ |
|
1040 |
+ |
// add this cutoff group to the list of groups in this cell; |
1041 |
+ |
cellListCol_[cellIndex].push_back(i); |
1042 |
+ |
} |
1043 |
+ |
#else |
1044 |
+ |
for (int i = 0; i < nGroups_; i++) { |
1045 |
+ |
rs = snap_->cgData.position[i]; |
1046 |
+ |
|
1047 |
+ |
// scaled positions relative to the box vectors |
1048 |
+ |
scaled = invHmat * rs; |
1049 |
+ |
|
1050 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
1051 |
+ |
// numbers |
1052 |
+ |
for (int j = 0; j < 3; j++) { |
1053 |
+ |
scaled[j] -= roundMe(scaled[j]); |
1054 |
+ |
scaled[j] += 0.5; |
1055 |
+ |
} |
1056 |
+ |
|
1057 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
1058 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
1059 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
1060 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
1061 |
+ |
|
1062 |
+ |
// find single index of this cell: |
1063 |
+ |
cellIndex = Vlinear(whichCell, nCells_); |
1064 |
+ |
|
1065 |
+ |
// add this cutoff group to the list of groups in this cell; |
1066 |
+ |
cellList_[cellIndex].push_back(i); |
1067 |
+ |
} |
1068 |
+ |
#endif |
1069 |
|
|
1070 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1071 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1072 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1073 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1074 |
< |
int m1 = Vlinear(m1v, nCells_); |
738 |
< |
|
739 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
740 |
< |
os != cellOffsets_.end(); ++os) { |
1070 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1071 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1072 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1073 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1074 |
> |
int m1 = Vlinear(m1v, nCells_); |
1075 |
|
|
1076 |
< |
Vector3i m2v = m1v + (*os); |
1077 |
< |
|
1078 |
< |
if (m2v.x() >= nCells_.x()) { |
1079 |
< |
m2v.x() = 0; |
1080 |
< |
} else if (m2v.x() < 0) { |
1081 |
< |
m2v.x() = nCells_.x() - 1; |
1082 |
< |
} |
1083 |
< |
|
1084 |
< |
if (m2v.y() >= nCells_.y()) { |
1085 |
< |
m2v.y() = 0; |
1086 |
< |
} else if (m2v.y() < 0) { |
1087 |
< |
m2v.y() = nCells_.y() - 1; |
1088 |
< |
} |
1089 |
< |
|
1090 |
< |
if (m2v.z() >= nCells_.z()) { |
1091 |
< |
m2v.z() = 0; |
1092 |
< |
} else if (m2v.z() < 0) { |
1093 |
< |
m2v.z() = nCells_.z() - 1; |
1094 |
< |
} |
1095 |
< |
|
1096 |
< |
int m2 = Vlinear (m2v, nCells_); |
1097 |
< |
|
1076 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1077 |
> |
os != cellOffsets_.end(); ++os) { |
1078 |
> |
|
1079 |
> |
Vector3i m2v = m1v + (*os); |
1080 |
> |
|
1081 |
> |
if (m2v.x() >= nCells_.x()) { |
1082 |
> |
m2v.x() = 0; |
1083 |
> |
} else if (m2v.x() < 0) { |
1084 |
> |
m2v.x() = nCells_.x() - 1; |
1085 |
> |
} |
1086 |
> |
|
1087 |
> |
if (m2v.y() >= nCells_.y()) { |
1088 |
> |
m2v.y() = 0; |
1089 |
> |
} else if (m2v.y() < 0) { |
1090 |
> |
m2v.y() = nCells_.y() - 1; |
1091 |
> |
} |
1092 |
> |
|
1093 |
> |
if (m2v.z() >= nCells_.z()) { |
1094 |
> |
m2v.z() = 0; |
1095 |
> |
} else if (m2v.z() < 0) { |
1096 |
> |
m2v.z() = nCells_.z() - 1; |
1097 |
> |
} |
1098 |
> |
|
1099 |
> |
int m2 = Vlinear (m2v, nCells_); |
1100 |
> |
|
1101 |
|
#ifdef IS_MPI |
1102 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1103 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1104 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1105 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1106 |
< |
|
1107 |
< |
// Always do this if we're in different cells or if |
1108 |
< |
// we're in the same cell and the global index of the |
1109 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1110 |
< |
|
1111 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1112 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1113 |
< |
snap_->wrapVector(dr); |
1114 |
< |
if (dr.lengthSquare() < rl2) { |
1115 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1102 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1103 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1104 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1105 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1106 |
> |
|
1107 |
> |
// Always do this if we're in different cells or if |
1108 |
> |
// we're in the same cell and the global index of the |
1109 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1110 |
> |
|
1111 |
> |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1112 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1113 |
> |
snap_->wrapVector(dr); |
1114 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1115 |
> |
if (dr.lengthSquare() < cuts.third) { |
1116 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1117 |
> |
} |
1118 |
|
} |
1119 |
|
} |
1120 |
|
} |
782 |
– |
} |
1121 |
|
#else |
1122 |
< |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1123 |
< |
j1 != cellList_[m1].end(); ++j1) { |
1124 |
< |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1125 |
< |
j2 != cellList_[m2].end(); ++j2) { |
1126 |
< |
|
1127 |
< |
// Always do this if we're in different cells or if |
1128 |
< |
// we're in the same cell and the global index of the |
1129 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1130 |
< |
|
1131 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1132 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1133 |
< |
snap_->wrapVector(dr); |
1134 |
< |
if (dr.lengthSquare() < rl2) { |
1135 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1122 |
> |
|
1123 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1124 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1125 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1126 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1127 |
> |
|
1128 |
> |
// Always do this if we're in different cells or if |
1129 |
> |
// we're in the same cell and the global index of the |
1130 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1131 |
> |
|
1132 |
> |
if (m2 != m1 || (*j2) < (*j1)) { |
1133 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1134 |
> |
snap_->wrapVector(dr); |
1135 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1136 |
> |
if (dr.lengthSquare() < cuts.third) { |
1137 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1138 |
> |
} |
1139 |
|
} |
1140 |
|
} |
1141 |
|
} |
801 |
– |
} |
1142 |
|
#endif |
1143 |
+ |
} |
1144 |
|
} |
1145 |
|
} |
1146 |
|
} |
1147 |
+ |
} else { |
1148 |
+ |
// branch to do all cutoff group pairs |
1149 |
+ |
#ifdef IS_MPI |
1150 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1151 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1152 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1153 |
+ |
snap_->wrapVector(dr); |
1154 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1155 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1156 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1157 |
+ |
} |
1158 |
+ |
} |
1159 |
+ |
} |
1160 |
+ |
#else |
1161 |
+ |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1162 |
+ |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1163 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1164 |
+ |
snap_->wrapVector(dr); |
1165 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1166 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1167 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1168 |
+ |
} |
1169 |
+ |
} |
1170 |
+ |
} |
1171 |
+ |
#endif |
1172 |
|
} |
1173 |
< |
|
1173 |
> |
|
1174 |
|
// save the local cutoff group positions for the check that is |
1175 |
|
// done on each loop: |
1176 |
|
saved_CG_positions_.clear(); |
1177 |
|
for (int i = 0; i < nGroups_; i++) |
1178 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1179 |
< |
|
1179 |
> |
|
1180 |
|
return neighborList; |
1181 |
|
} |
1182 |
|
} //end namespace OpenMD |