42 |
|
#include "math/SquareMatrix3.hpp" |
43 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
|
#include "brains/SnapshotManager.hpp" |
45 |
+ |
#include "brains/PairList.hpp" |
46 |
|
|
47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
58 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
59 |
|
nGroups_ = snap_->getNumberOfCutoffGroups(); |
60 |
|
|
61 |
+ |
// gather the information for atomtype IDs (atids): |
62 |
+ |
vector<int> identsLocal = info_->getIdentArray(); |
63 |
+ |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
64 |
+ |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
65 |
+ |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
66 |
+ |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
67 |
+ |
PairList excludes = info_->getExcludedInteractions(); |
68 |
+ |
PairList oneTwo = info_->getOneTwoInteractions(); |
69 |
+ |
PairList oneThree = info_->getOneThreeInteractions(); |
70 |
+ |
PairList oneFour = info_->getOneFourInteractions(); |
71 |
+ |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
72 |
+ |
|
73 |
|
#ifdef IS_MPI |
74 |
|
|
75 |
|
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
106 |
|
vector<RealType> (nAtomsInRow_, 0.0)); |
107 |
|
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
108 |
|
vector<RealType> (nAtomsInCol_, 0.0)); |
96 |
– |
|
97 |
– |
|
98 |
– |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
109 |
|
|
100 |
– |
// gather the information for atomtype IDs (atids): |
101 |
– |
vector<int> identsLocal = info_->getIdentArray(); |
110 |
|
identsRow.reserve(nAtomsInRow_); |
111 |
|
identsCol.reserve(nAtomsInCol_); |
112 |
|
|
113 |
|
AtomCommIntRow->gather(identsLocal, identsRow); |
114 |
|
AtomCommIntColumn->gather(identsLocal, identsCol); |
115 |
|
|
108 |
– |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
116 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
117 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
118 |
|
|
112 |
– |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
119 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
120 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
121 |
|
|
122 |
< |
// still need: |
123 |
< |
// topoDist |
124 |
< |
// exclude |
122 |
> |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
123 |
> |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
124 |
> |
|
125 |
> |
groupListRow_.clear(); |
126 |
> |
groupListRow_.reserve(nGroupsInRow_); |
127 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
128 |
> |
int gid = cgRowToGlobal[i]; |
129 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
130 |
> |
int aid = AtomRowToGlobal[j]; |
131 |
> |
if (globalGroupMembership[aid] == gid) |
132 |
> |
groupListRow_[i].push_back(j); |
133 |
> |
} |
134 |
> |
} |
135 |
> |
|
136 |
> |
groupListCol_.clear(); |
137 |
> |
groupListCol_.reserve(nGroupsInCol_); |
138 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
139 |
> |
int gid = cgColToGlobal[i]; |
140 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
141 |
> |
int aid = AtomColToGlobal[j]; |
142 |
> |
if (globalGroupMembership[aid] == gid) |
143 |
> |
groupListCol_[i].push_back(j); |
144 |
> |
} |
145 |
> |
} |
146 |
> |
|
147 |
> |
skipsForRowAtom.clear(); |
148 |
> |
skipsForRowAtom.reserve(nAtomsInRow_); |
149 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
150 |
> |
int iglob = AtomColToGlobal[i]; |
151 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
152 |
> |
int jglob = AtomRowToGlobal[j]; |
153 |
> |
if (excludes.hasPair(iglob, jglob)) |
154 |
> |
skipsForRowAtom[i].push_back(j); |
155 |
> |
} |
156 |
> |
} |
157 |
> |
|
158 |
> |
toposForRowAtom.clear(); |
159 |
> |
toposForRowAtom.reserve(nAtomsInRow_); |
160 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
161 |
> |
int iglob = AtomColToGlobal[i]; |
162 |
> |
int nTopos = 0; |
163 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
164 |
> |
int jglob = AtomRowToGlobal[j]; |
165 |
> |
if (oneTwo.hasPair(iglob, jglob)) { |
166 |
> |
toposForRowAtom[i].push_back(j); |
167 |
> |
topoDistRow[i][nTopos] = 1; |
168 |
> |
nTopos++; |
169 |
> |
} |
170 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
171 |
> |
toposForRowAtom[i].push_back(j); |
172 |
> |
topoDistRow[i][nTopos] = 2; |
173 |
> |
nTopos++; |
174 |
> |
} |
175 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
176 |
> |
toposForRowAtom[i].push_back(j); |
177 |
> |
topoDistRow[i][nTopos] = 3; |
178 |
> |
nTopos++; |
179 |
> |
} |
180 |
> |
} |
181 |
> |
} |
182 |
> |
|
183 |
|
#endif |
184 |
< |
} |
185 |
< |
|
184 |
> |
|
185 |
> |
groupList_.clear(); |
186 |
> |
groupList_.reserve(nGroups_); |
187 |
> |
for (int i = 0; i < nGroups_; i++) { |
188 |
> |
int gid = cgLocalToGlobal[i]; |
189 |
> |
for (int j = 0; j < nLocal_; j++) { |
190 |
> |
int aid = AtomLocalToGlobal[j]; |
191 |
> |
if (globalGroupMembership[aid] == gid) |
192 |
> |
groupList_[i].push_back(j); |
193 |
> |
} |
194 |
> |
} |
195 |
> |
|
196 |
> |
skipsForLocalAtom.clear(); |
197 |
> |
skipsForLocalAtom.reserve(nLocal_); |
198 |
|
|
199 |
+ |
for (int i = 0; i < nLocal_; i++) { |
200 |
+ |
int iglob = AtomLocalToGlobal[i]; |
201 |
+ |
for (int j = 0; j < nLocal_; j++) { |
202 |
+ |
int jglob = AtomLocalToGlobal[j]; |
203 |
+ |
if (excludes.hasPair(iglob, jglob)) |
204 |
+ |
skipsForLocalAtom[i].push_back(j); |
205 |
+ |
} |
206 |
+ |
} |
207 |
|
|
208 |
+ |
toposForLocalAtom.clear(); |
209 |
+ |
toposForLocalAtom.reserve(nLocal_); |
210 |
+ |
for (int i = 0; i < nLocal_; i++) { |
211 |
+ |
int iglob = AtomLocalToGlobal[i]; |
212 |
+ |
int nTopos = 0; |
213 |
+ |
for (int j = 0; j < nLocal_; j++) { |
214 |
+ |
int jglob = AtomLocalToGlobal[j]; |
215 |
+ |
if (oneTwo.hasPair(iglob, jglob)) { |
216 |
+ |
toposForLocalAtom[i].push_back(j); |
217 |
+ |
topoDistLocal[i][nTopos] = 1; |
218 |
+ |
nTopos++; |
219 |
+ |
} |
220 |
+ |
if (oneThree.hasPair(iglob, jglob)) { |
221 |
+ |
toposForLocalAtom[i].push_back(j); |
222 |
+ |
topoDistLocal[i][nTopos] = 2; |
223 |
+ |
nTopos++; |
224 |
+ |
} |
225 |
+ |
if (oneFour.hasPair(iglob, jglob)) { |
226 |
+ |
toposForLocalAtom[i].push_back(j); |
227 |
+ |
topoDistLocal[i][nTopos] = 3; |
228 |
+ |
nTopos++; |
229 |
+ |
} |
230 |
+ |
} |
231 |
+ |
} |
232 |
+ |
} |
233 |
+ |
|
234 |
|
void ForceMatrixDecomposition::distributeData() { |
235 |
|
snap_ = sman_->getCurrentSnapshot(); |
236 |
|
storageLayout_ = sman_->getStorageLayout(); |
354 |
|
#endif |
355 |
|
} |
356 |
|
|
357 |
+ |
int ForceMatrixDecomposition::getNAtomsInRow() { |
358 |
+ |
#ifdef IS_MPI |
359 |
+ |
return nAtomsInRow_; |
360 |
+ |
#else |
361 |
+ |
return nLocal_; |
362 |
+ |
#endif |
363 |
+ |
} |
364 |
+ |
|
365 |
+ |
/** |
366 |
+ |
* returns the list of atoms belonging to this group. |
367 |
+ |
*/ |
368 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
369 |
+ |
#ifdef IS_MPI |
370 |
+ |
return groupListRow_[cg1]; |
371 |
+ |
#else |
372 |
+ |
return groupList_[cg1]; |
373 |
+ |
#endif |
374 |
+ |
} |
375 |
+ |
|
376 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
377 |
+ |
#ifdef IS_MPI |
378 |
+ |
return groupListCol_[cg2]; |
379 |
+ |
#else |
380 |
+ |
return groupList_[cg2]; |
381 |
+ |
#endif |
382 |
+ |
} |
383 |
|
|
384 |
|
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
385 |
|
Vector3d d; |
421 |
|
snap_->wrapVector(d); |
422 |
|
return d; |
423 |
|
} |
424 |
+ |
|
425 |
+ |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
426 |
+ |
#ifdef IS_MPI |
427 |
+ |
return massFactorsRow[atom1]; |
428 |
+ |
#else |
429 |
+ |
return massFactorsLocal[atom1]; |
430 |
+ |
#endif |
431 |
+ |
} |
432 |
+ |
|
433 |
+ |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
434 |
+ |
#ifdef IS_MPI |
435 |
+ |
return massFactorsCol[atom2]; |
436 |
+ |
#else |
437 |
+ |
return massFactorsLocal[atom2]; |
438 |
+ |
#endif |
439 |
+ |
|
440 |
+ |
} |
441 |
|
|
442 |
|
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
443 |
|
Vector3d d; |
450 |
|
|
451 |
|
snap_->wrapVector(d); |
452 |
|
return d; |
453 |
+ |
} |
454 |
+ |
|
455 |
+ |
vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
456 |
+ |
#ifdef IS_MPI |
457 |
+ |
return skipsForRowAtom[atom1]; |
458 |
+ |
#else |
459 |
+ |
return skipsForLocalAtom[atom1]; |
460 |
+ |
#endif |
461 |
+ |
} |
462 |
+ |
|
463 |
+ |
/** |
464 |
+ |
* there are a number of reasons to skip a pair or a particle mostly |
465 |
+ |
* we do this to exclude atoms who are involved in short range |
466 |
+ |
* interactions (bonds, bends, torsions), but we also need to |
467 |
+ |
* exclude some overcounted interactions that result from the |
468 |
+ |
* parallel decomposition. |
469 |
+ |
*/ |
470 |
+ |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
471 |
+ |
int unique_id_1, unique_id_2; |
472 |
+ |
|
473 |
+ |
#ifdef IS_MPI |
474 |
+ |
// in MPI, we have to look up the unique IDs for each atom |
475 |
+ |
unique_id_1 = AtomRowToGlobal[atom1]; |
476 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
477 |
+ |
|
478 |
+ |
// this situation should only arise in MPI simulations |
479 |
+ |
if (unique_id_1 == unique_id_2) return true; |
480 |
+ |
|
481 |
+ |
// this prevents us from doing the pair on multiple processors |
482 |
+ |
if (unique_id_1 < unique_id_2) { |
483 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
484 |
+ |
} else { |
485 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
486 |
+ |
} |
487 |
+ |
#else |
488 |
+ |
// in the normal loop, the atom numbers are unique |
489 |
+ |
unique_id_1 = atom1; |
490 |
+ |
unique_id_2 = atom2; |
491 |
+ |
#endif |
492 |
+ |
|
493 |
+ |
#ifdef IS_MPI |
494 |
+ |
for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
495 |
+ |
i != skipsForRowAtom[atom1].end(); ++i) { |
496 |
+ |
if ( (*i) == unique_id_2 ) return true; |
497 |
+ |
} |
498 |
+ |
#else |
499 |
+ |
for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
500 |
+ |
i != skipsForLocalAtom[atom1].end(); ++i) { |
501 |
+ |
if ( (*i) == unique_id_2 ) return true; |
502 |
+ |
} |
503 |
+ |
#endif |
504 |
|
} |
505 |
|
|
506 |
+ |
int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
507 |
+ |
|
508 |
+ |
#ifdef IS_MPI |
509 |
+ |
for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
510 |
+ |
if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
511 |
+ |
} |
512 |
+ |
#else |
513 |
+ |
for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
514 |
+ |
if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
515 |
+ |
} |
516 |
+ |
#endif |
517 |
+ |
|
518 |
+ |
// zero is default for unconnected (i.e. normal) pair interactions |
519 |
+ |
return 0; |
520 |
+ |
} |
521 |
+ |
|
522 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
523 |
|
#ifdef IS_MPI |
524 |
|
atomRowData.force[atom1] += fg; |
564 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
565 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
566 |
|
} |
567 |
+ |
|
568 |
|
#else |
569 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
570 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
627 |
|
|
628 |
|
} |
629 |
|
|
409 |
– |
SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
410 |
– |
SelfData sdat; |
411 |
– |
// Still Missing atype, skippedCharge, potVec pot, |
412 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
413 |
– |
sdat.eFrame = &(snap_->atomData.electroFrame[atom1]); |
414 |
– |
} |
415 |
– |
|
416 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
417 |
– |
sdat.t = &(snap_->atomData.torque[atom1]); |
418 |
– |
} |
419 |
– |
|
420 |
– |
if (storageLayout_ & DataStorage::dslDensity) { |
421 |
– |
sdat.rho = &(snap_->atomData.density[atom1]); |
422 |
– |
} |
423 |
– |
|
424 |
– |
if (storageLayout_ & DataStorage::dslFunctional) { |
425 |
– |
sdat.frho = &(snap_->atomData.functional[atom1]); |
426 |
– |
} |
427 |
– |
|
428 |
– |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
429 |
– |
sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); |
430 |
– |
} |
630 |
|
|
432 |
– |
return sdat; |
433 |
– |
} |
631 |
|
|
632 |
|
|
436 |
– |
|
633 |
|
/* |
634 |
|
* buildNeighborList |
635 |
|
* |
640 |
|
|
641 |
|
vector<pair<int, int> > neighborList; |
642 |
|
#ifdef IS_MPI |
643 |
< |
CellListRow.clear(); |
644 |
< |
CellListCol.clear(); |
643 |
> |
cellListRow_.clear(); |
644 |
> |
cellListCol_.clear(); |
645 |
|
#else |
646 |
< |
CellList.clear(); |
646 |
> |
cellList_.clear(); |
647 |
|
#endif |
648 |
|
|
649 |
|
// dangerous to not do error checking. |
454 |
– |
RealType skinThickness_ = info_->getSimParams()->getSkinThickness(); |
650 |
|
RealType rCut_; |
651 |
|
|
652 |
|
RealType rList_ = (rCut_ + skinThickness_); |
656 |
|
Vector3d Hx = Hmat.getColumn(0); |
657 |
|
Vector3d Hy = Hmat.getColumn(1); |
658 |
|
Vector3d Hz = Hmat.getColumn(2); |
464 |
– |
Vector3i nCells; |
659 |
|
|
660 |
< |
nCells.x() = (int) ( Hx.length() )/ rList_; |
661 |
< |
nCells.y() = (int) ( Hy.length() )/ rList_; |
662 |
< |
nCells.z() = (int) ( Hz.length() )/ rList_; |
660 |
> |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
661 |
> |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
662 |
> |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
663 |
|
|
664 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
665 |
|
Vector3d rs, scaled, dr; |
677 |
|
scaled[j] -= roundMe(scaled[j]); |
678 |
|
|
679 |
|
// find xyz-indices of cell that cutoffGroup is in. |
680 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
681 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
682 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
680 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
681 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
682 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
683 |
|
|
684 |
|
// find single index of this cell: |
685 |
< |
cellIndex = Vlinear(whichCell, nCells); |
685 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
686 |
|
// add this cutoff group to the list of groups in this cell; |
687 |
< |
CellListRow[cellIndex].push_back(i); |
687 |
> |
cellListRow_[cellIndex].push_back(i); |
688 |
|
} |
689 |
|
|
690 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
697 |
|
scaled[j] -= roundMe(scaled[j]); |
698 |
|
|
699 |
|
// find xyz-indices of cell that cutoffGroup is in. |
700 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
701 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
702 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
700 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
701 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
702 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
703 |
|
|
704 |
|
// find single index of this cell: |
705 |
< |
cellIndex = Vlinear(whichCell, nCells); |
705 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
706 |
|
// add this cutoff group to the list of groups in this cell; |
707 |
< |
CellListCol[cellIndex].push_back(i); |
707 |
> |
cellListCol_[cellIndex].push_back(i); |
708 |
|
} |
709 |
|
#else |
710 |
|
for (int i = 0; i < nGroups_; i++) { |
717 |
|
scaled[j] -= roundMe(scaled[j]); |
718 |
|
|
719 |
|
// find xyz-indices of cell that cutoffGroup is in. |
720 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
721 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
722 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
720 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
721 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
722 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
723 |
|
|
724 |
|
// find single index of this cell: |
725 |
< |
cellIndex = Vlinear(whichCell, nCells); |
725 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
726 |
|
// add this cutoff group to the list of groups in this cell; |
727 |
< |
CellList[cellIndex].push_back(i); |
727 |
> |
cellList_[cellIndex].push_back(i); |
728 |
|
} |
729 |
|
#endif |
730 |
|
|
731 |
|
|
732 |
|
|
733 |
< |
for (int m1z = 0; m1z < nCells.z(); m1z++) { |
734 |
< |
for (int m1y = 0; m1y < nCells.y(); m1y++) { |
735 |
< |
for (int m1x = 0; m1x < nCells.x(); m1x++) { |
733 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
734 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
735 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
736 |
|
Vector3i m1v(m1x, m1y, m1z); |
737 |
< |
int m1 = Vlinear(m1v, nCells); |
544 |
< |
for (int offset = 0; offset < nOffset_; offset++) { |
545 |
< |
Vector3i m2v = m1v + cellOffsets_[offset]; |
737 |
> |
int m1 = Vlinear(m1v, nCells_); |
738 |
|
|
739 |
< |
if (m2v.x() >= nCells.x()) { |
739 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
740 |
> |
os != cellOffsets_.end(); ++os) { |
741 |
> |
|
742 |
> |
Vector3i m2v = m1v + (*os); |
743 |
> |
|
744 |
> |
if (m2v.x() >= nCells_.x()) { |
745 |
|
m2v.x() = 0; |
746 |
|
} else if (m2v.x() < 0) { |
747 |
< |
m2v.x() = nCells.x() - 1; |
747 |
> |
m2v.x() = nCells_.x() - 1; |
748 |
|
} |
749 |
< |
|
750 |
< |
if (m2v.y() >= nCells.y()) { |
749 |
> |
|
750 |
> |
if (m2v.y() >= nCells_.y()) { |
751 |
|
m2v.y() = 0; |
752 |
|
} else if (m2v.y() < 0) { |
753 |
< |
m2v.y() = nCells.y() - 1; |
753 |
> |
m2v.y() = nCells_.y() - 1; |
754 |
|
} |
755 |
< |
|
756 |
< |
if (m2v.z() >= nCells.z()) { |
755 |
> |
|
756 |
> |
if (m2v.z() >= nCells_.z()) { |
757 |
|
m2v.z() = 0; |
758 |
|
} else if (m2v.z() < 0) { |
759 |
< |
m2v.z() = nCells.z() - 1; |
759 |
> |
m2v.z() = nCells_.z() - 1; |
760 |
|
} |
761 |
+ |
|
762 |
+ |
int m2 = Vlinear (m2v, nCells_); |
763 |
|
|
565 |
– |
int m2 = Vlinear (m2v, nCells); |
566 |
– |
|
764 |
|
#ifdef IS_MPI |
765 |
< |
for (vector<int>::iterator j1 = CellListRow[m1].begin(); |
766 |
< |
j1 != CellListRow[m1].end(); ++j1) { |
767 |
< |
for (vector<int>::iterator j2 = CellListCol[m2].begin(); |
768 |
< |
j2 != CellListCol[m2].end(); ++j2) { |
765 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
766 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
767 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
768 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
769 |
|
|
770 |
|
// Always do this if we're in different cells or if |
771 |
|
// we're in the same cell and the global index of the |
781 |
|
} |
782 |
|
} |
783 |
|
#else |
784 |
< |
for (vector<int>::iterator j1 = CellList[m1].begin(); |
785 |
< |
j1 != CellList[m1].end(); ++j1) { |
786 |
< |
for (vector<int>::iterator j2 = CellList[m2].begin(); |
787 |
< |
j2 != CellList[m2].end(); ++j2) { |
784 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
785 |
> |
j1 != cellList_[m1].end(); ++j1) { |
786 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
787 |
> |
j2 != cellList_[m2].end(); ++j2) { |
788 |
|
|
789 |
|
// Always do this if we're in different cells or if |
790 |
|
// we're in the same cell and the global index of the |
804 |
|
} |
805 |
|
} |
806 |
|
} |
807 |
+ |
|
808 |
+ |
// save the local cutoff group positions for the check that is |
809 |
+ |
// done on each loop: |
810 |
+ |
saved_CG_positions_.clear(); |
811 |
+ |
for (int i = 0; i < nGroups_; i++) |
812 |
+ |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
813 |
+ |
|
814 |
|
return neighborList; |
815 |
|
} |
816 |
|
} //end namespace OpenMD |