1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
#include "math/SquareMatrix3.hpp" |
44 |
#include "nonbonded/NonBondedInteraction.hpp" |
45 |
#include "brains/SnapshotManager.hpp" |
46 |
#include "brains/PairList.hpp" |
47 |
|
48 |
using namespace std; |
49 |
namespace OpenMD { |
50 |
|
51 |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
|
53 |
// In a parallel computation, row and colum scans must visit all |
54 |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
// are used when the processor can see all pairs) |
56 |
#ifdef IS_MPI |
57 |
cellOffsets_.clear(); |
58 |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
#endif |
86 |
} |
87 |
|
88 |
|
89 |
/** |
90 |
* distributeInitialData is essentially a copy of the older fortran |
91 |
* SimulationSetup |
92 |
*/ |
93 |
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
snap_ = sman_->getCurrentSnapshot(); |
95 |
storageLayout_ = sman_->getStorageLayout(); |
96 |
ff_ = info_->getForceField(); |
97 |
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
|
99 |
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
// gather the information for atomtype IDs (atids): |
101 |
idents = info_->getIdentArray(); |
102 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
103 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
104 |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
105 |
|
106 |
massFactors = info_->getMassFactors(); |
107 |
|
108 |
PairList* excludes = info_->getExcludedInteractions(); |
109 |
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
|
113 |
if (needVelocities_) |
114 |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
DataStorage::dslVelocity); |
116 |
else |
117 |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
|
119 |
#ifdef IS_MPI |
120 |
|
121 |
MPI::Intracomm row = rowComm.getComm(); |
122 |
MPI::Intracomm col = colComm.getComm(); |
123 |
|
124 |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 |
|
130 |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 |
|
136 |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 |
|
141 |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 |
|
146 |
// Modify the data storage objects with the correct layouts and sizes: |
147 |
atomRowData.resize(nAtomsInRow_); |
148 |
atomRowData.setStorageLayout(storageLayout_); |
149 |
atomColData.resize(nAtomsInCol_); |
150 |
atomColData.setStorageLayout(storageLayout_); |
151 |
cgRowData.resize(nGroupsInRow_); |
152 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
cgColData.resize(nGroupsInCol_); |
154 |
if (needVelocities_) |
155 |
// we only need column velocities if we need them. |
156 |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
DataStorage::dslVelocity); |
158 |
else |
159 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
|
161 |
identsRow.resize(nAtomsInRow_); |
162 |
identsCol.resize(nAtomsInCol_); |
163 |
|
164 |
AtomPlanIntRow->gather(idents, identsRow); |
165 |
AtomPlanIntColumn->gather(idents, identsCol); |
166 |
|
167 |
// allocate memory for the parallel objects |
168 |
atypesRow.resize(nAtomsInRow_); |
169 |
atypesCol.resize(nAtomsInCol_); |
170 |
|
171 |
for (int i = 0; i < nAtomsInRow_; i++) |
172 |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 |
for (int i = 0; i < nAtomsInCol_; i++) |
174 |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 |
|
176 |
pot_row.resize(nAtomsInRow_); |
177 |
pot_col.resize(nAtomsInCol_); |
178 |
|
179 |
AtomRowToGlobal.resize(nAtomsInRow_); |
180 |
AtomColToGlobal.resize(nAtomsInCol_); |
181 |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
182 |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
183 |
|
184 |
cgRowToGlobal.resize(nGroupsInRow_); |
185 |
cgColToGlobal.resize(nGroupsInCol_); |
186 |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
187 |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
188 |
|
189 |
massFactorsRow.resize(nAtomsInRow_); |
190 |
massFactorsCol.resize(nAtomsInCol_); |
191 |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
192 |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
193 |
|
194 |
groupListRow_.clear(); |
195 |
groupListRow_.resize(nGroupsInRow_); |
196 |
for (int i = 0; i < nGroupsInRow_; i++) { |
197 |
int gid = cgRowToGlobal[i]; |
198 |
for (int j = 0; j < nAtomsInRow_; j++) { |
199 |
int aid = AtomRowToGlobal[j]; |
200 |
if (globalGroupMembership[aid] == gid) |
201 |
groupListRow_[i].push_back(j); |
202 |
} |
203 |
} |
204 |
|
205 |
groupListCol_.clear(); |
206 |
groupListCol_.resize(nGroupsInCol_); |
207 |
for (int i = 0; i < nGroupsInCol_; i++) { |
208 |
int gid = cgColToGlobal[i]; |
209 |
for (int j = 0; j < nAtomsInCol_; j++) { |
210 |
int aid = AtomColToGlobal[j]; |
211 |
if (globalGroupMembership[aid] == gid) |
212 |
groupListCol_[i].push_back(j); |
213 |
} |
214 |
} |
215 |
|
216 |
excludesForAtom.clear(); |
217 |
excludesForAtom.resize(nAtomsInRow_); |
218 |
toposForAtom.clear(); |
219 |
toposForAtom.resize(nAtomsInRow_); |
220 |
topoDist.clear(); |
221 |
topoDist.resize(nAtomsInRow_); |
222 |
for (int i = 0; i < nAtomsInRow_; i++) { |
223 |
int iglob = AtomRowToGlobal[i]; |
224 |
|
225 |
for (int j = 0; j < nAtomsInCol_; j++) { |
226 |
int jglob = AtomColToGlobal[j]; |
227 |
|
228 |
if (excludes->hasPair(iglob, jglob)) |
229 |
excludesForAtom[i].push_back(j); |
230 |
|
231 |
if (oneTwo->hasPair(iglob, jglob)) { |
232 |
toposForAtom[i].push_back(j); |
233 |
topoDist[i].push_back(1); |
234 |
} else { |
235 |
if (oneThree->hasPair(iglob, jglob)) { |
236 |
toposForAtom[i].push_back(j); |
237 |
topoDist[i].push_back(2); |
238 |
} else { |
239 |
if (oneFour->hasPair(iglob, jglob)) { |
240 |
toposForAtom[i].push_back(j); |
241 |
topoDist[i].push_back(3); |
242 |
} |
243 |
} |
244 |
} |
245 |
} |
246 |
} |
247 |
|
248 |
#else |
249 |
excludesForAtom.clear(); |
250 |
excludesForAtom.resize(nLocal_); |
251 |
toposForAtom.clear(); |
252 |
toposForAtom.resize(nLocal_); |
253 |
topoDist.clear(); |
254 |
topoDist.resize(nLocal_); |
255 |
|
256 |
for (int i = 0; i < nLocal_; i++) { |
257 |
int iglob = AtomLocalToGlobal[i]; |
258 |
|
259 |
for (int j = 0; j < nLocal_; j++) { |
260 |
int jglob = AtomLocalToGlobal[j]; |
261 |
|
262 |
if (excludes->hasPair(iglob, jglob)) |
263 |
excludesForAtom[i].push_back(j); |
264 |
|
265 |
if (oneTwo->hasPair(iglob, jglob)) { |
266 |
toposForAtom[i].push_back(j); |
267 |
topoDist[i].push_back(1); |
268 |
} else { |
269 |
if (oneThree->hasPair(iglob, jglob)) { |
270 |
toposForAtom[i].push_back(j); |
271 |
topoDist[i].push_back(2); |
272 |
} else { |
273 |
if (oneFour->hasPair(iglob, jglob)) { |
274 |
toposForAtom[i].push_back(j); |
275 |
topoDist[i].push_back(3); |
276 |
} |
277 |
} |
278 |
} |
279 |
} |
280 |
} |
281 |
#endif |
282 |
|
283 |
// allocate memory for the parallel objects |
284 |
atypesLocal.resize(nLocal_); |
285 |
|
286 |
for (int i = 0; i < nLocal_; i++) |
287 |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
288 |
|
289 |
groupList_.clear(); |
290 |
groupList_.resize(nGroups_); |
291 |
for (int i = 0; i < nGroups_; i++) { |
292 |
int gid = cgLocalToGlobal[i]; |
293 |
for (int j = 0; j < nLocal_; j++) { |
294 |
int aid = AtomLocalToGlobal[j]; |
295 |
if (globalGroupMembership[aid] == gid) { |
296 |
groupList_[i].push_back(j); |
297 |
} |
298 |
} |
299 |
} |
300 |
|
301 |
|
302 |
createGtypeCutoffMap(); |
303 |
|
304 |
} |
305 |
|
306 |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
307 |
|
308 |
RealType tol = 1e-6; |
309 |
largestRcut_ = 0.0; |
310 |
RealType rc; |
311 |
int atid; |
312 |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
313 |
|
314 |
map<int, RealType> atypeCutoff; |
315 |
|
316 |
for (set<AtomType*>::iterator at = atypes.begin(); |
317 |
at != atypes.end(); ++at){ |
318 |
atid = (*at)->getIdent(); |
319 |
if (userChoseCutoff_) |
320 |
atypeCutoff[atid] = userCutoff_; |
321 |
else |
322 |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
323 |
} |
324 |
|
325 |
vector<RealType> gTypeCutoffs; |
326 |
// first we do a single loop over the cutoff groups to find the |
327 |
// largest cutoff for any atypes present in this group. |
328 |
#ifdef IS_MPI |
329 |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
330 |
groupRowToGtype.resize(nGroupsInRow_); |
331 |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
332 |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
333 |
for (vector<int>::iterator ia = atomListRow.begin(); |
334 |
ia != atomListRow.end(); ++ia) { |
335 |
int atom1 = (*ia); |
336 |
atid = identsRow[atom1]; |
337 |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
338 |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
339 |
} |
340 |
} |
341 |
|
342 |
bool gTypeFound = false; |
343 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
344 |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
345 |
groupRowToGtype[cg1] = gt; |
346 |
gTypeFound = true; |
347 |
} |
348 |
} |
349 |
if (!gTypeFound) { |
350 |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
351 |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
352 |
} |
353 |
|
354 |
} |
355 |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
356 |
groupColToGtype.resize(nGroupsInCol_); |
357 |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
358 |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
359 |
for (vector<int>::iterator jb = atomListCol.begin(); |
360 |
jb != atomListCol.end(); ++jb) { |
361 |
int atom2 = (*jb); |
362 |
atid = identsCol[atom2]; |
363 |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
364 |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
365 |
} |
366 |
} |
367 |
bool gTypeFound = false; |
368 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
369 |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
370 |
groupColToGtype[cg2] = gt; |
371 |
gTypeFound = true; |
372 |
} |
373 |
} |
374 |
if (!gTypeFound) { |
375 |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
376 |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
377 |
} |
378 |
} |
379 |
#else |
380 |
|
381 |
vector<RealType> groupCutoff(nGroups_, 0.0); |
382 |
groupToGtype.resize(nGroups_); |
383 |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
384 |
groupCutoff[cg1] = 0.0; |
385 |
vector<int> atomList = getAtomsInGroupRow(cg1); |
386 |
for (vector<int>::iterator ia = atomList.begin(); |
387 |
ia != atomList.end(); ++ia) { |
388 |
int atom1 = (*ia); |
389 |
atid = idents[atom1]; |
390 |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
391 |
groupCutoff[cg1] = atypeCutoff[atid]; |
392 |
} |
393 |
|
394 |
bool gTypeFound = false; |
395 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
396 |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
397 |
groupToGtype[cg1] = gt; |
398 |
gTypeFound = true; |
399 |
} |
400 |
} |
401 |
if (!gTypeFound) { |
402 |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
403 |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
404 |
} |
405 |
} |
406 |
#endif |
407 |
|
408 |
// Now we find the maximum group cutoff value present in the simulation |
409 |
|
410 |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
411 |
gTypeCutoffs.end()); |
412 |
|
413 |
#ifdef IS_MPI |
414 |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
415 |
MPI::MAX); |
416 |
#endif |
417 |
|
418 |
RealType tradRcut = groupMax; |
419 |
|
420 |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
421 |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 |
RealType thisRcut; |
423 |
switch(cutoffPolicy_) { |
424 |
case TRADITIONAL: |
425 |
thisRcut = tradRcut; |
426 |
break; |
427 |
case MIX: |
428 |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
429 |
break; |
430 |
case MAX: |
431 |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
432 |
break; |
433 |
default: |
434 |
sprintf(painCave.errMsg, |
435 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
436 |
"hit an unknown cutoff policy!\n"); |
437 |
painCave.severity = OPENMD_ERROR; |
438 |
painCave.isFatal = 1; |
439 |
simError(); |
440 |
break; |
441 |
} |
442 |
|
443 |
pair<int,int> key = make_pair(i,j); |
444 |
gTypeCutoffMap[key].first = thisRcut; |
445 |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
446 |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
447 |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
448 |
// sanity check |
449 |
|
450 |
if (userChoseCutoff_) { |
451 |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
452 |
sprintf(painCave.errMsg, |
453 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
454 |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
455 |
painCave.severity = OPENMD_ERROR; |
456 |
painCave.isFatal = 1; |
457 |
simError(); |
458 |
} |
459 |
} |
460 |
} |
461 |
} |
462 |
} |
463 |
|
464 |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
465 |
int i, j; |
466 |
#ifdef IS_MPI |
467 |
i = groupRowToGtype[cg1]; |
468 |
j = groupColToGtype[cg2]; |
469 |
#else |
470 |
i = groupToGtype[cg1]; |
471 |
j = groupToGtype[cg2]; |
472 |
#endif |
473 |
return gTypeCutoffMap[make_pair(i,j)]; |
474 |
} |
475 |
|
476 |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
477 |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
478 |
if (toposForAtom[atom1][j] == atom2) |
479 |
return topoDist[atom1][j]; |
480 |
} |
481 |
return 0; |
482 |
} |
483 |
|
484 |
void ForceMatrixDecomposition::zeroWorkArrays() { |
485 |
pairwisePot = 0.0; |
486 |
embeddingPot = 0.0; |
487 |
|
488 |
#ifdef IS_MPI |
489 |
if (storageLayout_ & DataStorage::dslForce) { |
490 |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
491 |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
492 |
} |
493 |
|
494 |
if (storageLayout_ & DataStorage::dslTorque) { |
495 |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
496 |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
497 |
} |
498 |
|
499 |
fill(pot_row.begin(), pot_row.end(), |
500 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
501 |
|
502 |
fill(pot_col.begin(), pot_col.end(), |
503 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
504 |
|
505 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
506 |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
507 |
0.0); |
508 |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
509 |
0.0); |
510 |
} |
511 |
|
512 |
if (storageLayout_ & DataStorage::dslDensity) { |
513 |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
514 |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
515 |
} |
516 |
|
517 |
if (storageLayout_ & DataStorage::dslFunctional) { |
518 |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
519 |
0.0); |
520 |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
521 |
0.0); |
522 |
} |
523 |
|
524 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
525 |
fill(atomRowData.functionalDerivative.begin(), |
526 |
atomRowData.functionalDerivative.end(), 0.0); |
527 |
fill(atomColData.functionalDerivative.begin(), |
528 |
atomColData.functionalDerivative.end(), 0.0); |
529 |
} |
530 |
|
531 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
532 |
fill(atomRowData.skippedCharge.begin(), |
533 |
atomRowData.skippedCharge.end(), 0.0); |
534 |
fill(atomColData.skippedCharge.begin(), |
535 |
atomColData.skippedCharge.end(), 0.0); |
536 |
} |
537 |
|
538 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
539 |
fill(atomRowData.flucQFrc.begin(), |
540 |
atomRowData.flucQFrc.end(), 0.0); |
541 |
fill(atomColData.flucQFrc.begin(), |
542 |
atomColData.flucQFrc.end(), 0.0); |
543 |
} |
544 |
|
545 |
if (storageLayout_ & DataStorage::dslElectricField) { |
546 |
fill(atomRowData.electricField.begin(), |
547 |
atomRowData.electricField.end(), V3Zero); |
548 |
fill(atomColData.electricField.begin(), |
549 |
atomColData.electricField.end(), V3Zero); |
550 |
} |
551 |
|
552 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
553 |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
554 |
0.0); |
555 |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
556 |
0.0); |
557 |
} |
558 |
|
559 |
#endif |
560 |
// even in parallel, we need to zero out the local arrays: |
561 |
|
562 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
563 |
fill(snap_->atomData.particlePot.begin(), |
564 |
snap_->atomData.particlePot.end(), 0.0); |
565 |
} |
566 |
|
567 |
if (storageLayout_ & DataStorage::dslDensity) { |
568 |
fill(snap_->atomData.density.begin(), |
569 |
snap_->atomData.density.end(), 0.0); |
570 |
} |
571 |
|
572 |
if (storageLayout_ & DataStorage::dslFunctional) { |
573 |
fill(snap_->atomData.functional.begin(), |
574 |
snap_->atomData.functional.end(), 0.0); |
575 |
} |
576 |
|
577 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
578 |
fill(snap_->atomData.functionalDerivative.begin(), |
579 |
snap_->atomData.functionalDerivative.end(), 0.0); |
580 |
} |
581 |
|
582 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
583 |
fill(snap_->atomData.skippedCharge.begin(), |
584 |
snap_->atomData.skippedCharge.end(), 0.0); |
585 |
} |
586 |
|
587 |
if (storageLayout_ & DataStorage::dslElectricField) { |
588 |
fill(snap_->atomData.electricField.begin(), |
589 |
snap_->atomData.electricField.end(), V3Zero); |
590 |
} |
591 |
} |
592 |
|
593 |
|
594 |
void ForceMatrixDecomposition::distributeData() { |
595 |
snap_ = sman_->getCurrentSnapshot(); |
596 |
storageLayout_ = sman_->getStorageLayout(); |
597 |
#ifdef IS_MPI |
598 |
|
599 |
// gather up the atomic positions |
600 |
AtomPlanVectorRow->gather(snap_->atomData.position, |
601 |
atomRowData.position); |
602 |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
603 |
atomColData.position); |
604 |
|
605 |
// gather up the cutoff group positions |
606 |
|
607 |
cgPlanVectorRow->gather(snap_->cgData.position, |
608 |
cgRowData.position); |
609 |
|
610 |
cgPlanVectorColumn->gather(snap_->cgData.position, |
611 |
cgColData.position); |
612 |
|
613 |
|
614 |
|
615 |
if (needVelocities_) { |
616 |
// gather up the atomic velocities |
617 |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
618 |
atomColData.velocity); |
619 |
|
620 |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
621 |
cgColData.velocity); |
622 |
} |
623 |
|
624 |
|
625 |
// if needed, gather the atomic rotation matrices |
626 |
if (storageLayout_ & DataStorage::dslAmat) { |
627 |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
628 |
atomRowData.aMat); |
629 |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
630 |
atomColData.aMat); |
631 |
} |
632 |
|
633 |
// if needed, gather the atomic eletrostatic frames |
634 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
635 |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
636 |
atomRowData.electroFrame); |
637 |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
638 |
atomColData.electroFrame); |
639 |
} |
640 |
|
641 |
// if needed, gather the atomic fluctuating charge values |
642 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
643 |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
644 |
atomRowData.flucQPos); |
645 |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
646 |
atomColData.flucQPos); |
647 |
} |
648 |
|
649 |
#endif |
650 |
} |
651 |
|
652 |
/* collects information obtained during the pre-pair loop onto local |
653 |
* data structures. |
654 |
*/ |
655 |
void ForceMatrixDecomposition::collectIntermediateData() { |
656 |
snap_ = sman_->getCurrentSnapshot(); |
657 |
storageLayout_ = sman_->getStorageLayout(); |
658 |
#ifdef IS_MPI |
659 |
|
660 |
if (storageLayout_ & DataStorage::dslDensity) { |
661 |
|
662 |
AtomPlanRealRow->scatter(atomRowData.density, |
663 |
snap_->atomData.density); |
664 |
|
665 |
int n = snap_->atomData.density.size(); |
666 |
vector<RealType> rho_tmp(n, 0.0); |
667 |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
668 |
for (int i = 0; i < n; i++) |
669 |
snap_->atomData.density[i] += rho_tmp[i]; |
670 |
} |
671 |
|
672 |
if (storageLayout_ & DataStorage::dslElectricField) { |
673 |
|
674 |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
675 |
snap_->atomData.electricField); |
676 |
|
677 |
int n = snap_->atomData.electricField.size(); |
678 |
vector<Vector3d> field_tmp(n, V3Zero); |
679 |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
680 |
for (int i = 0; i < n; i++) |
681 |
snap_->atomData.electricField[i] += field_tmp[i]; |
682 |
} |
683 |
#endif |
684 |
} |
685 |
|
686 |
/* |
687 |
* redistributes information obtained during the pre-pair loop out to |
688 |
* row and column-indexed data structures |
689 |
*/ |
690 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
691 |
snap_ = sman_->getCurrentSnapshot(); |
692 |
storageLayout_ = sman_->getStorageLayout(); |
693 |
#ifdef IS_MPI |
694 |
if (storageLayout_ & DataStorage::dslFunctional) { |
695 |
AtomPlanRealRow->gather(snap_->atomData.functional, |
696 |
atomRowData.functional); |
697 |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
698 |
atomColData.functional); |
699 |
} |
700 |
|
701 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
702 |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
703 |
atomRowData.functionalDerivative); |
704 |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
705 |
atomColData.functionalDerivative); |
706 |
} |
707 |
#endif |
708 |
} |
709 |
|
710 |
|
711 |
void ForceMatrixDecomposition::collectData() { |
712 |
snap_ = sman_->getCurrentSnapshot(); |
713 |
storageLayout_ = sman_->getStorageLayout(); |
714 |
#ifdef IS_MPI |
715 |
int n = snap_->atomData.force.size(); |
716 |
vector<Vector3d> frc_tmp(n, V3Zero); |
717 |
|
718 |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
719 |
for (int i = 0; i < n; i++) { |
720 |
snap_->atomData.force[i] += frc_tmp[i]; |
721 |
frc_tmp[i] = 0.0; |
722 |
} |
723 |
|
724 |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
725 |
for (int i = 0; i < n; i++) { |
726 |
snap_->atomData.force[i] += frc_tmp[i]; |
727 |
} |
728 |
|
729 |
if (storageLayout_ & DataStorage::dslTorque) { |
730 |
|
731 |
int nt = snap_->atomData.torque.size(); |
732 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
733 |
|
734 |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
735 |
for (int i = 0; i < nt; i++) { |
736 |
snap_->atomData.torque[i] += trq_tmp[i]; |
737 |
trq_tmp[i] = 0.0; |
738 |
} |
739 |
|
740 |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
741 |
for (int i = 0; i < nt; i++) |
742 |
snap_->atomData.torque[i] += trq_tmp[i]; |
743 |
} |
744 |
|
745 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
746 |
|
747 |
int ns = snap_->atomData.skippedCharge.size(); |
748 |
vector<RealType> skch_tmp(ns, 0.0); |
749 |
|
750 |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
751 |
for (int i = 0; i < ns; i++) { |
752 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
753 |
skch_tmp[i] = 0.0; |
754 |
} |
755 |
|
756 |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
757 |
for (int i = 0; i < ns; i++) |
758 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
759 |
|
760 |
} |
761 |
|
762 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
763 |
|
764 |
int nq = snap_->atomData.flucQFrc.size(); |
765 |
vector<RealType> fqfrc_tmp(nq, 0.0); |
766 |
|
767 |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
768 |
for (int i = 0; i < nq; i++) { |
769 |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
770 |
fqfrc_tmp[i] = 0.0; |
771 |
} |
772 |
|
773 |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
774 |
for (int i = 0; i < nq; i++) |
775 |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
776 |
|
777 |
} |
778 |
|
779 |
nLocal_ = snap_->getNumberOfAtoms(); |
780 |
|
781 |
vector<potVec> pot_temp(nLocal_, |
782 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
783 |
|
784 |
// scatter/gather pot_row into the members of my column |
785 |
|
786 |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
787 |
|
788 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
789 |
pairwisePot += pot_temp[ii]; |
790 |
|
791 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
792 |
// This is the pairwise contribution to the particle pot. The |
793 |
// embedding contribution is added in each of the low level |
794 |
// non-bonded routines. In single processor, this is done in |
795 |
// unpackInteractionData, not in collectData. |
796 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
797 |
for (int i = 0; i < nLocal_; i++) { |
798 |
// factor of two is because the total potential terms are divided |
799 |
// by 2 in parallel due to row/ column scatter |
800 |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
801 |
} |
802 |
} |
803 |
} |
804 |
|
805 |
fill(pot_temp.begin(), pot_temp.end(), |
806 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
807 |
|
808 |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
809 |
|
810 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
811 |
pairwisePot += pot_temp[ii]; |
812 |
|
813 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
814 |
// This is the pairwise contribution to the particle pot. The |
815 |
// embedding contribution is added in each of the low level |
816 |
// non-bonded routines. In single processor, this is done in |
817 |
// unpackInteractionData, not in collectData. |
818 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
819 |
for (int i = 0; i < nLocal_; i++) { |
820 |
// factor of two is because the total potential terms are divided |
821 |
// by 2 in parallel due to row/ column scatter |
822 |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
823 |
} |
824 |
} |
825 |
} |
826 |
|
827 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
828 |
int npp = snap_->atomData.particlePot.size(); |
829 |
vector<RealType> ppot_temp(npp, 0.0); |
830 |
|
831 |
// This is the direct or embedding contribution to the particle |
832 |
// pot. |
833 |
|
834 |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
835 |
for (int i = 0; i < npp; i++) { |
836 |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
837 |
} |
838 |
|
839 |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
840 |
|
841 |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
842 |
for (int i = 0; i < npp; i++) { |
843 |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
844 |
} |
845 |
} |
846 |
|
847 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
848 |
RealType ploc1 = pairwisePot[ii]; |
849 |
RealType ploc2 = 0.0; |
850 |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
851 |
pairwisePot[ii] = ploc2; |
852 |
} |
853 |
|
854 |
// Here be dragons. |
855 |
MPI::Intracomm col = colComm.getComm(); |
856 |
|
857 |
col.Allreduce(MPI::IN_PLACE, |
858 |
&snap_->frameData.conductiveHeatFlux[0], 3, |
859 |
MPI::REALTYPE, MPI::SUM); |
860 |
|
861 |
|
862 |
#endif |
863 |
|
864 |
} |
865 |
|
866 |
/** |
867 |
* Collects information obtained during the post-pair (and embedding |
868 |
* functional) loops onto local data structures. |
869 |
*/ |
870 |
void ForceMatrixDecomposition::collectSelfData() { |
871 |
snap_ = sman_->getCurrentSnapshot(); |
872 |
storageLayout_ = sman_->getStorageLayout(); |
873 |
|
874 |
#ifdef IS_MPI |
875 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
876 |
RealType ploc1 = embeddingPot[ii]; |
877 |
RealType ploc2 = 0.0; |
878 |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
879 |
embeddingPot[ii] = ploc2; |
880 |
} |
881 |
#endif |
882 |
|
883 |
} |
884 |
|
885 |
|
886 |
|
887 |
int ForceMatrixDecomposition::getNAtomsInRow() { |
888 |
#ifdef IS_MPI |
889 |
return nAtomsInRow_; |
890 |
#else |
891 |
return nLocal_; |
892 |
#endif |
893 |
} |
894 |
|
895 |
/** |
896 |
* returns the list of atoms belonging to this group. |
897 |
*/ |
898 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
899 |
#ifdef IS_MPI |
900 |
return groupListRow_[cg1]; |
901 |
#else |
902 |
return groupList_[cg1]; |
903 |
#endif |
904 |
} |
905 |
|
906 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
907 |
#ifdef IS_MPI |
908 |
return groupListCol_[cg2]; |
909 |
#else |
910 |
return groupList_[cg2]; |
911 |
#endif |
912 |
} |
913 |
|
914 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
915 |
Vector3d d; |
916 |
|
917 |
#ifdef IS_MPI |
918 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
919 |
#else |
920 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
921 |
#endif |
922 |
|
923 |
snap_->wrapVector(d); |
924 |
return d; |
925 |
} |
926 |
|
927 |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
928 |
#ifdef IS_MPI |
929 |
return cgColData.velocity[cg2]; |
930 |
#else |
931 |
return snap_->cgData.velocity[cg2]; |
932 |
#endif |
933 |
} |
934 |
|
935 |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
936 |
#ifdef IS_MPI |
937 |
return atomColData.velocity[atom2]; |
938 |
#else |
939 |
return snap_->atomData.velocity[atom2]; |
940 |
#endif |
941 |
} |
942 |
|
943 |
|
944 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
945 |
|
946 |
Vector3d d; |
947 |
|
948 |
#ifdef IS_MPI |
949 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
950 |
#else |
951 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
952 |
#endif |
953 |
|
954 |
snap_->wrapVector(d); |
955 |
return d; |
956 |
} |
957 |
|
958 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
959 |
Vector3d d; |
960 |
|
961 |
#ifdef IS_MPI |
962 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
963 |
#else |
964 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
965 |
#endif |
966 |
|
967 |
snap_->wrapVector(d); |
968 |
return d; |
969 |
} |
970 |
|
971 |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
972 |
#ifdef IS_MPI |
973 |
return massFactorsRow[atom1]; |
974 |
#else |
975 |
return massFactors[atom1]; |
976 |
#endif |
977 |
} |
978 |
|
979 |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
980 |
#ifdef IS_MPI |
981 |
return massFactorsCol[atom2]; |
982 |
#else |
983 |
return massFactors[atom2]; |
984 |
#endif |
985 |
|
986 |
} |
987 |
|
988 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
989 |
Vector3d d; |
990 |
|
991 |
#ifdef IS_MPI |
992 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
993 |
#else |
994 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
995 |
#endif |
996 |
|
997 |
snap_->wrapVector(d); |
998 |
return d; |
999 |
} |
1000 |
|
1001 |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1002 |
return excludesForAtom[atom1]; |
1003 |
} |
1004 |
|
1005 |
/** |
1006 |
* We need to exclude some overcounted interactions that result from |
1007 |
* the parallel decomposition. |
1008 |
*/ |
1009 |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1010 |
int unique_id_1, unique_id_2, group1, group2; |
1011 |
|
1012 |
#ifdef IS_MPI |
1013 |
// in MPI, we have to look up the unique IDs for each atom |
1014 |
unique_id_1 = AtomRowToGlobal[atom1]; |
1015 |
unique_id_2 = AtomColToGlobal[atom2]; |
1016 |
group1 = cgRowToGlobal[cg1]; |
1017 |
group2 = cgColToGlobal[cg2]; |
1018 |
#else |
1019 |
unique_id_1 = AtomLocalToGlobal[atom1]; |
1020 |
unique_id_2 = AtomLocalToGlobal[atom2]; |
1021 |
group1 = cgLocalToGlobal[cg1]; |
1022 |
group2 = cgLocalToGlobal[cg2]; |
1023 |
#endif |
1024 |
|
1025 |
if (unique_id_1 == unique_id_2) return true; |
1026 |
|
1027 |
#ifdef IS_MPI |
1028 |
// this prevents us from doing the pair on multiple processors |
1029 |
if (unique_id_1 < unique_id_2) { |
1030 |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1031 |
} else { |
1032 |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1033 |
} |
1034 |
#endif |
1035 |
|
1036 |
#ifndef IS_MPI |
1037 |
if (group1 == group2) { |
1038 |
if (unique_id_1 < unique_id_2) return true; |
1039 |
} |
1040 |
#endif |
1041 |
|
1042 |
return false; |
1043 |
} |
1044 |
|
1045 |
/** |
1046 |
* We need to handle the interactions for atoms who are involved in |
1047 |
* the same rigid body as well as some short range interactions |
1048 |
* (bonds, bends, torsions) differently from other interactions. |
1049 |
* We'll still visit the pairwise routines, but with a flag that |
1050 |
* tells those routines to exclude the pair from direct long range |
1051 |
* interactions. Some indirect interactions (notably reaction |
1052 |
* field) must still be handled for these pairs. |
1053 |
*/ |
1054 |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1055 |
|
1056 |
// excludesForAtom was constructed to use row/column indices in the MPI |
1057 |
// version, and to use local IDs in the non-MPI version: |
1058 |
|
1059 |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1060 |
i != excludesForAtom[atom1].end(); ++i) { |
1061 |
if ( (*i) == atom2 ) return true; |
1062 |
} |
1063 |
|
1064 |
return false; |
1065 |
} |
1066 |
|
1067 |
|
1068 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
1069 |
#ifdef IS_MPI |
1070 |
atomRowData.force[atom1] += fg; |
1071 |
#else |
1072 |
snap_->atomData.force[atom1] += fg; |
1073 |
#endif |
1074 |
} |
1075 |
|
1076 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
1077 |
#ifdef IS_MPI |
1078 |
atomColData.force[atom2] += fg; |
1079 |
#else |
1080 |
snap_->atomData.force[atom2] += fg; |
1081 |
#endif |
1082 |
} |
1083 |
|
1084 |
// filling interaction blocks with pointers |
1085 |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1086 |
int atom1, int atom2) { |
1087 |
|
1088 |
idat.excluded = excludeAtomPair(atom1, atom2); |
1089 |
|
1090 |
#ifdef IS_MPI |
1091 |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1092 |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1093 |
// ff_->getAtomType(identsCol[atom2]) ); |
1094 |
|
1095 |
if (storageLayout_ & DataStorage::dslAmat) { |
1096 |
idat.A1 = &(atomRowData.aMat[atom1]); |
1097 |
idat.A2 = &(atomColData.aMat[atom2]); |
1098 |
} |
1099 |
|
1100 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1101 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1102 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1103 |
} |
1104 |
|
1105 |
if (storageLayout_ & DataStorage::dslTorque) { |
1106 |
idat.t1 = &(atomRowData.torque[atom1]); |
1107 |
idat.t2 = &(atomColData.torque[atom2]); |
1108 |
} |
1109 |
|
1110 |
if (storageLayout_ & DataStorage::dslDensity) { |
1111 |
idat.rho1 = &(atomRowData.density[atom1]); |
1112 |
idat.rho2 = &(atomColData.density[atom2]); |
1113 |
} |
1114 |
|
1115 |
if (storageLayout_ & DataStorage::dslFunctional) { |
1116 |
idat.frho1 = &(atomRowData.functional[atom1]); |
1117 |
idat.frho2 = &(atomColData.functional[atom2]); |
1118 |
} |
1119 |
|
1120 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1121 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
1122 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
1123 |
} |
1124 |
|
1125 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
1126 |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1127 |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1128 |
} |
1129 |
|
1130 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1131 |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1132 |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1133 |
} |
1134 |
|
1135 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1136 |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1137 |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1138 |
} |
1139 |
|
1140 |
#else |
1141 |
|
1142 |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1143 |
|
1144 |
if (storageLayout_ & DataStorage::dslAmat) { |
1145 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1146 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1147 |
} |
1148 |
|
1149 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1150 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1151 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1152 |
} |
1153 |
|
1154 |
if (storageLayout_ & DataStorage::dslTorque) { |
1155 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
1156 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
1157 |
} |
1158 |
|
1159 |
if (storageLayout_ & DataStorage::dslDensity) { |
1160 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
1161 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
1162 |
} |
1163 |
|
1164 |
if (storageLayout_ & DataStorage::dslFunctional) { |
1165 |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
1166 |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
1167 |
} |
1168 |
|
1169 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1170 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
1171 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
1172 |
} |
1173 |
|
1174 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
1175 |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1176 |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1177 |
} |
1178 |
|
1179 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1180 |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1181 |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1182 |
} |
1183 |
|
1184 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1185 |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1186 |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1187 |
} |
1188 |
|
1189 |
#endif |
1190 |
} |
1191 |
|
1192 |
|
1193 |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1194 |
#ifdef IS_MPI |
1195 |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1196 |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1197 |
|
1198 |
atomRowData.force[atom1] += *(idat.f1); |
1199 |
atomColData.force[atom2] -= *(idat.f1); |
1200 |
|
1201 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1202 |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1203 |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1204 |
} |
1205 |
|
1206 |
if (storageLayout_ & DataStorage::dslElectricField) { |
1207 |
atomRowData.electricField[atom1] += *(idat.eField1); |
1208 |
atomColData.electricField[atom2] += *(idat.eField2); |
1209 |
} |
1210 |
|
1211 |
#else |
1212 |
pairwisePot += *(idat.pot); |
1213 |
|
1214 |
snap_->atomData.force[atom1] += *(idat.f1); |
1215 |
snap_->atomData.force[atom2] -= *(idat.f1); |
1216 |
|
1217 |
if (idat.doParticlePot) { |
1218 |
// This is the pairwise contribution to the particle pot. The |
1219 |
// embedding contribution is added in each of the low level |
1220 |
// non-bonded routines. In parallel, this calculation is done |
1221 |
// in collectData, not in unpackInteractionData. |
1222 |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1223 |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1224 |
} |
1225 |
|
1226 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1227 |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1228 |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1229 |
} |
1230 |
|
1231 |
if (storageLayout_ & DataStorage::dslElectricField) { |
1232 |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1233 |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1234 |
} |
1235 |
|
1236 |
#endif |
1237 |
|
1238 |
} |
1239 |
|
1240 |
/* |
1241 |
* buildNeighborList |
1242 |
* |
1243 |
* first element of pair is row-indexed CutoffGroup |
1244 |
* second element of pair is column-indexed CutoffGroup |
1245 |
*/ |
1246 |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1247 |
|
1248 |
vector<pair<int, int> > neighborList; |
1249 |
groupCutoffs cuts; |
1250 |
bool doAllPairs = false; |
1251 |
|
1252 |
#ifdef IS_MPI |
1253 |
cellListRow_.clear(); |
1254 |
cellListCol_.clear(); |
1255 |
#else |
1256 |
cellList_.clear(); |
1257 |
#endif |
1258 |
|
1259 |
RealType rList_ = (largestRcut_ + skinThickness_); |
1260 |
RealType rl2 = rList_ * rList_; |
1261 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1262 |
Mat3x3d Hmat = snap_->getHmat(); |
1263 |
Vector3d Hx = Hmat.getColumn(0); |
1264 |
Vector3d Hy = Hmat.getColumn(1); |
1265 |
Vector3d Hz = Hmat.getColumn(2); |
1266 |
|
1267 |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1268 |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1269 |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1270 |
|
1271 |
// handle small boxes where the cell offsets can end up repeating cells |
1272 |
|
1273 |
if (nCells_.x() < 3) doAllPairs = true; |
1274 |
if (nCells_.y() < 3) doAllPairs = true; |
1275 |
if (nCells_.z() < 3) doAllPairs = true; |
1276 |
|
1277 |
Mat3x3d invHmat = snap_->getInvHmat(); |
1278 |
Vector3d rs, scaled, dr; |
1279 |
Vector3i whichCell; |
1280 |
int cellIndex; |
1281 |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1282 |
|
1283 |
#ifdef IS_MPI |
1284 |
cellListRow_.resize(nCtot); |
1285 |
cellListCol_.resize(nCtot); |
1286 |
#else |
1287 |
cellList_.resize(nCtot); |
1288 |
#endif |
1289 |
|
1290 |
if (!doAllPairs) { |
1291 |
#ifdef IS_MPI |
1292 |
|
1293 |
for (int i = 0; i < nGroupsInRow_; i++) { |
1294 |
rs = cgRowData.position[i]; |
1295 |
|
1296 |
// scaled positions relative to the box vectors |
1297 |
scaled = invHmat * rs; |
1298 |
|
1299 |
// wrap the vector back into the unit box by subtracting integer box |
1300 |
// numbers |
1301 |
for (int j = 0; j < 3; j++) { |
1302 |
scaled[j] -= roundMe(scaled[j]); |
1303 |
scaled[j] += 0.5; |
1304 |
} |
1305 |
|
1306 |
// find xyz-indices of cell that cutoffGroup is in. |
1307 |
whichCell.x() = nCells_.x() * scaled.x(); |
1308 |
whichCell.y() = nCells_.y() * scaled.y(); |
1309 |
whichCell.z() = nCells_.z() * scaled.z(); |
1310 |
|
1311 |
// find single index of this cell: |
1312 |
cellIndex = Vlinear(whichCell, nCells_); |
1313 |
|
1314 |
// add this cutoff group to the list of groups in this cell; |
1315 |
cellListRow_[cellIndex].push_back(i); |
1316 |
} |
1317 |
for (int i = 0; i < nGroupsInCol_; i++) { |
1318 |
rs = cgColData.position[i]; |
1319 |
|
1320 |
// scaled positions relative to the box vectors |
1321 |
scaled = invHmat * rs; |
1322 |
|
1323 |
// wrap the vector back into the unit box by subtracting integer box |
1324 |
// numbers |
1325 |
for (int j = 0; j < 3; j++) { |
1326 |
scaled[j] -= roundMe(scaled[j]); |
1327 |
scaled[j] += 0.5; |
1328 |
} |
1329 |
|
1330 |
// find xyz-indices of cell that cutoffGroup is in. |
1331 |
whichCell.x() = nCells_.x() * scaled.x(); |
1332 |
whichCell.y() = nCells_.y() * scaled.y(); |
1333 |
whichCell.z() = nCells_.z() * scaled.z(); |
1334 |
|
1335 |
// find single index of this cell: |
1336 |
cellIndex = Vlinear(whichCell, nCells_); |
1337 |
|
1338 |
// add this cutoff group to the list of groups in this cell; |
1339 |
cellListCol_[cellIndex].push_back(i); |
1340 |
} |
1341 |
|
1342 |
#else |
1343 |
for (int i = 0; i < nGroups_; i++) { |
1344 |
rs = snap_->cgData.position[i]; |
1345 |
|
1346 |
// scaled positions relative to the box vectors |
1347 |
scaled = invHmat * rs; |
1348 |
|
1349 |
// wrap the vector back into the unit box by subtracting integer box |
1350 |
// numbers |
1351 |
for (int j = 0; j < 3; j++) { |
1352 |
scaled[j] -= roundMe(scaled[j]); |
1353 |
scaled[j] += 0.5; |
1354 |
} |
1355 |
|
1356 |
// find xyz-indices of cell that cutoffGroup is in. |
1357 |
whichCell.x() = nCells_.x() * scaled.x(); |
1358 |
whichCell.y() = nCells_.y() * scaled.y(); |
1359 |
whichCell.z() = nCells_.z() * scaled.z(); |
1360 |
|
1361 |
// find single index of this cell: |
1362 |
cellIndex = Vlinear(whichCell, nCells_); |
1363 |
|
1364 |
// add this cutoff group to the list of groups in this cell; |
1365 |
cellList_[cellIndex].push_back(i); |
1366 |
} |
1367 |
|
1368 |
#endif |
1369 |
|
1370 |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1371 |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1372 |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1373 |
Vector3i m1v(m1x, m1y, m1z); |
1374 |
int m1 = Vlinear(m1v, nCells_); |
1375 |
|
1376 |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1377 |
os != cellOffsets_.end(); ++os) { |
1378 |
|
1379 |
Vector3i m2v = m1v + (*os); |
1380 |
|
1381 |
|
1382 |
if (m2v.x() >= nCells_.x()) { |
1383 |
m2v.x() = 0; |
1384 |
} else if (m2v.x() < 0) { |
1385 |
m2v.x() = nCells_.x() - 1; |
1386 |
} |
1387 |
|
1388 |
if (m2v.y() >= nCells_.y()) { |
1389 |
m2v.y() = 0; |
1390 |
} else if (m2v.y() < 0) { |
1391 |
m2v.y() = nCells_.y() - 1; |
1392 |
} |
1393 |
|
1394 |
if (m2v.z() >= nCells_.z()) { |
1395 |
m2v.z() = 0; |
1396 |
} else if (m2v.z() < 0) { |
1397 |
m2v.z() = nCells_.z() - 1; |
1398 |
} |
1399 |
|
1400 |
int m2 = Vlinear (m2v, nCells_); |
1401 |
|
1402 |
#ifdef IS_MPI |
1403 |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1404 |
j1 != cellListRow_[m1].end(); ++j1) { |
1405 |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1406 |
j2 != cellListCol_[m2].end(); ++j2) { |
1407 |
|
1408 |
// In parallel, we need to visit *all* pairs of row |
1409 |
// & column indicies and will divide labor in the |
1410 |
// force evaluation later. |
1411 |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1412 |
snap_->wrapVector(dr); |
1413 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1414 |
if (dr.lengthSquare() < cuts.third) { |
1415 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1416 |
} |
1417 |
} |
1418 |
} |
1419 |
#else |
1420 |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1421 |
j1 != cellList_[m1].end(); ++j1) { |
1422 |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1423 |
j2 != cellList_[m2].end(); ++j2) { |
1424 |
|
1425 |
// Always do this if we're in different cells or if |
1426 |
// we're in the same cell and the global index of |
1427 |
// the j2 cutoff group is greater than or equal to |
1428 |
// the j1 cutoff group. Note that Rappaport's code |
1429 |
// has a "less than" conditional here, but that |
1430 |
// deals with atom-by-atom computation. OpenMD |
1431 |
// allows atoms within a single cutoff group to |
1432 |
// interact with each other. |
1433 |
|
1434 |
|
1435 |
|
1436 |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1437 |
|
1438 |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1439 |
snap_->wrapVector(dr); |
1440 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1441 |
if (dr.lengthSquare() < cuts.third) { |
1442 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1443 |
} |
1444 |
} |
1445 |
} |
1446 |
} |
1447 |
#endif |
1448 |
} |
1449 |
} |
1450 |
} |
1451 |
} |
1452 |
} else { |
1453 |
// branch to do all cutoff group pairs |
1454 |
#ifdef IS_MPI |
1455 |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1456 |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1457 |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1458 |
snap_->wrapVector(dr); |
1459 |
cuts = getGroupCutoffs( j1, j2 ); |
1460 |
if (dr.lengthSquare() < cuts.third) { |
1461 |
neighborList.push_back(make_pair(j1, j2)); |
1462 |
} |
1463 |
} |
1464 |
} |
1465 |
#else |
1466 |
// include all groups here. |
1467 |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1468 |
// include self group interactions j2 == j1 |
1469 |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1470 |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1471 |
snap_->wrapVector(dr); |
1472 |
cuts = getGroupCutoffs( j1, j2 ); |
1473 |
if (dr.lengthSquare() < cuts.third) { |
1474 |
neighborList.push_back(make_pair(j1, j2)); |
1475 |
} |
1476 |
} |
1477 |
} |
1478 |
#endif |
1479 |
} |
1480 |
|
1481 |
// save the local cutoff group positions for the check that is |
1482 |
// done on each loop: |
1483 |
saved_CG_positions_.clear(); |
1484 |
for (int i = 0; i < nGroups_; i++) |
1485 |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1486 |
|
1487 |
return neighborList; |
1488 |
} |
1489 |
} //end namespace OpenMD |