ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1562 by gezelter, Thu May 12 17:00:14 2011 UTC vs.
Revision 1761 by gezelter, Fri Jun 22 20:01:37 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
53  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96 < #ifdef IS_MPI    
97 <    int nLocal = snap_->getNumberOfAtoms();
98 <    int nGroups = snap_->getNumberOfCutoffGroups();
96 >    ff_ = info_->getForceField();
97 >    nLocal_ = snap_->getNumberOfAtoms();
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105 >
106 >    massFactors = info_->getMassFactors();
107 >
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112      
113 <    AtomCommIntRow = new Communicator<Row,int>(nLocal);
114 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
115 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
116 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119 > #ifdef IS_MPI
120 >
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    int nAtomsInRow = AtomCommIntRow->getSize();
137 <    int nAtomsInCol = AtomCommIntColumn->getSize();
138 <    int nGroupsInRow = cgCommIntRow->getSize();
139 <    int nGroupsInCol = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147 <    atomRowData.resize(nAtomsInRow);
147 >    atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
149 <    atomColData.resize(nAtomsInCol);
149 >    atomColData.resize(nAtomsInCol_);
150      atomColData.setStorageLayout(storageLayout_);
151 <    cgRowData.resize(nGroupsInRow);
151 >    cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153 <    cgColData.resize(nGroupsInCol);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
153 >    cgColData.resize(nGroupsInCol_);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163      
164 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
165 <                                      vector<RealType> (nAtomsInRow, 0.0));
166 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
167 <                                      vector<RealType> (nAtomsInCol, 0.0));
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166 >    
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 +    for (int i = 0; i < nAtomsInRow_; i++)
172 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 +    for (int i = 0; i < nAtomsInCol_; i++)
174 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
176 >    pot_row.resize(nAtomsInRow_);
177 >    pot_col.resize(nAtomsInCol_);
178 >
179 >    expot_row.resize(nAtomsInRow_);
180 >    expot_col.resize(nAtomsInCol_);
181 >
182 >    AtomRowToGlobal.resize(nAtomsInRow_);
183 >    AtomColToGlobal.resize(nAtomsInCol_);
184 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 >
187 >    cgRowToGlobal.resize(nGroupsInRow_);
188 >    cgColToGlobal.resize(nGroupsInCol_);
189 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 >
192 >    massFactorsRow.resize(nAtomsInRow_);
193 >    massFactorsCol.resize(nAtomsInCol_);
194 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 >
197 >    groupListRow_.clear();
198 >    groupListRow_.resize(nGroupsInRow_);
199 >    for (int i = 0; i < nGroupsInRow_; i++) {
200 >      int gid = cgRowToGlobal[i];
201 >      for (int j = 0; j < nAtomsInRow_; j++) {
202 >        int aid = AtomRowToGlobal[j];
203 >        if (globalGroupMembership[aid] == gid)
204 >          groupListRow_[i].push_back(j);
205 >      }      
206 >    }
207 >
208 >    groupListCol_.clear();
209 >    groupListCol_.resize(nGroupsInCol_);
210 >    for (int i = 0; i < nGroupsInCol_; i++) {
211 >      int gid = cgColToGlobal[i];
212 >      for (int j = 0; j < nAtomsInCol_; j++) {
213 >        int aid = AtomColToGlobal[j];
214 >        if (globalGroupMembership[aid] == gid)
215 >          groupListCol_[i].push_back(j);
216 >      }      
217 >    }
218 >
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221 >    toposForAtom.clear();
222 >    toposForAtom.resize(nAtomsInRow_);
223 >    topoDist.clear();
224 >    topoDist.resize(nAtomsInRow_);
225 >    for (int i = 0; i < nAtomsInRow_; i++) {
226 >      int iglob = AtomRowToGlobal[i];
227 >
228 >      for (int j = 0; j < nAtomsInCol_; j++) {
229 >        int jglob = AtomColToGlobal[j];
230 >
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233 >        
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235 >          toposForAtom[i].push_back(j);
236 >          topoDist[i].push_back(1);
237 >        } else {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239 >            toposForAtom[i].push_back(j);
240 >            topoDist[i].push_back(2);
241 >          } else {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243 >              toposForAtom[i].push_back(j);
244 >              topoDist[i].push_back(3);
245 >            }
246 >          }
247 >        }
248 >      }      
249 >    }
250 >
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254 >    toposForAtom.clear();
255 >    toposForAtom.resize(nLocal_);
256 >    topoDist.clear();
257 >    topoDist.resize(nLocal_);
258 >
259 >    for (int i = 0; i < nLocal_; i++) {
260 >      int iglob = AtomLocalToGlobal[i];
261 >
262 >      for (int j = 0; j < nLocal_; j++) {
263 >        int jglob = AtomLocalToGlobal[j];
264 >
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267 >        
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269 >          toposForAtom[i].push_back(j);
270 >          topoDist[i].push_back(1);
271 >        } else {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273 >            toposForAtom[i].push_back(j);
274 >            topoDist[i].push_back(2);
275 >          } else {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277 >              toposForAtom[i].push_back(j);
278 >              topoDist[i].push_back(3);
279 >            }
280 >          }
281 >        }
282 >      }      
283 >    }
284 > #endif
285 >
286 >    // allocate memory for the parallel objects
287 >    atypesLocal.resize(nLocal_);
288 >
289 >    for (int i = 0; i < nLocal_; i++)
290 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 >
292 >    groupList_.clear();
293 >    groupList_.resize(nGroups_);
294 >    for (int i = 0; i < nGroups_; i++) {
295 >      int gid = cgLocalToGlobal[i];
296 >      for (int j = 0; j < nLocal_; j++) {
297 >        int aid = AtomLocalToGlobal[j];
298 >        if (globalGroupMembership[aid] == gid) {
299 >          groupList_[i].push_back(j);
300 >        }
301 >      }      
302 >    }
303 >
304 >
305 >    createGtypeCutoffMap();
306 >
307 >  }
308 >  
309 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310      
311 <    // gather the information for atomtype IDs (atids):
312 <    vector<int> identsLocal = info_->getIdentArray();
313 <    identsRow.reserve(nAtomsInRow);
314 <    identsCol.reserve(nAtomsInCol);
311 >    RealType tol = 1e-6;
312 >    largestRcut_ = 0.0;
313 >    RealType rc;
314 >    int atid;
315 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
316      
317 <    AtomCommIntRow->gather(identsLocal, identsRow);
318 <    AtomCommIntColumn->gather(identsLocal, identsCol);
317 >    map<int, RealType> atypeCutoff;
318 >      
319 >    for (set<AtomType*>::iterator at = atypes.begin();
320 >         at != atypes.end(); ++at){
321 >      atid = (*at)->getIdent();
322 >      if (userChoseCutoff_)
323 >        atypeCutoff[atid] = userCutoff_;
324 >      else
325 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
326 >    }
327      
328 <    AtomLocalToGlobal = info_->getGlobalAtomIndices();
329 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
330 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
331 <    
332 <    cgLocalToGlobal = info_->getGlobalGroupIndices();
333 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
334 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
328 >    vector<RealType> gTypeCutoffs;
329 >    // first we do a single loop over the cutoff groups to find the
330 >    // largest cutoff for any atypes present in this group.
331 > #ifdef IS_MPI
332 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
333 >    groupRowToGtype.resize(nGroupsInRow_);
334 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
335 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
336 >      for (vector<int>::iterator ia = atomListRow.begin();
337 >           ia != atomListRow.end(); ++ia) {            
338 >        int atom1 = (*ia);
339 >        atid = identsRow[atom1];
340 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
341 >          groupCutoffRow[cg1] = atypeCutoff[atid];
342 >        }
343 >      }
344  
345 <    // still need:
346 <    // topoDist
347 <    // exclude
345 >      bool gTypeFound = false;
346 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
347 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
348 >          groupRowToGtype[cg1] = gt;
349 >          gTypeFound = true;
350 >        }
351 >      }
352 >      if (!gTypeFound) {
353 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
354 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
355 >      }
356 >      
357 >    }
358 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
359 >    groupColToGtype.resize(nGroupsInCol_);
360 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
361 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
362 >      for (vector<int>::iterator jb = atomListCol.begin();
363 >           jb != atomListCol.end(); ++jb) {            
364 >        int atom2 = (*jb);
365 >        atid = identsCol[atom2];
366 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
367 >          groupCutoffCol[cg2] = atypeCutoff[atid];
368 >        }
369 >      }
370 >      bool gTypeFound = false;
371 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
372 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
373 >          groupColToGtype[cg2] = gt;
374 >          gTypeFound = true;
375 >        }
376 >      }
377 >      if (!gTypeFound) {
378 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
379 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
380 >      }
381 >    }
382 > #else
383 >
384 >    vector<RealType> groupCutoff(nGroups_, 0.0);
385 >    groupToGtype.resize(nGroups_);
386 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
387 >      groupCutoff[cg1] = 0.0;
388 >      vector<int> atomList = getAtomsInGroupRow(cg1);
389 >      for (vector<int>::iterator ia = atomList.begin();
390 >           ia != atomList.end(); ++ia) {            
391 >        int atom1 = (*ia);
392 >        atid = idents[atom1];
393 >        if (atypeCutoff[atid] > groupCutoff[cg1])
394 >          groupCutoff[cg1] = atypeCutoff[atid];
395 >      }
396 >      
397 >      bool gTypeFound = false;
398 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
399 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
400 >          groupToGtype[cg1] = gt;
401 >          gTypeFound = true;
402 >        }
403 >      }
404 >      if (!gTypeFound) {      
405 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
406 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
407 >      }      
408 >    }
409   #endif
410 +
411 +    // Now we find the maximum group cutoff value present in the simulation
412 +
413 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
414 +                                     gTypeCutoffs.end());
415 +
416 + #ifdef IS_MPI
417 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
418 +                              MPI::MAX);
419 + #endif
420 +    
421 +    RealType tradRcut = groupMax;
422 +
423 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
424 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
425 +        RealType thisRcut;
426 +        switch(cutoffPolicy_) {
427 +        case TRADITIONAL:
428 +          thisRcut = tradRcut;
429 +          break;
430 +        case MIX:
431 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
432 +          break;
433 +        case MAX:
434 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
435 +          break;
436 +        default:
437 +          sprintf(painCave.errMsg,
438 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
439 +                  "hit an unknown cutoff policy!\n");
440 +          painCave.severity = OPENMD_ERROR;
441 +          painCave.isFatal = 1;
442 +          simError();
443 +          break;
444 +        }
445 +
446 +        pair<int,int> key = make_pair(i,j);
447 +        gTypeCutoffMap[key].first = thisRcut;
448 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
449 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
450 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
451 +        // sanity check
452 +        
453 +        if (userChoseCutoff_) {
454 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
455 +            sprintf(painCave.errMsg,
456 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
457 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
458 +            painCave.severity = OPENMD_ERROR;
459 +            painCave.isFatal = 1;
460 +            simError();            
461 +          }
462 +        }
463 +      }
464 +    }
465    }
466 +
467 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
468 +    int i, j;  
469 + #ifdef IS_MPI
470 +    i = groupRowToGtype[cg1];
471 +    j = groupColToGtype[cg2];
472 + #else
473 +    i = groupToGtype[cg1];
474 +    j = groupToGtype[cg2];
475 + #endif    
476 +    return gTypeCutoffMap[make_pair(i,j)];
477 +  }
478 +
479 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
480 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
481 +      if (toposForAtom[atom1][j] == atom2)
482 +        return topoDist[atom1][j];
483 +    }
484 +    return 0;
485 +  }
486 +
487 +  void ForceMatrixDecomposition::zeroWorkArrays() {
488 +    pairwisePot = 0.0;
489 +    embeddingPot = 0.0;
490 +    excludedPot = 0.0;
491 +    excludedSelfPot = 0.0;
492 +
493 + #ifdef IS_MPI
494 +    if (storageLayout_ & DataStorage::dslForce) {
495 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
496 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
497 +    }
498 +
499 +    if (storageLayout_ & DataStorage::dslTorque) {
500 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
501 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
502 +    }
503 +    
504 +    fill(pot_row.begin(), pot_row.end(),
505 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
506 +
507 +    fill(pot_col.begin(), pot_col.end(),
508 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
509 +
510 +    fill(expot_row.begin(), expot_row.end(),
511 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
512 +
513 +    fill(expot_col.begin(), expot_col.end(),
514 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
515 +
516 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
517 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
518 +           0.0);
519 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
520 +           0.0);
521 +    }
522 +
523 +    if (storageLayout_ & DataStorage::dslDensity) {      
524 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
525 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
526 +    }
527 +
528 +    if (storageLayout_ & DataStorage::dslFunctional) {  
529 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
530 +           0.0);
531 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
532 +           0.0);
533 +    }
534 +
535 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
536 +      fill(atomRowData.functionalDerivative.begin(),
537 +           atomRowData.functionalDerivative.end(), 0.0);
538 +      fill(atomColData.functionalDerivative.begin(),
539 +           atomColData.functionalDerivative.end(), 0.0);
540 +    }
541 +
542 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
543 +      fill(atomRowData.skippedCharge.begin(),
544 +           atomRowData.skippedCharge.end(), 0.0);
545 +      fill(atomColData.skippedCharge.begin(),
546 +           atomColData.skippedCharge.end(), 0.0);
547 +    }
548 +
549 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
550 +      fill(atomRowData.flucQFrc.begin(),
551 +           atomRowData.flucQFrc.end(), 0.0);
552 +      fill(atomColData.flucQFrc.begin(),
553 +           atomColData.flucQFrc.end(), 0.0);
554 +    }
555 +
556 +    if (storageLayout_ & DataStorage::dslElectricField) {    
557 +      fill(atomRowData.electricField.begin(),
558 +           atomRowData.electricField.end(), V3Zero);
559 +      fill(atomColData.electricField.begin(),
560 +           atomColData.electricField.end(), V3Zero);
561 +    }
562 +
563 +    if (storageLayout_ & DataStorage::dslFlucQForce) {    
564 +      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
565 +           0.0);
566 +      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
567 +           0.0);
568 +    }
569 +
570 + #endif
571 +    // even in parallel, we need to zero out the local arrays:
572 +
573 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
574 +      fill(snap_->atomData.particlePot.begin(),
575 +           snap_->atomData.particlePot.end(), 0.0);
576 +    }
577      
578 +    if (storageLayout_ & DataStorage::dslDensity) {      
579 +      fill(snap_->atomData.density.begin(),
580 +           snap_->atomData.density.end(), 0.0);
581 +    }
582  
583 +    if (storageLayout_ & DataStorage::dslFunctional) {
584 +      fill(snap_->atomData.functional.begin(),
585 +           snap_->atomData.functional.end(), 0.0);
586 +    }
587  
588 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
589 +      fill(snap_->atomData.functionalDerivative.begin(),
590 +           snap_->atomData.functionalDerivative.end(), 0.0);
591 +    }
592 +
593 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
594 +      fill(snap_->atomData.skippedCharge.begin(),
595 +           snap_->atomData.skippedCharge.end(), 0.0);
596 +    }
597 +
598 +    if (storageLayout_ & DataStorage::dslElectricField) {      
599 +      fill(snap_->atomData.electricField.begin(),
600 +           snap_->atomData.electricField.end(), V3Zero);
601 +    }
602 +  }
603 +
604 +
605    void ForceMatrixDecomposition::distributeData()  {
606      snap_ = sman_->getCurrentSnapshot();
607      storageLayout_ = sman_->getStorageLayout();
608   #ifdef IS_MPI
609      
610      // gather up the atomic positions
611 <    AtomCommVectorRow->gather(snap_->atomData.position,
611 >    AtomPlanVectorRow->gather(snap_->atomData.position,
612                                atomRowData.position);
613 <    AtomCommVectorColumn->gather(snap_->atomData.position,
613 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
614                                   atomColData.position);
615      
616      // gather up the cutoff group positions
617 <    cgCommVectorRow->gather(snap_->cgData.position,
617 >
618 >    cgPlanVectorRow->gather(snap_->cgData.position,
619                              cgRowData.position);
620 <    cgCommVectorColumn->gather(snap_->cgData.position,
620 >
621 >    cgPlanVectorColumn->gather(snap_->cgData.position,
622                                 cgColData.position);
623 +
624 +
625 +
626 +    if (needVelocities_) {
627 +      // gather up the atomic velocities
628 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
629 +                                   atomColData.velocity);
630 +      
631 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
632 +                                 cgColData.velocity);
633 +    }
634 +
635      
636      // if needed, gather the atomic rotation matrices
637      if (storageLayout_ & DataStorage::dslAmat) {
638 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
638 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
639                                  atomRowData.aMat);
640 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
640 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
641                                     atomColData.aMat);
642      }
643      
644      // if needed, gather the atomic eletrostatic frames
645      if (storageLayout_ & DataStorage::dslElectroFrame) {
646 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
646 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
647                                  atomRowData.electroFrame);
648 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
648 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
649                                     atomColData.electroFrame);
650      }
651 +
652 +    // if needed, gather the atomic fluctuating charge values
653 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
654 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
655 +                              atomRowData.flucQPos);
656 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
657 +                                 atomColData.flucQPos);
658 +    }
659 +
660   #endif      
661    }
662    
663 +  /* collects information obtained during the pre-pair loop onto local
664 +   * data structures.
665 +   */
666    void ForceMatrixDecomposition::collectIntermediateData() {
667      snap_ = sman_->getCurrentSnapshot();
668      storageLayout_ = sman_->getStorageLayout();
# Line 162 | Line 670 | namespace OpenMD {
670      
671      if (storageLayout_ & DataStorage::dslDensity) {
672        
673 <      AtomCommRealRow->scatter(atomRowData.density,
673 >      AtomPlanRealRow->scatter(atomRowData.density,
674                                 snap_->atomData.density);
675        
676        int n = snap_->atomData.density.size();
677 <      std::vector<RealType> rho_tmp(n, 0.0);
678 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
677 >      vector<RealType> rho_tmp(n, 0.0);
678 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
679        for (int i = 0; i < n; i++)
680          snap_->atomData.density[i] += rho_tmp[i];
681      }
682 +
683 +    if (storageLayout_ & DataStorage::dslElectricField) {
684 +      
685 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
686 +                                 snap_->atomData.electricField);
687 +      
688 +      int n = snap_->atomData.electricField.size();
689 +      vector<Vector3d> field_tmp(n, V3Zero);
690 +      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
691 +      for (int i = 0; i < n; i++)
692 +        snap_->atomData.electricField[i] += field_tmp[i];
693 +    }
694   #endif
695    }
696 <  
696 >
697 >  /*
698 >   * redistributes information obtained during the pre-pair loop out to
699 >   * row and column-indexed data structures
700 >   */
701    void ForceMatrixDecomposition::distributeIntermediateData() {
702      snap_ = sman_->getCurrentSnapshot();
703      storageLayout_ = sman_->getStorageLayout();
704   #ifdef IS_MPI
705      if (storageLayout_ & DataStorage::dslFunctional) {
706 <      AtomCommRealRow->gather(snap_->atomData.functional,
706 >      AtomPlanRealRow->gather(snap_->atomData.functional,
707                                atomRowData.functional);
708 <      AtomCommRealColumn->gather(snap_->atomData.functional,
708 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
709                                   atomColData.functional);
710      }
711      
712      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
713 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
713 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
714                                atomRowData.functionalDerivative);
715 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
715 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
716                                   atomColData.functionalDerivative);
717      }
718   #endif
# Line 202 | Line 726 | namespace OpenMD {
726      int n = snap_->atomData.force.size();
727      vector<Vector3d> frc_tmp(n, V3Zero);
728      
729 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
729 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
730      for (int i = 0; i < n; i++) {
731        snap_->atomData.force[i] += frc_tmp[i];
732        frc_tmp[i] = 0.0;
733      }
734      
735 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
736 <    for (int i = 0; i < n; i++)
735 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
736 >    for (int i = 0; i < n; i++) {
737        snap_->atomData.force[i] += frc_tmp[i];
738 <    
739 <    
738 >    }
739 >        
740      if (storageLayout_ & DataStorage::dslTorque) {
741  
742 <      int nt = snap_->atomData.force.size();
742 >      int nt = snap_->atomData.torque.size();
743        vector<Vector3d> trq_tmp(nt, V3Zero);
744  
745 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
746 <      for (int i = 0; i < n; i++) {
745 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
746 >      for (int i = 0; i < nt; i++) {
747          snap_->atomData.torque[i] += trq_tmp[i];
748          trq_tmp[i] = 0.0;
749        }
750        
751 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
752 <      for (int i = 0; i < n; i++)
751 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
752 >      for (int i = 0; i < nt; i++)
753          snap_->atomData.torque[i] += trq_tmp[i];
754      }
231    
232    int nLocal = snap_->getNumberOfAtoms();
755  
756 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
757 <                                       vector<RealType> (nLocal, 0.0));
756 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
757 >
758 >      int ns = snap_->atomData.skippedCharge.size();
759 >      vector<RealType> skch_tmp(ns, 0.0);
760 >
761 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
762 >      for (int i = 0; i < ns; i++) {
763 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
764 >        skch_tmp[i] = 0.0;
765 >      }
766 >      
767 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
768 >      for (int i = 0; i < ns; i++)
769 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
770 >            
771 >    }
772      
773 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
774 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
775 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
776 <        pot_local[i] += pot_temp[i][ii];
773 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
774 >
775 >      int nq = snap_->atomData.flucQFrc.size();
776 >      vector<RealType> fqfrc_tmp(nq, 0.0);
777 >
778 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
779 >      for (int i = 0; i < nq; i++) {
780 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
781 >        fqfrc_tmp[i] = 0.0;
782        }
783 +      
784 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
785 +      for (int i = 0; i < nq; i++)
786 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
787 +            
788      }
789 +
790 +    nLocal_ = snap_->getNumberOfAtoms();
791 +
792 +    vector<potVec> pot_temp(nLocal_,
793 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
794 +    vector<potVec> expot_temp(nLocal_,
795 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
796 +
797 +    // scatter/gather pot_row into the members of my column
798 +          
799 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
800 +    AtomPlanPotRow->scatter(expot_row, expot_temp);
801 +
802 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
803 +      pairwisePot += pot_temp[ii];
804 +
805 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
806 +      excludedPot += expot_temp[ii];
807 +        
808 +    if (storageLayout_ & DataStorage::dslParticlePot) {
809 +      // This is the pairwise contribution to the particle pot.  The
810 +      // embedding contribution is added in each of the low level
811 +      // non-bonded routines.  In single processor, this is done in
812 +      // unpackInteractionData, not in collectData.
813 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
814 +        for (int i = 0; i < nLocal_; i++) {
815 +          // factor of two is because the total potential terms are divided
816 +          // by 2 in parallel due to row/ column scatter      
817 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
818 +        }
819 +      }
820 +    }
821 +
822 +    fill(pot_temp.begin(), pot_temp.end(),
823 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
824 +    fill(expot_temp.begin(), expot_temp.end(),
825 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
826 +      
827 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
828 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
829 +    
830 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
831 +      pairwisePot += pot_temp[ii];    
832 +
833 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
834 +      excludedPot += expot_temp[ii];    
835 +
836 +    if (storageLayout_ & DataStorage::dslParticlePot) {
837 +      // This is the pairwise contribution to the particle pot.  The
838 +      // embedding contribution is added in each of the low level
839 +      // non-bonded routines.  In single processor, this is done in
840 +      // unpackInteractionData, not in collectData.
841 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
842 +        for (int i = 0; i < nLocal_; i++) {
843 +          // factor of two is because the total potential terms are divided
844 +          // by 2 in parallel due to row/ column scatter      
845 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
846 +        }
847 +      }
848 +    }
849 +    
850 +    if (storageLayout_ & DataStorage::dslParticlePot) {
851 +      int npp = snap_->atomData.particlePot.size();
852 +      vector<RealType> ppot_temp(npp, 0.0);
853 +
854 +      // This is the direct or embedding contribution to the particle
855 +      // pot.
856 +      
857 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
858 +      for (int i = 0; i < npp; i++) {
859 +        snap_->atomData.particlePot[i] += ppot_temp[i];
860 +      }
861 +
862 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
863 +      
864 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
865 +      for (int i = 0; i < npp; i++) {
866 +        snap_->atomData.particlePot[i] += ppot_temp[i];
867 +      }
868 +    }
869 +
870 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
871 +      RealType ploc1 = pairwisePot[ii];
872 +      RealType ploc2 = 0.0;
873 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
874 +      pairwisePot[ii] = ploc2;
875 +    }
876 +
877 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
878 +      RealType ploc1 = excludedPot[ii];
879 +      RealType ploc2 = 0.0;
880 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
881 +      excludedPot[ii] = ploc2;
882 +    }
883 +
884 +    // Here be dragons.
885 +    MPI::Intracomm col = colComm.getComm();
886 +
887 +    col.Allreduce(MPI::IN_PLACE,
888 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
889 +                  MPI::REALTYPE, MPI::SUM);
890 +
891 +
892   #endif
893 +
894    }
895  
896 +  /**
897 +   * Collects information obtained during the post-pair (and embedding
898 +   * functional) loops onto local data structures.
899 +   */
900 +  void ForceMatrixDecomposition::collectSelfData() {
901 +    snap_ = sman_->getCurrentSnapshot();
902 +    storageLayout_ = sman_->getStorageLayout();
903 +
904 + #ifdef IS_MPI
905 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
906 +      RealType ploc1 = embeddingPot[ii];
907 +      RealType ploc2 = 0.0;
908 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
909 +      embeddingPot[ii] = ploc2;
910 +    }    
911 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
912 +      RealType ploc1 = excludedSelfPot[ii];
913 +      RealType ploc2 = 0.0;
914 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
915 +      excludedSelfPot[ii] = ploc2;
916 +    }    
917 + #endif
918 +    
919 +  }
920 +
921 +
922 +
923 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
924 + #ifdef IS_MPI
925 +    return nAtomsInRow_;
926 + #else
927 +    return nLocal_;
928 + #endif
929 +  }
930 +
931 +  /**
932 +   * returns the list of atoms belonging to this group.  
933 +   */
934 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
935 + #ifdef IS_MPI
936 +    return groupListRow_[cg1];
937 + #else
938 +    return groupList_[cg1];
939 + #endif
940 +  }
941 +
942 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
943 + #ifdef IS_MPI
944 +    return groupListCol_[cg2];
945 + #else
946 +    return groupList_[cg2];
947 + #endif
948 +  }
949    
950    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
951      Vector3d d;
# Line 257 | Line 960 | namespace OpenMD {
960      return d;    
961    }
962  
963 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
964 + #ifdef IS_MPI
965 +    return cgColData.velocity[cg2];
966 + #else
967 +    return snap_->cgData.velocity[cg2];
968 + #endif
969 +  }
970  
971 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
972 + #ifdef IS_MPI
973 +    return atomColData.velocity[atom2];
974 + #else
975 +    return snap_->atomData.velocity[atom2];
976 + #endif
977 +  }
978 +
979 +
980    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
981  
982      Vector3d d;
# Line 284 | Line 1003 | namespace OpenMD {
1003      snap_->wrapVector(d);
1004      return d;    
1005    }
1006 +
1007 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1008 + #ifdef IS_MPI
1009 +    return massFactorsRow[atom1];
1010 + #else
1011 +    return massFactors[atom1];
1012 + #endif
1013 +  }
1014 +
1015 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1016 + #ifdef IS_MPI
1017 +    return massFactorsCol[atom2];
1018 + #else
1019 +    return massFactors[atom2];
1020 + #endif
1021 +
1022 +  }
1023      
1024    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1025      Vector3d d;
# Line 298 | Line 1034 | namespace OpenMD {
1034      return d;    
1035    }
1036  
1037 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1038 +    return excludesForAtom[atom1];
1039 +  }
1040 +
1041 +  /**
1042 +   * We need to exclude some overcounted interactions that result from
1043 +   * the parallel decomposition.
1044 +   */
1045 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1046 +    int unique_id_1, unique_id_2, group1, group2;
1047 +        
1048 + #ifdef IS_MPI
1049 +    // in MPI, we have to look up the unique IDs for each atom
1050 +    unique_id_1 = AtomRowToGlobal[atom1];
1051 +    unique_id_2 = AtomColToGlobal[atom2];
1052 +    group1 = cgRowToGlobal[cg1];
1053 +    group2 = cgColToGlobal[cg2];
1054 + #else
1055 +    unique_id_1 = AtomLocalToGlobal[atom1];
1056 +    unique_id_2 = AtomLocalToGlobal[atom2];
1057 +    group1 = cgLocalToGlobal[cg1];
1058 +    group2 = cgLocalToGlobal[cg2];
1059 + #endif  
1060 +
1061 +    if (unique_id_1 == unique_id_2) return true;
1062 +
1063 + #ifdef IS_MPI
1064 +    // this prevents us from doing the pair on multiple processors
1065 +    if (unique_id_1 < unique_id_2) {
1066 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1067 +    } else {
1068 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1069 +    }
1070 + #endif    
1071 +
1072 + #ifndef IS_MPI
1073 +    if (group1 == group2) {
1074 +      if (unique_id_1 < unique_id_2) return true;
1075 +    }
1076 + #endif
1077 +    
1078 +    return false;
1079 +  }
1080 +
1081 +  /**
1082 +   * We need to handle the interactions for atoms who are involved in
1083 +   * the same rigid body as well as some short range interactions
1084 +   * (bonds, bends, torsions) differently from other interactions.
1085 +   * We'll still visit the pairwise routines, but with a flag that
1086 +   * tells those routines to exclude the pair from direct long range
1087 +   * interactions.  Some indirect interactions (notably reaction
1088 +   * field) must still be handled for these pairs.
1089 +   */
1090 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1091 +
1092 +    // excludesForAtom was constructed to use row/column indices in the MPI
1093 +    // version, and to use local IDs in the non-MPI version:
1094 +    
1095 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1096 +         i != excludesForAtom[atom1].end(); ++i) {
1097 +      if ( (*i) == atom2 ) return true;
1098 +    }
1099 +
1100 +    return false;
1101 +  }
1102 +
1103 +
1104    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1105   #ifdef IS_MPI
1106      atomRowData.force[atom1] += fg;
# Line 312 | Line 1115 | namespace OpenMD {
1115   #else
1116      snap_->atomData.force[atom2] += fg;
1117   #endif
315
1118    }
1119  
1120      // filling interaction blocks with pointers
1121 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1121 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1122 >                                                     int atom1, int atom2) {
1123  
1124 <    InteractionData idat;
1124 >    idat.excluded = excludeAtomPair(atom1, atom2);
1125 >  
1126   #ifdef IS_MPI
1127 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1128 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1129 +    //                         ff_->getAtomType(identsCol[atom2]) );
1130 +    
1131      if (storageLayout_ & DataStorage::dslAmat) {
1132        idat.A1 = &(atomRowData.aMat[atom1]);
1133        idat.A2 = &(atomColData.aMat[atom2]);
1134      }
1135 <
1135 >    
1136      if (storageLayout_ & DataStorage::dslElectroFrame) {
1137        idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1138        idat.eFrame2 = &(atomColData.electroFrame[atom2]);
# Line 340 | Line 1148 | namespace OpenMD {
1148        idat.rho2 = &(atomColData.density[atom2]);
1149      }
1150  
1151 +    if (storageLayout_ & DataStorage::dslFunctional) {
1152 +      idat.frho1 = &(atomRowData.functional[atom1]);
1153 +      idat.frho2 = &(atomColData.functional[atom2]);
1154 +    }
1155 +
1156      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1157        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1158        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1159      }
1160 +
1161 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1162 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1163 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1164 +    }
1165 +
1166 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1167 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1168 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1169 +    }
1170 +
1171 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1172 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1173 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1174 +    }
1175 +
1176   #else
1177 +    
1178 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1179 +
1180      if (storageLayout_ & DataStorage::dslAmat) {
1181        idat.A1 = &(snap_->atomData.aMat[atom1]);
1182        idat.A2 = &(snap_->atomData.aMat[atom2]);
# Line 360 | Line 1192 | namespace OpenMD {
1192        idat.t2 = &(snap_->atomData.torque[atom2]);
1193      }
1194  
1195 <    if (storageLayout_ & DataStorage::dslDensity) {
1195 >    if (storageLayout_ & DataStorage::dslDensity) {    
1196        idat.rho1 = &(snap_->atomData.density[atom1]);
1197        idat.rho2 = &(snap_->atomData.density[atom2]);
1198      }
1199  
1200 +    if (storageLayout_ & DataStorage::dslFunctional) {
1201 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1202 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1203 +    }
1204 +
1205      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1206        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1207        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1208      }
1209 +
1210 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1211 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1212 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1213 +    }
1214 +
1215 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1216 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1217 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1218 +    }
1219 +
1220 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1221 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1222 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1223 +    }
1224 +
1225   #endif
373    
1226    }
375  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
376    InteractionData idat;
377    skippedCharge1
378      skippedCharge2
379      rij
380      d
381    electroMult
382    sw
383    f
384 #ifdef IS_MPI
1227  
1228 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1229 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1230 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1228 >  
1229 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1230 > #ifdef IS_MPI
1231 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1232 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1233 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1234 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1235 >
1236 >    atomRowData.force[atom1] += *(idat.f1);
1237 >    atomColData.force[atom2] -= *(idat.f1);
1238 >
1239 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1240 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1241 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1242      }
1243 <    if (storageLayout_ & DataStorage::dslTorque) {
1244 <      idat.t1 = &(atomRowData.torque[atom1]);
1245 <      idat.t2 = &(atomColData.torque[atom2]);
1243 >
1244 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1245 >      atomRowData.electricField[atom1] += *(idat.eField1);
1246 >      atomColData.electricField[atom2] += *(idat.eField2);
1247      }
1248  
1249 + #else
1250 +    pairwisePot += *(idat.pot);
1251 +    excludedPot += *(idat.excludedPot);
1252 +
1253 +    snap_->atomData.force[atom1] += *(idat.f1);
1254 +    snap_->atomData.force[atom2] -= *(idat.f1);
1255 +
1256 +    if (idat.doParticlePot) {
1257 +      // This is the pairwise contribution to the particle pot.  The
1258 +      // embedding contribution is added in each of the low level
1259 +      // non-bonded routines.  In parallel, this calculation is done
1260 +      // in collectData, not in unpackInteractionData.
1261 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1262 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1263 +    }
1264      
1265 <  }
1266 <  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
1267 <  }
1265 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1266 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1267 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1268 >    }
1269  
1270 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1271 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1272 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1273 +    }
1274  
1275 + #endif
1276 +    
1277 +  }
1278 +
1279    /*
1280     * buildNeighborList
1281     *
1282     * first element of pair is row-indexed CutoffGroup
1283     * second element of pair is column-indexed CutoffGroup
1284     */
1285 <  vector<pair<int, int> >  buildNeighborList() {
1286 <    Vector3d dr, invWid, rs, shift;
1287 <    Vector3i cc, m1v, m2s;
1288 <    RealType rrNebr;
1289 <    int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset;
1285 >  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1286 >      
1287 >    vector<pair<int, int> > neighborList;
1288 >    groupCutoffs cuts;
1289 >    bool doAllPairs = false;
1290  
1291 + #ifdef IS_MPI
1292 +    cellListRow_.clear();
1293 +    cellListCol_.clear();
1294 + #else
1295 +    cellList_.clear();
1296 + #endif
1297  
1298 <    vector<pair<int, int> > neighborList;  
1299 <    Vector3i nCells;
1300 <    Vector3d invWid, r;
417 <
418 <    rList_ = (rCut_ + skinThickness_);
419 <    rl2 = rList_ * rList_;
420 <
421 <    snap_ = sman_->getCurrentSnapshot();
1298 >    RealType rList_ = (largestRcut_ + skinThickness_);
1299 >    RealType rl2 = rList_ * rList_;
1300 >    Snapshot* snap_ = sman_->getCurrentSnapshot();
1301      Mat3x3d Hmat = snap_->getHmat();
1302      Vector3d Hx = Hmat.getColumn(0);
1303      Vector3d Hy = Hmat.getColumn(1);
1304      Vector3d Hz = Hmat.getColumn(2);
1305  
1306 <    nCells.x() = (int) ( Hx.length() )/ rList_;
1307 <    nCells.y() = (int) ( Hy.length() )/ rList_;
1308 <    nCells.z() = (int) ( Hz.length() )/ rList_;
1306 >    nCells_.x() = (int) ( Hx.length() )/ rList_;
1307 >    nCells_.y() = (int) ( Hy.length() )/ rList_;
1308 >    nCells_.z() = (int) ( Hz.length() )/ rList_;
1309  
1310 <    for (i = 0; i < nGroupsInRow; i++) {
432 <      rs = cgRowData.position[i];
433 <      snap_->scaleVector(rs);    
434 <    }
1310 >    // handle small boxes where the cell offsets can end up repeating cells
1311      
1312 +    if (nCells_.x() < 3) doAllPairs = true;
1313 +    if (nCells_.y() < 3) doAllPairs = true;
1314 +    if (nCells_.z() < 3) doAllPairs = true;
1315  
1316 <    VDiv (invWid, cells, region);
1317 <    for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1;
1318 <    for (n = 0; n < nMol; n ++) {
1319 <      VSAdd (rs, mol[n].r, 0.5, region);
1320 <      VMul (cc, rs, invWid);
442 <      c = VLinear (cc, cells) + nMol;
443 <      cellList[n] = cellList[c];
444 <      cellList[c] = n;
445 <    }
446 <    nebrTabLen = 0;
447 <    for (m1z = 0; m1z < cells.z(); m1z++) {
448 <      for (m1y = 0; m1y < cells.y(); m1y++) {
449 <        for (m1x = 0; m1x < cells.x(); m1x++) {
450 <          Vector3i m1v(m1x, m1y, m1z);
451 <          m1 = VLinear(m1v, cells) + nMol;
452 <          for (offset = 0; offset < nOffset_; offset++) {
453 <            m2v = m1v + cellOffsets_[offset];
454 <            shift = V3Zero();
1316 >    Mat3x3d invHmat = snap_->getInvHmat();
1317 >    Vector3d rs, scaled, dr;
1318 >    Vector3i whichCell;
1319 >    int cellIndex;
1320 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1321  
1322 <            if (m2v.x() >= cells.x) {
1323 <              m2v.x() = 0;          
1324 <              shift.x() = region.x();  
1325 <            } else if (m2v.x() < 0) {
1326 <              m2v.x() = cells.x() - 1;
1327 <              shift.x() = - region.x();
462 <            }
1322 > #ifdef IS_MPI
1323 >    cellListRow_.resize(nCtot);
1324 >    cellListCol_.resize(nCtot);
1325 > #else
1326 >    cellList_.resize(nCtot);
1327 > #endif
1328  
1329 <            if (m2v.y() >= cells.y()) {
1330 <              m2v.y() = 0;          
466 <              shift.y() = region.y();  
467 <            } else if (m2v.y() < 0) {
468 <              m2v.y() = cells.y() - 1;
469 <              shift.y() = - region.y();
470 <            }
1329 >    if (!doAllPairs) {
1330 > #ifdef IS_MPI
1331  
1332 <            m2 = VLinear (m2v, cells) + nMol;
1333 <            for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) {
1334 <              for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) {
1335 <                if (m1 != m2 || j2 < j1) {
1336 <                  dr = mol[j1].r - mol[j2].r;
1337 <                  VSub (dr, mol[j1].r, mol[j2].r);
1338 <                  VVSub (dr, shift);
1339 <                  if (VLenSq (dr) < rrNebr) {
1340 <                    neighborList.push_back(make_pair(j1, j2));
1332 >      for (int i = 0; i < nGroupsInRow_; i++) {
1333 >        rs = cgRowData.position[i];
1334 >        
1335 >        // scaled positions relative to the box vectors
1336 >        scaled = invHmat * rs;
1337 >        
1338 >        // wrap the vector back into the unit box by subtracting integer box
1339 >        // numbers
1340 >        for (int j = 0; j < 3; j++) {
1341 >          scaled[j] -= roundMe(scaled[j]);
1342 >          scaled[j] += 0.5;
1343 >        }
1344 >        
1345 >        // find xyz-indices of cell that cutoffGroup is in.
1346 >        whichCell.x() = nCells_.x() * scaled.x();
1347 >        whichCell.y() = nCells_.y() * scaled.y();
1348 >        whichCell.z() = nCells_.z() * scaled.z();
1349 >        
1350 >        // find single index of this cell:
1351 >        cellIndex = Vlinear(whichCell, nCells_);
1352 >        
1353 >        // add this cutoff group to the list of groups in this cell;
1354 >        cellListRow_[cellIndex].push_back(i);
1355 >      }
1356 >      for (int i = 0; i < nGroupsInCol_; i++) {
1357 >        rs = cgColData.position[i];
1358 >        
1359 >        // scaled positions relative to the box vectors
1360 >        scaled = invHmat * rs;
1361 >        
1362 >        // wrap the vector back into the unit box by subtracting integer box
1363 >        // numbers
1364 >        for (int j = 0; j < 3; j++) {
1365 >          scaled[j] -= roundMe(scaled[j]);
1366 >          scaled[j] += 0.5;
1367 >        }
1368 >        
1369 >        // find xyz-indices of cell that cutoffGroup is in.
1370 >        whichCell.x() = nCells_.x() * scaled.x();
1371 >        whichCell.y() = nCells_.y() * scaled.y();
1372 >        whichCell.z() = nCells_.z() * scaled.z();
1373 >        
1374 >        // find single index of this cell:
1375 >        cellIndex = Vlinear(whichCell, nCells_);
1376 >        
1377 >        // add this cutoff group to the list of groups in this cell;
1378 >        cellListCol_[cellIndex].push_back(i);
1379 >      }
1380 >    
1381 > #else
1382 >      for (int i = 0; i < nGroups_; i++) {
1383 >        rs = snap_->cgData.position[i];
1384 >        
1385 >        // scaled positions relative to the box vectors
1386 >        scaled = invHmat * rs;
1387 >        
1388 >        // wrap the vector back into the unit box by subtracting integer box
1389 >        // numbers
1390 >        for (int j = 0; j < 3; j++) {
1391 >          scaled[j] -= roundMe(scaled[j]);
1392 >          scaled[j] += 0.5;
1393 >        }
1394 >        
1395 >        // find xyz-indices of cell that cutoffGroup is in.
1396 >        whichCell.x() = nCells_.x() * scaled.x();
1397 >        whichCell.y() = nCells_.y() * scaled.y();
1398 >        whichCell.z() = nCells_.z() * scaled.z();
1399 >        
1400 >        // find single index of this cell:
1401 >        cellIndex = Vlinear(whichCell, nCells_);
1402 >        
1403 >        // add this cutoff group to the list of groups in this cell;
1404 >        cellList_[cellIndex].push_back(i);
1405 >      }
1406 >
1407 > #endif
1408 >
1409 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1410 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1411 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1412 >            Vector3i m1v(m1x, m1y, m1z);
1413 >            int m1 = Vlinear(m1v, nCells_);
1414 >            
1415 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1416 >                 os != cellOffsets_.end(); ++os) {
1417 >              
1418 >              Vector3i m2v = m1v + (*os);
1419 >            
1420 >
1421 >              if (m2v.x() >= nCells_.x()) {
1422 >                m2v.x() = 0;          
1423 >              } else if (m2v.x() < 0) {
1424 >                m2v.x() = nCells_.x() - 1;
1425 >              }
1426 >              
1427 >              if (m2v.y() >= nCells_.y()) {
1428 >                m2v.y() = 0;          
1429 >              } else if (m2v.y() < 0) {
1430 >                m2v.y() = nCells_.y() - 1;
1431 >              }
1432 >              
1433 >              if (m2v.z() >= nCells_.z()) {
1434 >                m2v.z() = 0;          
1435 >              } else if (m2v.z() < 0) {
1436 >                m2v.z() = nCells_.z() - 1;
1437 >              }
1438 >
1439 >              int m2 = Vlinear (m2v, nCells_);
1440 >              
1441 > #ifdef IS_MPI
1442 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1443 >                   j1 != cellListRow_[m1].end(); ++j1) {
1444 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1445 >                     j2 != cellListCol_[m2].end(); ++j2) {
1446 >                  
1447 >                  // In parallel, we need to visit *all* pairs of row
1448 >                  // & column indicies and will divide labor in the
1449 >                  // force evaluation later.
1450 >                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1451 >                  snap_->wrapVector(dr);
1452 >                  cuts = getGroupCutoffs( (*j1), (*j2) );
1453 >                  if (dr.lengthSquare() < cuts.third) {
1454 >                    neighborList.push_back(make_pair((*j1), (*j2)));
1455 >                  }                  
1456 >                }
1457 >              }
1458 > #else
1459 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1460 >                   j1 != cellList_[m1].end(); ++j1) {
1461 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1462 >                     j2 != cellList_[m2].end(); ++j2) {
1463 >    
1464 >                  // Always do this if we're in different cells or if
1465 >                  // we're in the same cell and the global index of
1466 >                  // the j2 cutoff group is greater than or equal to
1467 >                  // the j1 cutoff group.  Note that Rappaport's code
1468 >                  // has a "less than" conditional here, but that
1469 >                  // deals with atom-by-atom computation.  OpenMD
1470 >                  // allows atoms within a single cutoff group to
1471 >                  // interact with each other.
1472 >
1473 >
1474 >
1475 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1476 >
1477 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1478 >                    snap_->wrapVector(dr);
1479 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1480 >                    if (dr.lengthSquare() < cuts.third) {
1481 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1482 >                    }
1483                    }
1484                  }
1485                }
1486 + #endif
1487              }
1488            }
1489          }
1490        }
1491 +    } else {
1492 +      // branch to do all cutoff group pairs
1493 + #ifdef IS_MPI
1494 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1495 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1496 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1497 +          snap_->wrapVector(dr);
1498 +          cuts = getGroupCutoffs( j1, j2 );
1499 +          if (dr.lengthSquare() < cuts.third) {
1500 +            neighborList.push_back(make_pair(j1, j2));
1501 +          }
1502 +        }
1503 +      }      
1504 + #else
1505 +      // include all groups here.
1506 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1507 +        // include self group interactions j2 == j1
1508 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1509 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1510 +          snap_->wrapVector(dr);
1511 +          cuts = getGroupCutoffs( j1, j2 );
1512 +          if (dr.lengthSquare() < cuts.third) {
1513 +            neighborList.push_back(make_pair(j1, j2));
1514 +          }
1515 +        }    
1516 +      }
1517 + #endif
1518      }
1519 +      
1520 +    // save the local cutoff group positions for the check that is
1521 +    // done on each loop:
1522 +    saved_CG_positions_.clear();
1523 +    for (int i = 0; i < nGroups_; i++)
1524 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1525 +    
1526 +    return neighborList;
1527    }
490
491  
1528   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines