36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
54 |
|
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
|
// are used when the processor can see all pairs) |
56 |
|
#ifdef IS_MPI |
57 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 |
< |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 |
< |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 |
< |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 |
< |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
57 |
> |
cellOffsets_.clear(); |
58 |
|
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
|
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
< |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 |
> |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
> |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
> |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
|
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
66 |
– |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
– |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
64 |
|
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
|
#endif |
86 |
|
} |
87 |
|
|
170 |
|
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 |
|
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 |
|
|
157 |
– |
cerr << "Atoms in Local:\n"; |
158 |
– |
for (int i = 0; i < AtomLocalToGlobal.size(); i++) { |
159 |
– |
cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n"; |
160 |
– |
} |
161 |
– |
cerr << "Atoms in Row:\n"; |
162 |
– |
for (int i = 0; i < AtomRowToGlobal.size(); i++) { |
163 |
– |
cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n"; |
164 |
– |
} |
165 |
– |
cerr << "Atoms in Col:\n"; |
166 |
– |
for (int i = 0; i < AtomColToGlobal.size(); i++) { |
167 |
– |
cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n"; |
168 |
– |
} |
169 |
– |
|
173 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
174 |
|
cgColToGlobal.resize(nGroupsInCol_); |
175 |
|
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 |
|
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
174 |
– |
|
175 |
– |
cerr << "Gruops in Local:\n"; |
176 |
– |
for (int i = 0; i < cgLocalToGlobal.size(); i++) { |
177 |
– |
cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n"; |
178 |
– |
} |
179 |
– |
cerr << "Groups in Row:\n"; |
180 |
– |
for (int i = 0; i < cgRowToGlobal.size(); i++) { |
181 |
– |
cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n"; |
182 |
– |
} |
183 |
– |
cerr << "Groups in Col:\n"; |
184 |
– |
for (int i = 0; i < cgColToGlobal.size(); i++) { |
185 |
– |
cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n"; |
186 |
– |
} |
177 |
|
|
188 |
– |
|
178 |
|
massFactorsRow.resize(nAtomsInRow_); |
179 |
|
massFactorsCol.resize(nAtomsInCol_); |
180 |
|
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
234 |
|
} |
235 |
|
} |
236 |
|
|
237 |
< |
#endif |
249 |
< |
|
250 |
< |
// allocate memory for the parallel objects |
251 |
< |
atypesLocal.resize(nLocal_); |
252 |
< |
|
253 |
< |
for (int i = 0; i < nLocal_; i++) |
254 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
255 |
< |
|
256 |
< |
groupList_.clear(); |
257 |
< |
groupList_.resize(nGroups_); |
258 |
< |
for (int i = 0; i < nGroups_; i++) { |
259 |
< |
int gid = cgLocalToGlobal[i]; |
260 |
< |
for (int j = 0; j < nLocal_; j++) { |
261 |
< |
int aid = AtomLocalToGlobal[j]; |
262 |
< |
if (globalGroupMembership[aid] == gid) { |
263 |
< |
groupList_[i].push_back(j); |
264 |
< |
} |
265 |
< |
} |
266 |
< |
} |
267 |
< |
|
237 |
> |
#else |
238 |
|
excludesForAtom.clear(); |
239 |
|
excludesForAtom.resize(nLocal_); |
240 |
|
toposForAtom.clear(); |
267 |
|
} |
268 |
|
} |
269 |
|
} |
270 |
< |
|
270 |
> |
#endif |
271 |
> |
|
272 |
> |
// allocate memory for the parallel objects |
273 |
> |
atypesLocal.resize(nLocal_); |
274 |
> |
|
275 |
> |
for (int i = 0; i < nLocal_; i++) |
276 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 |
> |
|
278 |
> |
groupList_.clear(); |
279 |
> |
groupList_.resize(nGroups_); |
280 |
> |
for (int i = 0; i < nGroups_; i++) { |
281 |
> |
int gid = cgLocalToGlobal[i]; |
282 |
> |
for (int j = 0; j < nLocal_; j++) { |
283 |
> |
int aid = AtomLocalToGlobal[j]; |
284 |
> |
if (globalGroupMembership[aid] == gid) { |
285 |
> |
groupList_[i].push_back(j); |
286 |
> |
} |
287 |
> |
} |
288 |
> |
} |
289 |
> |
|
290 |
> |
|
291 |
|
createGtypeCutoffMap(); |
292 |
|
|
293 |
|
} |
537 |
|
fill(snap_->atomData.density.begin(), |
538 |
|
snap_->atomData.density.end(), 0.0); |
539 |
|
} |
540 |
+ |
|
541 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
542 |
|
fill(snap_->atomData.functional.begin(), |
543 |
|
snap_->atomData.functional.end(), 0.0); |
544 |
|
} |
545 |
+ |
|
546 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
547 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
548 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
549 |
|
} |
550 |
+ |
|
551 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
552 |
|
fill(snap_->atomData.skippedCharge.begin(), |
553 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
554 |
|
} |
562 |
– |
|
555 |
|
} |
556 |
|
|
557 |
|
|
568 |
|
|
569 |
|
// gather up the cutoff group positions |
570 |
|
|
579 |
– |
cerr << "before gather\n"; |
580 |
– |
for (int i = 0; i < snap_->cgData.position.size(); i++) { |
581 |
– |
cerr << "cgpos = " << snap_->cgData.position[i] << "\n"; |
582 |
– |
} |
583 |
– |
|
571 |
|
cgPlanVectorRow->gather(snap_->cgData.position, |
572 |
|
cgRowData.position); |
573 |
|
|
587 |
– |
cerr << "after gather\n"; |
588 |
– |
for (int i = 0; i < cgRowData.position.size(); i++) { |
589 |
– |
cerr << "cgRpos = " << cgRowData.position[i] << "\n"; |
590 |
– |
} |
591 |
– |
|
574 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
575 |
|
cgColData.position); |
594 |
– |
for (int i = 0; i < cgColData.position.size(); i++) { |
595 |
– |
cerr << "cgCpos = " << cgColData.position[i] << "\n"; |
596 |
– |
} |
576 |
|
|
577 |
|
|
578 |
|
// if needed, gather the atomic rotation matrices |
687 |
|
} |
688 |
|
|
689 |
|
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
690 |
< |
for (int i = 0; i < ns; i++) |
690 |
> |
for (int i = 0; i < ns; i++) |
691 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
692 |
+ |
|
693 |
|
} |
694 |
|
|
695 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
711 |
|
|
712 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
713 |
|
pairwisePot += pot_temp[ii]; |
714 |
+ |
|
715 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
716 |
+ |
RealType ploc1 = pairwisePot[ii]; |
717 |
+ |
RealType ploc2 = 0.0; |
718 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
719 |
+ |
pairwisePot[ii] = ploc2; |
720 |
+ |
} |
721 |
+ |
|
722 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
723 |
+ |
RealType ploc1 = embeddingPot[ii]; |
724 |
+ |
RealType ploc2 = 0.0; |
725 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
726 |
+ |
embeddingPot[ii] = ploc2; |
727 |
+ |
} |
728 |
+ |
|
729 |
|
#endif |
730 |
|
|
736 |
– |
cerr << "pairwisePot = " << pairwisePot << "\n"; |
731 |
|
} |
732 |
|
|
733 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
762 |
|
|
763 |
|
#ifdef IS_MPI |
764 |
|
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
771 |
– |
cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n"; |
772 |
– |
cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n"; |
765 |
|
#else |
766 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
775 |
– |
cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n"; |
776 |
– |
cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n"; |
767 |
|
#endif |
768 |
|
|
769 |
|
snap_->wrapVector(d); |
838 |
|
*/ |
839 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
840 |
|
int unique_id_1, unique_id_2; |
841 |
< |
|
852 |
< |
|
853 |
< |
cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n"; |
841 |
> |
|
842 |
|
#ifdef IS_MPI |
843 |
|
// in MPI, we have to look up the unique IDs for each atom |
844 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
845 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
846 |
+ |
#else |
847 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
848 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
849 |
+ |
#endif |
850 |
|
|
859 |
– |
cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n"; |
860 |
– |
// this situation should only arise in MPI simulations |
851 |
|
if (unique_id_1 == unique_id_2) return true; |
852 |
< |
|
852 |
> |
|
853 |
> |
#ifdef IS_MPI |
854 |
|
// this prevents us from doing the pair on multiple processors |
855 |
|
if (unique_id_1 < unique_id_2) { |
856 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
857 |
|
} else { |
858 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
858 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
859 |
|
} |
860 |
|
#endif |
861 |
+ |
|
862 |
|
return false; |
863 |
|
} |
864 |
|
|
872 |
|
* field) must still be handled for these pairs. |
873 |
|
*/ |
874 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
875 |
< |
int unique_id_2; |
876 |
< |
#ifdef IS_MPI |
877 |
< |
// in MPI, we have to look up the unique IDs for the row atom. |
886 |
< |
unique_id_2 = AtomColToGlobal[atom2]; |
887 |
< |
#else |
888 |
< |
// in the normal loop, the atom numbers are unique |
889 |
< |
unique_id_2 = atom2; |
890 |
< |
#endif |
875 |
> |
|
876 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
877 |
> |
// version, and to use local IDs in the non-MPI version: |
878 |
|
|
879 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
880 |
|
i != excludesForAtom[atom1].end(); ++i) { |
881 |
< |
if ( (*i) == unique_id_2 ) return true; |
881 |
> |
if ( (*i) == atom2 ) return true; |
882 |
|
} |
883 |
|
|
884 |
|
return false; |
953 |
|
} |
954 |
|
|
955 |
|
#else |
956 |
+ |
|
957 |
+ |
|
958 |
+ |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
959 |
+ |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
960 |
+ |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
961 |
|
|
962 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
963 |
|
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1008 |
|
|
1009 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1010 |
|
#ifdef IS_MPI |
1011 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1012 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1011 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1012 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1013 |
|
|
1014 |
|
atomRowData.force[atom1] += *(idat.f1); |
1015 |
|
atomColData.force[atom2] -= *(idat.f1); |
1123 |
|
// add this cutoff group to the list of groups in this cell; |
1124 |
|
cellListCol_[cellIndex].push_back(i); |
1125 |
|
} |
1126 |
+ |
|
1127 |
|
#else |
1128 |
|
for (int i = 0; i < nGroups_; i++) { |
1129 |
|
rs = snap_->cgData.position[i]; |
1149 |
|
// add this cutoff group to the list of groups in this cell; |
1150 |
|
cellList_[cellIndex].push_back(i); |
1151 |
|
} |
1152 |
+ |
|
1153 |
|
#endif |
1154 |
|
|
1155 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1162 |
|
os != cellOffsets_.end(); ++os) { |
1163 |
|
|
1164 |
|
Vector3i m2v = m1v + (*os); |
1165 |
< |
|
1165 |
> |
|
1166 |
> |
|
1167 |
|
if (m2v.x() >= nCells_.x()) { |
1168 |
|
m2v.x() = 0; |
1169 |
|
} else if (m2v.x() < 0) { |
1181 |
|
} else if (m2v.z() < 0) { |
1182 |
|
m2v.z() = nCells_.z() - 1; |
1183 |
|
} |
1184 |
< |
|
1184 |
> |
|
1185 |
|
int m2 = Vlinear (m2v, nCells_); |
1186 |
|
|
1187 |
|
#ifdef IS_MPI |
1190 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1191 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1192 |
|
|
1193 |
< |
// In parallel, we need to visit *all* pairs of row & |
1194 |
< |
// column indicies and will truncate later on. |
1193 |
> |
// In parallel, we need to visit *all* pairs of row |
1194 |
> |
// & column indicies and will divide labor in the |
1195 |
> |
// force evaluation later. |
1196 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1197 |
|
snap_->wrapVector(dr); |
1198 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1202 |
|
} |
1203 |
|
} |
1204 |
|
#else |
1209 |
– |
|
1205 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1206 |
|
j1 != cellList_[m1].end(); ++j1) { |
1207 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1208 |
|
j2 != cellList_[m2].end(); ++j2) { |
1209 |
< |
|
1209 |
> |
|
1210 |
|
// Always do this if we're in different cells or if |
1211 |
< |
// we're in the same cell and the global index of the |
1212 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1213 |
< |
|
1214 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1211 |
> |
// we're in the same cell and the global index of |
1212 |
> |
// the j2 cutoff group is greater than or equal to |
1213 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1214 |
> |
// has a "less than" conditional here, but that |
1215 |
> |
// deals with atom-by-atom computation. OpenMD |
1216 |
> |
// allows atoms within a single cutoff group to |
1217 |
> |
// interact with each other. |
1218 |
> |
|
1219 |
> |
|
1220 |
> |
|
1221 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1222 |
> |
|
1223 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1224 |
|
snap_->wrapVector(dr); |
1225 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1238 |
|
// branch to do all cutoff group pairs |
1239 |
|
#ifdef IS_MPI |
1240 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1241 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1241 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1242 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1243 |
|
snap_->wrapVector(dr); |
1244 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1246 |
|
neighborList.push_back(make_pair(j1, j2)); |
1247 |
|
} |
1248 |
|
} |
1249 |
< |
} |
1249 |
> |
} |
1250 |
|
#else |
1251 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1252 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1251 |
> |
// include all groups here. |
1252 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1253 |
> |
// include self group interactions j2 == j1 |
1254 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1255 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1256 |
|
snap_->wrapVector(dr); |
1257 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1258 |
|
if (dr.lengthSquare() < cuts.third) { |
1259 |
|
neighborList.push_back(make_pair(j1, j2)); |
1260 |
|
} |
1261 |
< |
} |
1262 |
< |
} |
1261 |
> |
} |
1262 |
> |
} |
1263 |
|
#endif |
1264 |
|
} |
1265 |
|
|