57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
|
ff_ = info_->getForceField(); |
59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
< |
|
60 |
> |
|
61 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
– |
cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
62 |
|
// gather the information for atomtype IDs (atids): |
63 |
|
idents = info_->getIdentArray(); |
64 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
+ |
|
68 |
|
massFactors = info_->getMassFactors(); |
69 |
– |
PairList excludes = info_->getExcludedInteractions(); |
70 |
– |
PairList oneTwo = info_->getOneTwoInteractions(); |
71 |
– |
PairList oneThree = info_->getOneThreeInteractions(); |
72 |
– |
PairList oneFour = info_->getOneFourInteractions(); |
69 |
|
|
70 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
71 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
72 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
73 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
74 |
+ |
|
75 |
|
#ifdef IS_MPI |
76 |
|
|
77 |
|
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
112 |
|
AtomCommIntRow->gather(idents, identsRow); |
113 |
|
AtomCommIntColumn->gather(idents, identsCol); |
114 |
|
|
115 |
+ |
// allocate memory for the parallel objects |
116 |
+ |
atypesRow.resize(nAtomsInRow_); |
117 |
+ |
atypesCol.resize(nAtomsInCol_); |
118 |
+ |
|
119 |
+ |
for (int i = 0; i < nAtomsInRow_; i++) |
120 |
+ |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
121 |
+ |
for (int i = 0; i < nAtomsInCol_; i++) |
122 |
+ |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
123 |
+ |
|
124 |
+ |
pot_row.resize(nAtomsInRow_); |
125 |
+ |
pot_col.resize(nAtomsInCol_); |
126 |
+ |
|
127 |
+ |
AtomRowToGlobal.resize(nAtomsInRow_); |
128 |
+ |
AtomColToGlobal.resize(nAtomsInCol_); |
129 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
130 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
131 |
|
|
132 |
+ |
cgRowToGlobal.resize(nGroupsInRow_); |
133 |
+ |
cgColToGlobal.resize(nGroupsInCol_); |
134 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
135 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
136 |
|
|
137 |
+ |
massFactorsRow.resize(nAtomsInRow_); |
138 |
+ |
massFactorsCol.resize(nAtomsInCol_); |
139 |
|
AtomCommRealRow->gather(massFactors, massFactorsRow); |
140 |
|
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
141 |
|
|
161 |
|
} |
162 |
|
} |
163 |
|
|
164 |
< |
skipsForAtom.clear(); |
165 |
< |
skipsForAtom.resize(nAtomsInRow_); |
164 |
> |
excludesForAtom.clear(); |
165 |
> |
excludesForAtom.resize(nAtomsInRow_); |
166 |
|
toposForAtom.clear(); |
167 |
|
toposForAtom.resize(nAtomsInRow_); |
168 |
|
topoDist.clear(); |
173 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
174 |
|
int jglob = AtomColToGlobal[j]; |
175 |
|
|
176 |
< |
if (excludes.hasPair(iglob, jglob)) |
177 |
< |
skipsForAtom[i].push_back(j); |
176 |
> |
if (excludes->hasPair(iglob, jglob)) |
177 |
> |
excludesForAtom[i].push_back(j); |
178 |
|
|
179 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
179 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
180 |
|
toposForAtom[i].push_back(j); |
181 |
|
topoDist[i].push_back(1); |
182 |
|
} else { |
183 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
183 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
184 |
|
toposForAtom[i].push_back(j); |
185 |
|
topoDist[i].push_back(2); |
186 |
|
} else { |
187 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
187 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
188 |
|
toposForAtom[i].push_back(j); |
189 |
|
topoDist[i].push_back(3); |
190 |
|
} |
195 |
|
|
196 |
|
#endif |
197 |
|
|
198 |
+ |
// allocate memory for the parallel objects |
199 |
+ |
atypesLocal.resize(nLocal_); |
200 |
+ |
|
201 |
+ |
for (int i = 0; i < nLocal_; i++) |
202 |
+ |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 |
+ |
|
204 |
|
groupList_.clear(); |
205 |
|
groupList_.resize(nGroups_); |
206 |
|
for (int i = 0; i < nGroups_; i++) { |
213 |
|
} |
214 |
|
} |
215 |
|
|
216 |
< |
skipsForAtom.clear(); |
217 |
< |
skipsForAtom.resize(nLocal_); |
216 |
> |
excludesForAtom.clear(); |
217 |
> |
excludesForAtom.resize(nLocal_); |
218 |
|
toposForAtom.clear(); |
219 |
|
toposForAtom.resize(nLocal_); |
220 |
|
topoDist.clear(); |
226 |
|
for (int j = 0; j < nLocal_; j++) { |
227 |
|
int jglob = AtomLocalToGlobal[j]; |
228 |
|
|
229 |
< |
if (excludes.hasPair(iglob, jglob)) |
230 |
< |
skipsForAtom[i].push_back(j); |
229 |
> |
if (excludes->hasPair(iglob, jglob)) |
230 |
> |
excludesForAtom[i].push_back(j); |
231 |
|
|
232 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
232 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
233 |
|
toposForAtom[i].push_back(j); |
234 |
|
topoDist[i].push_back(1); |
235 |
|
} else { |
236 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
236 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
237 |
|
toposForAtom[i].push_back(j); |
238 |
|
topoDist[i].push_back(2); |
239 |
|
} else { |
240 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
240 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
241 |
|
toposForAtom[i].push_back(j); |
242 |
|
topoDist[i].push_back(3); |
243 |
|
} |
247 |
|
} |
248 |
|
|
249 |
|
createGtypeCutoffMap(); |
250 |
+ |
|
251 |
|
} |
252 |
|
|
253 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
254 |
< |
|
254 |
> |
|
255 |
|
RealType tol = 1e-6; |
256 |
|
RealType rc; |
257 |
|
int atid; |
258 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
259 |
< |
vector<RealType> atypeCutoff; |
234 |
< |
atypeCutoff.resize( atypes.size() ); |
259 |
> |
map<int, RealType> atypeCutoff; |
260 |
|
|
261 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
262 |
|
at != atypes.end(); ++at){ |
263 |
|
atid = (*at)->getIdent(); |
264 |
< |
|
240 |
< |
if (userChoseCutoff_) |
264 |
> |
if (userChoseCutoff_) |
265 |
|
atypeCutoff[atid] = userCutoff_; |
266 |
< |
else |
266 |
> |
else |
267 |
|
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
268 |
|
} |
269 |
|
|
270 |
|
vector<RealType> gTypeCutoffs; |
247 |
– |
|
271 |
|
// first we do a single loop over the cutoff groups to find the |
272 |
|
// largest cutoff for any atypes present in this group. |
273 |
|
#ifdef IS_MPI |
325 |
|
|
326 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
327 |
|
groupToGtype.resize(nGroups_); |
305 |
– |
|
306 |
– |
cerr << "nGroups = " << nGroups_ << "\n"; |
328 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
329 |
|
|
330 |
|
groupCutoff[cg1] = 0.0; |
353 |
|
} |
354 |
|
#endif |
355 |
|
|
335 |
– |
cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
356 |
|
// Now we find the maximum group cutoff value present in the simulation |
357 |
|
|
358 |
< |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
358 |
> |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
359 |
> |
gTypeCutoffs.end()); |
360 |
|
|
361 |
|
#ifdef IS_MPI |
362 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
362 |
> |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
363 |
> |
MPI::MAX); |
364 |
|
#endif |
365 |
|
|
366 |
|
RealType tradRcut = groupMax; |
456 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
457 |
|
|
458 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
459 |
< |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
460 |
< |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
459 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
460 |
> |
0.0); |
461 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
462 |
> |
0.0); |
463 |
|
} |
464 |
|
|
465 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
468 |
|
} |
469 |
|
|
470 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
471 |
< |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
472 |
< |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
471 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
472 |
> |
0.0); |
473 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
474 |
> |
0.0); |
475 |
|
} |
476 |
|
|
477 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
481 |
|
atomColData.functionalDerivative.end(), 0.0); |
482 |
|
} |
483 |
|
|
484 |
< |
#else |
485 |
< |
|
484 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
485 |
> |
fill(atomRowData.skippedCharge.begin(), |
486 |
> |
atomRowData.skippedCharge.end(), 0.0); |
487 |
> |
fill(atomColData.skippedCharge.begin(), |
488 |
> |
atomColData.skippedCharge.end(), 0.0); |
489 |
> |
} |
490 |
> |
|
491 |
> |
#endif |
492 |
> |
// even in parallel, we need to zero out the local arrays: |
493 |
> |
|
494 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
495 |
|
fill(snap_->atomData.particlePot.begin(), |
496 |
|
snap_->atomData.particlePot.end(), 0.0); |
508 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
509 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
510 |
|
} |
511 |
< |
#endif |
511 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
512 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
513 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
514 |
> |
} |
515 |
|
|
516 |
|
} |
517 |
|
|
548 |
|
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
549 |
|
atomColData.electroFrame); |
550 |
|
} |
551 |
+ |
|
552 |
|
#endif |
553 |
|
} |
554 |
|
|
615 |
|
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
616 |
|
for (int i = 0; i < n; i++) |
617 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
618 |
< |
|
581 |
< |
|
618 |
> |
|
619 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
620 |
|
|
621 |
< |
int nt = snap_->atomData.force.size(); |
621 |
> |
int nt = snap_->atomData.torque.size(); |
622 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
623 |
|
|
624 |
|
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
625 |
< |
for (int i = 0; i < n; i++) { |
625 |
> |
for (int i = 0; i < nt; i++) { |
626 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
627 |
|
trq_tmp[i] = 0.0; |
628 |
|
} |
629 |
|
|
630 |
|
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
631 |
< |
for (int i = 0; i < n; i++) |
631 |
> |
for (int i = 0; i < nt; i++) |
632 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
633 |
|
} |
634 |
+ |
|
635 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
636 |
+ |
|
637 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
638 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
639 |
+ |
|
640 |
+ |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
641 |
+ |
for (int i = 0; i < ns; i++) { |
642 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
643 |
+ |
skch_tmp[i] = 0.0; |
644 |
+ |
} |
645 |
+ |
|
646 |
+ |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
647 |
+ |
for (int i = 0; i < ns; i++) |
648 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
649 |
+ |
} |
650 |
|
|
651 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
652 |
|
|
769 |
|
return d; |
770 |
|
} |
771 |
|
|
772 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
773 |
< |
return skipsForAtom[atom1]; |
772 |
> |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
773 |
> |
return excludesForAtom[atom1]; |
774 |
|
} |
775 |
|
|
776 |
|
/** |
777 |
< |
* There are a number of reasons to skip a pair or a |
725 |
< |
* particle. Mostly we do this to exclude atoms who are involved in |
726 |
< |
* short range interactions (bonds, bends, torsions), but we also |
727 |
< |
* need to exclude some overcounted interactions that result from |
777 |
> |
* We need to exclude some overcounted interactions that result from |
778 |
|
* the parallel decomposition. |
779 |
|
*/ |
780 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
794 |
|
} else { |
795 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
796 |
|
} |
797 |
+ |
#endif |
798 |
+ |
return false; |
799 |
+ |
} |
800 |
+ |
|
801 |
+ |
/** |
802 |
+ |
* We need to handle the interactions for atoms who are involved in |
803 |
+ |
* the same rigid body as well as some short range interactions |
804 |
+ |
* (bonds, bends, torsions) differently from other interactions. |
805 |
+ |
* We'll still visit the pairwise routines, but with a flag that |
806 |
+ |
* tells those routines to exclude the pair from direct long range |
807 |
+ |
* interactions. Some indirect interactions (notably reaction |
808 |
+ |
* field) must still be handled for these pairs. |
809 |
+ |
*/ |
810 |
+ |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
811 |
+ |
int unique_id_2; |
812 |
+ |
|
813 |
+ |
#ifdef IS_MPI |
814 |
+ |
// in MPI, we have to look up the unique IDs for the row atom. |
815 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
816 |
|
#else |
817 |
|
// in the normal loop, the atom numbers are unique |
749 |
– |
unique_id_1 = atom1; |
818 |
|
unique_id_2 = atom2; |
819 |
|
#endif |
820 |
|
|
821 |
< |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
822 |
< |
i != skipsForAtom[atom1].end(); ++i) { |
821 |
> |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
822 |
> |
i != excludesForAtom[atom1].end(); ++i) { |
823 |
|
if ( (*i) == unique_id_2 ) return true; |
824 |
|
} |
825 |
|
|
845 |
|
|
846 |
|
// filling interaction blocks with pointers |
847 |
|
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
848 |
< |
int atom1, int atom2) { |
848 |
> |
int atom1, int atom2) { |
849 |
> |
|
850 |
> |
idat.excluded = excludeAtomPair(atom1, atom2); |
851 |
> |
|
852 |
|
#ifdef IS_MPI |
853 |
+ |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
854 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
855 |
+ |
// ff_->getAtomType(identsCol[atom2]) ); |
856 |
|
|
783 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
784 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
785 |
– |
|
857 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
858 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
859 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
889 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
890 |
|
} |
891 |
|
|
892 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
893 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
894 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
895 |
+ |
} |
896 |
+ |
|
897 |
|
#else |
898 |
|
|
899 |
< |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
900 |
< |
ff_->getAtomType(idents[atom2]) ); |
899 |
> |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
900 |
> |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
901 |
> |
// ff_->getAtomType(idents[atom2]) ); |
902 |
|
|
903 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
904 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
935 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
936 |
|
} |
937 |
|
|
938 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
939 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
940 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
941 |
+ |
} |
942 |
|
#endif |
943 |
|
} |
944 |
|
|
956 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
957 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
958 |
|
#endif |
959 |
< |
|
879 |
< |
} |
880 |
< |
|
881 |
< |
|
882 |
< |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
883 |
< |
int atom1, int atom2) { |
884 |
< |
// Still Missing:: skippedCharge fill must be added to DataStorage |
885 |
< |
#ifdef IS_MPI |
886 |
< |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
887 |
< |
ff_->getAtomType(identsCol[atom2]) ); |
888 |
< |
|
889 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
890 |
< |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
891 |
< |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
892 |
< |
} |
893 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
894 |
< |
idat.t1 = &(atomRowData.torque[atom1]); |
895 |
< |
idat.t2 = &(atomColData.torque[atom2]); |
896 |
< |
} |
897 |
< |
#else |
898 |
< |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
899 |
< |
ff_->getAtomType(idents[atom2]) ); |
900 |
< |
|
901 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
902 |
< |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
903 |
< |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
904 |
< |
} |
905 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
906 |
< |
idat.t1 = &(snap_->atomData.torque[atom1]); |
907 |
< |
idat.t2 = &(snap_->atomData.torque[atom2]); |
908 |
< |
} |
909 |
< |
#endif |
959 |
> |
|
960 |
|
} |
961 |
|
|
912 |
– |
|
913 |
– |
void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
914 |
– |
#ifdef IS_MPI |
915 |
– |
pot_row[atom1] += 0.5 * *(idat.pot); |
916 |
– |
pot_col[atom2] += 0.5 * *(idat.pot); |
917 |
– |
#else |
918 |
– |
pairwisePot += *(idat.pot); |
919 |
– |
#endif |
920 |
– |
|
921 |
– |
} |
922 |
– |
|
923 |
– |
|
962 |
|
/* |
963 |
|
* buildNeighborList |
964 |
|
* |
969 |
|
|
970 |
|
vector<pair<int, int> > neighborList; |
971 |
|
groupCutoffs cuts; |
972 |
+ |
bool doAllPairs = false; |
973 |
+ |
|
974 |
|
#ifdef IS_MPI |
975 |
|
cellListRow_.clear(); |
976 |
|
cellListCol_.clear(); |
990 |
|
nCells_.y() = (int) ( Hy.length() )/ rList_; |
991 |
|
nCells_.z() = (int) ( Hz.length() )/ rList_; |
992 |
|
|
993 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
994 |
+ |
|
995 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
996 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
997 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
998 |
+ |
|
999 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
1000 |
|
Vector3d rs, scaled, dr; |
1001 |
|
Vector3i whichCell; |
1009 |
|
cellList_.resize(nCtot); |
1010 |
|
#endif |
1011 |
|
|
1012 |
+ |
if (!doAllPairs) { |
1013 |
|
#ifdef IS_MPI |
967 |
– |
for (int i = 0; i < nGroupsInRow_; i++) { |
968 |
– |
rs = cgRowData.position[i]; |
1014 |
|
|
1015 |
< |
// scaled positions relative to the box vectors |
1016 |
< |
scaled = invHmat * rs; |
1017 |
< |
|
1018 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1019 |
< |
// numbers |
1020 |
< |
for (int j = 0; j < 3; j++) { |
1021 |
< |
scaled[j] -= roundMe(scaled[j]); |
1022 |
< |
scaled[j] += 0.5; |
1015 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
1016 |
> |
rs = cgRowData.position[i]; |
1017 |
> |
|
1018 |
> |
// scaled positions relative to the box vectors |
1019 |
> |
scaled = invHmat * rs; |
1020 |
> |
|
1021 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1022 |
> |
// numbers |
1023 |
> |
for (int j = 0; j < 3; j++) { |
1024 |
> |
scaled[j] -= roundMe(scaled[j]); |
1025 |
> |
scaled[j] += 0.5; |
1026 |
> |
} |
1027 |
> |
|
1028 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1029 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1030 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1031 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1032 |
> |
|
1033 |
> |
// find single index of this cell: |
1034 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1035 |
> |
|
1036 |
> |
// add this cutoff group to the list of groups in this cell; |
1037 |
> |
cellListRow_[cellIndex].push_back(i); |
1038 |
|
} |
1039 |
< |
|
1040 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1041 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1042 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1043 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1044 |
< |
|
1045 |
< |
// find single index of this cell: |
1046 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1047 |
< |
|
1048 |
< |
// add this cutoff group to the list of groups in this cell; |
1049 |
< |
cellListRow_[cellIndex].push_back(i); |
1050 |
< |
} |
1051 |
< |
|
1052 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
1053 |
< |
rs = cgColData.position[i]; |
1054 |
< |
|
1055 |
< |
// scaled positions relative to the box vectors |
1056 |
< |
scaled = invHmat * rs; |
1057 |
< |
|
1058 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1059 |
< |
// numbers |
1060 |
< |
for (int j = 0; j < 3; j++) { |
1061 |
< |
scaled[j] -= roundMe(scaled[j]); |
1062 |
< |
scaled[j] += 0.5; |
1039 |
> |
|
1040 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1041 |
> |
rs = cgColData.position[i]; |
1042 |
> |
|
1043 |
> |
// scaled positions relative to the box vectors |
1044 |
> |
scaled = invHmat * rs; |
1045 |
> |
|
1046 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1047 |
> |
// numbers |
1048 |
> |
for (int j = 0; j < 3; j++) { |
1049 |
> |
scaled[j] -= roundMe(scaled[j]); |
1050 |
> |
scaled[j] += 0.5; |
1051 |
> |
} |
1052 |
> |
|
1053 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1054 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1055 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1056 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1057 |
> |
|
1058 |
> |
// find single index of this cell: |
1059 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1060 |
> |
|
1061 |
> |
// add this cutoff group to the list of groups in this cell; |
1062 |
> |
cellListCol_[cellIndex].push_back(i); |
1063 |
|
} |
1004 |
– |
|
1005 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1006 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1007 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1008 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1009 |
– |
|
1010 |
– |
// find single index of this cell: |
1011 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1012 |
– |
|
1013 |
– |
// add this cutoff group to the list of groups in this cell; |
1014 |
– |
cellListCol_[cellIndex].push_back(i); |
1015 |
– |
} |
1064 |
|
#else |
1065 |
< |
for (int i = 0; i < nGroups_; i++) { |
1066 |
< |
rs = snap_->cgData.position[i]; |
1067 |
< |
|
1068 |
< |
// scaled positions relative to the box vectors |
1069 |
< |
scaled = invHmat * rs; |
1070 |
< |
|
1071 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1072 |
< |
// numbers |
1073 |
< |
for (int j = 0; j < 3; j++) { |
1074 |
< |
scaled[j] -= roundMe(scaled[j]); |
1075 |
< |
scaled[j] += 0.5; |
1065 |
> |
for (int i = 0; i < nGroups_; i++) { |
1066 |
> |
rs = snap_->cgData.position[i]; |
1067 |
> |
|
1068 |
> |
// scaled positions relative to the box vectors |
1069 |
> |
scaled = invHmat * rs; |
1070 |
> |
|
1071 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1072 |
> |
// numbers |
1073 |
> |
for (int j = 0; j < 3; j++) { |
1074 |
> |
scaled[j] -= roundMe(scaled[j]); |
1075 |
> |
scaled[j] += 0.5; |
1076 |
> |
} |
1077 |
> |
|
1078 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1079 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1080 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1081 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1082 |
> |
|
1083 |
> |
// find single index of this cell: |
1084 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1085 |
> |
|
1086 |
> |
// add this cutoff group to the list of groups in this cell; |
1087 |
> |
cellList_[cellIndex].push_back(i); |
1088 |
|
} |
1029 |
– |
|
1030 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1031 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1032 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1033 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1034 |
– |
|
1035 |
– |
// find single index of this cell: |
1036 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1037 |
– |
|
1038 |
– |
// add this cutoff group to the list of groups in this cell; |
1039 |
– |
cellList_[cellIndex].push_back(i); |
1040 |
– |
} |
1089 |
|
#endif |
1090 |
|
|
1091 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1092 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1093 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1094 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1095 |
< |
int m1 = Vlinear(m1v, nCells_); |
1048 |
< |
|
1049 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1050 |
< |
os != cellOffsets_.end(); ++os) { |
1091 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1092 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1093 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1094 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1095 |
> |
int m1 = Vlinear(m1v, nCells_); |
1096 |
|
|
1097 |
< |
Vector3i m2v = m1v + (*os); |
1098 |
< |
|
1099 |
< |
if (m2v.x() >= nCells_.x()) { |
1100 |
< |
m2v.x() = 0; |
1101 |
< |
} else if (m2v.x() < 0) { |
1102 |
< |
m2v.x() = nCells_.x() - 1; |
1103 |
< |
} |
1104 |
< |
|
1105 |
< |
if (m2v.y() >= nCells_.y()) { |
1106 |
< |
m2v.y() = 0; |
1107 |
< |
} else if (m2v.y() < 0) { |
1108 |
< |
m2v.y() = nCells_.y() - 1; |
1109 |
< |
} |
1110 |
< |
|
1111 |
< |
if (m2v.z() >= nCells_.z()) { |
1112 |
< |
m2v.z() = 0; |
1113 |
< |
} else if (m2v.z() < 0) { |
1114 |
< |
m2v.z() = nCells_.z() - 1; |
1115 |
< |
} |
1116 |
< |
|
1117 |
< |
int m2 = Vlinear (m2v, nCells_); |
1118 |
< |
|
1097 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1098 |
> |
os != cellOffsets_.end(); ++os) { |
1099 |
> |
|
1100 |
> |
Vector3i m2v = m1v + (*os); |
1101 |
> |
|
1102 |
> |
if (m2v.x() >= nCells_.x()) { |
1103 |
> |
m2v.x() = 0; |
1104 |
> |
} else if (m2v.x() < 0) { |
1105 |
> |
m2v.x() = nCells_.x() - 1; |
1106 |
> |
} |
1107 |
> |
|
1108 |
> |
if (m2v.y() >= nCells_.y()) { |
1109 |
> |
m2v.y() = 0; |
1110 |
> |
} else if (m2v.y() < 0) { |
1111 |
> |
m2v.y() = nCells_.y() - 1; |
1112 |
> |
} |
1113 |
> |
|
1114 |
> |
if (m2v.z() >= nCells_.z()) { |
1115 |
> |
m2v.z() = 0; |
1116 |
> |
} else if (m2v.z() < 0) { |
1117 |
> |
m2v.z() = nCells_.z() - 1; |
1118 |
> |
} |
1119 |
> |
|
1120 |
> |
int m2 = Vlinear (m2v, nCells_); |
1121 |
> |
|
1122 |
|
#ifdef IS_MPI |
1123 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1124 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1125 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1126 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1127 |
< |
|
1128 |
< |
// Always do this if we're in different cells or if |
1129 |
< |
// we're in the same cell and the global index of the |
1130 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1131 |
< |
|
1132 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1133 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1134 |
< |
snap_->wrapVector(dr); |
1135 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1136 |
< |
if (dr.lengthSquare() < cuts.third) { |
1137 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1123 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1124 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1125 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1126 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1127 |
> |
|
1128 |
> |
// Always do this if we're in different cells or if |
1129 |
> |
// we're in the same cell and the global index of the |
1130 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1131 |
> |
|
1132 |
> |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1133 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1134 |
> |
snap_->wrapVector(dr); |
1135 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1136 |
> |
if (dr.lengthSquare() < cuts.third) { |
1137 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1138 |
> |
} |
1139 |
|
} |
1140 |
|
} |
1141 |
|
} |
1093 |
– |
} |
1142 |
|
#else |
1143 |
< |
|
1144 |
< |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1145 |
< |
j1 != cellList_[m1].end(); ++j1) { |
1146 |
< |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1147 |
< |
j2 != cellList_[m2].end(); ++j2) { |
1148 |
< |
|
1149 |
< |
// Always do this if we're in different cells or if |
1150 |
< |
// we're in the same cell and the global index of the |
1151 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1152 |
< |
|
1153 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1154 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1155 |
< |
snap_->wrapVector(dr); |
1156 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1157 |
< |
if (dr.lengthSquare() < cuts.third) { |
1158 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1143 |
> |
|
1144 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1145 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1146 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1147 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1148 |
> |
|
1149 |
> |
// Always do this if we're in different cells or if |
1150 |
> |
// we're in the same cell and the global index of the |
1151 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1152 |
> |
|
1153 |
> |
if (m2 != m1 || (*j2) < (*j1)) { |
1154 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1155 |
> |
snap_->wrapVector(dr); |
1156 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1157 |
> |
if (dr.lengthSquare() < cuts.third) { |
1158 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1159 |
> |
} |
1160 |
|
} |
1161 |
|
} |
1162 |
|
} |
1114 |
– |
} |
1163 |
|
#endif |
1164 |
+ |
} |
1165 |
|
} |
1166 |
|
} |
1167 |
|
} |
1168 |
+ |
} else { |
1169 |
+ |
// branch to do all cutoff group pairs |
1170 |
+ |
#ifdef IS_MPI |
1171 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1172 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1173 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1174 |
+ |
snap_->wrapVector(dr); |
1175 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1176 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1177 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1178 |
+ |
} |
1179 |
+ |
} |
1180 |
+ |
} |
1181 |
+ |
#else |
1182 |
+ |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1183 |
+ |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1184 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1185 |
+ |
snap_->wrapVector(dr); |
1186 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1187 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1188 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1189 |
+ |
} |
1190 |
+ |
} |
1191 |
+ |
} |
1192 |
+ |
#endif |
1193 |
|
} |
1194 |
< |
|
1194 |
> |
|
1195 |
|
// save the local cutoff group positions for the check that is |
1196 |
|
// done on each loop: |
1197 |
|
saved_CG_positions_.clear(); |
1198 |
|
for (int i = 0; i < nGroups_; i++) |
1199 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1200 |
< |
|
1200 |
> |
|
1201 |
|
return neighborList; |
1202 |
|
} |
1203 |
|
} //end namespace OpenMD |