57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
|
ff_ = info_->getForceField(); |
59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
< |
|
60 |
> |
|
61 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
|
// gather the information for atomtype IDs (atids): |
63 |
|
idents = info_->getIdentArray(); |
67 |
|
|
68 |
|
massFactors = info_->getMassFactors(); |
69 |
|
|
70 |
< |
PairList excludes = info_->getExcludedInteractions(); |
71 |
< |
PairList oneTwo = info_->getOneTwoInteractions(); |
72 |
< |
PairList oneThree = info_->getOneThreeInteractions(); |
73 |
< |
PairList oneFour = info_->getOneFourInteractions(); |
70 |
> |
PairList* excludes = info_->getExcludedInteractions(); |
71 |
> |
PairList* oneTwo = info_->getOneTwoInteractions(); |
72 |
> |
PairList* oneThree = info_->getOneThreeInteractions(); |
73 |
> |
PairList* oneFour = info_->getOneFourInteractions(); |
74 |
|
|
75 |
|
#ifdef IS_MPI |
76 |
|
|
112 |
|
AtomCommIntRow->gather(idents, identsRow); |
113 |
|
AtomCommIntColumn->gather(idents, identsCol); |
114 |
|
|
115 |
+ |
vector<int>::iterator it; |
116 |
+ |
for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) { |
117 |
+ |
cerr << "my AtomLocalToGlobal = " << (*it) << "\n"; |
118 |
+ |
} |
119 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
120 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
121 |
|
|
147 |
|
} |
148 |
|
} |
149 |
|
|
150 |
< |
skipsForAtom.clear(); |
151 |
< |
skipsForAtom.resize(nAtomsInRow_); |
150 |
> |
excludesForAtom.clear(); |
151 |
> |
excludesForAtom.resize(nAtomsInRow_); |
152 |
|
toposForAtom.clear(); |
153 |
|
toposForAtom.resize(nAtomsInRow_); |
154 |
|
topoDist.clear(); |
159 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
160 |
|
int jglob = AtomColToGlobal[j]; |
161 |
|
|
162 |
< |
if (excludes.hasPair(iglob, jglob)) |
163 |
< |
skipsForAtom[i].push_back(j); |
162 |
> |
if (excludes->hasPair(iglob, jglob)) |
163 |
> |
excludesForAtom[i].push_back(j); |
164 |
|
|
165 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
165 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
166 |
|
toposForAtom[i].push_back(j); |
167 |
|
topoDist[i].push_back(1); |
168 |
|
} else { |
169 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
169 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
170 |
|
toposForAtom[i].push_back(j); |
171 |
|
topoDist[i].push_back(2); |
172 |
|
} else { |
173 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
173 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
174 |
|
toposForAtom[i].push_back(j); |
175 |
|
topoDist[i].push_back(3); |
176 |
|
} |
193 |
|
} |
194 |
|
} |
195 |
|
|
196 |
< |
skipsForAtom.clear(); |
197 |
< |
skipsForAtom.resize(nLocal_); |
196 |
> |
excludesForAtom.clear(); |
197 |
> |
excludesForAtom.resize(nLocal_); |
198 |
|
toposForAtom.clear(); |
199 |
|
toposForAtom.resize(nLocal_); |
200 |
|
topoDist.clear(); |
206 |
|
for (int j = 0; j < nLocal_; j++) { |
207 |
|
int jglob = AtomLocalToGlobal[j]; |
208 |
|
|
209 |
< |
if (excludes.hasPair(iglob, jglob)) |
210 |
< |
skipsForAtom[i].push_back(j); |
209 |
> |
if (excludes->hasPair(iglob, jglob)) |
210 |
> |
excludesForAtom[i].push_back(j); |
211 |
|
|
212 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
212 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
213 |
|
toposForAtom[i].push_back(j); |
214 |
|
topoDist[i].push_back(1); |
215 |
|
} else { |
216 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
216 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
217 |
|
toposForAtom[i].push_back(j); |
218 |
|
topoDist[i].push_back(2); |
219 |
|
} else { |
220 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
220 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
221 |
|
toposForAtom[i].push_back(j); |
222 |
|
topoDist[i].push_back(3); |
223 |
|
} |
227 |
|
} |
228 |
|
|
229 |
|
createGtypeCutoffMap(); |
230 |
+ |
|
231 |
|
} |
232 |
|
|
233 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
236 |
|
RealType rc; |
237 |
|
int atid; |
238 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
239 |
< |
vector<RealType> atypeCutoff; |
235 |
< |
atypeCutoff.resize( atypes.size() ); |
239 |
> |
map<int, RealType> atypeCutoff; |
240 |
|
|
241 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
242 |
|
at != atypes.end(); ++at){ |
243 |
|
atid = (*at)->getIdent(); |
244 |
< |
|
241 |
< |
if (userChoseCutoff_) |
244 |
> |
if (userChoseCutoff_) |
245 |
|
atypeCutoff[atid] = userCutoff_; |
246 |
< |
else |
246 |
> |
else |
247 |
|
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
248 |
|
} |
249 |
|
|
250 |
|
vector<RealType> gTypeCutoffs; |
248 |
– |
|
251 |
|
// first we do a single loop over the cutoff groups to find the |
252 |
|
// largest cutoff for any atypes present in this group. |
253 |
|
#ifdef IS_MPI |
305 |
|
|
306 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
307 |
|
groupToGtype.resize(nGroups_); |
306 |
– |
|
308 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
309 |
|
|
310 |
|
groupCutoff[cg1] = 0.0; |
456 |
|
} |
457 |
|
|
458 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
459 |
< |
fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0); |
460 |
< |
fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0); |
459 |
> |
fill(atomRowData.skippedCharge.begin(), |
460 |
> |
atomRowData.skippedCharge.end(), 0.0); |
461 |
> |
fill(atomColData.skippedCharge.begin(), |
462 |
> |
atomColData.skippedCharge.end(), 0.0); |
463 |
|
} |
464 |
|
|
465 |
|
#else |
592 |
|
|
593 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
594 |
|
|
595 |
< |
int nt = snap_->atomData.force.size(); |
595 |
> |
int nt = snap_->atomData.torque.size(); |
596 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
597 |
|
|
598 |
|
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
599 |
< |
for (int i = 0; i < n; i++) { |
599 |
> |
for (int i = 0; i < nt; i++) { |
600 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
601 |
|
trq_tmp[i] = 0.0; |
602 |
|
} |
603 |
|
|
604 |
|
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
605 |
< |
for (int i = 0; i < n; i++) |
605 |
> |
for (int i = 0; i < nt; i++) |
606 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
607 |
|
} |
608 |
+ |
|
609 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
610 |
+ |
|
611 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
612 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
613 |
+ |
|
614 |
+ |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
615 |
+ |
for (int i = 0; i < ns; i++) { |
616 |
+ |
snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
617 |
+ |
skch_tmp[i] = 0.0; |
618 |
+ |
} |
619 |
+ |
|
620 |
+ |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
621 |
+ |
for (int i = 0; i < ns; i++) |
622 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
623 |
+ |
} |
624 |
|
|
625 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
626 |
|
|
743 |
|
return d; |
744 |
|
} |
745 |
|
|
746 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
747 |
< |
return skipsForAtom[atom1]; |
746 |
> |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
747 |
> |
return excludesForAtom[atom1]; |
748 |
|
} |
749 |
|
|
750 |
|
/** |
751 |
< |
* There are a number of reasons to skip a pair or a |
733 |
< |
* particle. Mostly we do this to exclude atoms who are involved in |
734 |
< |
* short range interactions (bonds, bends, torsions), but we also |
735 |
< |
* need to exclude some overcounted interactions that result from |
751 |
> |
* We need to exclude some overcounted interactions that result from |
752 |
|
* the parallel decomposition. |
753 |
|
*/ |
754 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
768 |
|
} else { |
769 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
770 |
|
} |
771 |
+ |
#endif |
772 |
+ |
return false; |
773 |
+ |
} |
774 |
+ |
|
775 |
+ |
/** |
776 |
+ |
* We need to handle the interactions for atoms who are involved in |
777 |
+ |
* the same rigid body as well as some short range interactions |
778 |
+ |
* (bonds, bends, torsions) differently from other interactions. |
779 |
+ |
* We'll still visit the pairwise routines, but with a flag that |
780 |
+ |
* tells those routines to exclude the pair from direct long range |
781 |
+ |
* interactions. Some indirect interactions (notably reaction |
782 |
+ |
* field) must still be handled for these pairs. |
783 |
+ |
*/ |
784 |
+ |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
785 |
+ |
int unique_id_2; |
786 |
+ |
|
787 |
+ |
#ifdef IS_MPI |
788 |
+ |
// in MPI, we have to look up the unique IDs for the row atom. |
789 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
790 |
|
#else |
791 |
|
// in the normal loop, the atom numbers are unique |
757 |
– |
unique_id_1 = atom1; |
792 |
|
unique_id_2 = atom2; |
793 |
|
#endif |
794 |
|
|
795 |
< |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
796 |
< |
i != skipsForAtom[atom1].end(); ++i) { |
795 |
> |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
796 |
> |
i != excludesForAtom[atom1].end(); ++i) { |
797 |
|
if ( (*i) == unique_id_2 ) return true; |
798 |
|
} |
799 |
|
|
819 |
|
|
820 |
|
// filling interaction blocks with pointers |
821 |
|
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
822 |
< |
int atom1, int atom2) { |
822 |
> |
int atom1, int atom2) { |
823 |
> |
|
824 |
> |
idat.excluded = excludeAtomPair(atom1, atom2); |
825 |
> |
|
826 |
|
#ifdef IS_MPI |
827 |
|
|
828 |
|
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
863 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
864 |
|
} |
865 |
|
|
866 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
867 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
868 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
869 |
+ |
} |
870 |
+ |
|
871 |
|
#else |
872 |
|
|
873 |
|
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
908 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
909 |
|
} |
910 |
|
|
911 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
912 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
913 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
914 |
+ |
} |
915 |
|
#endif |
916 |
|
} |
917 |
|
|
932 |
|
|
933 |
|
} |
934 |
|
|
889 |
– |
|
890 |
– |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
891 |
– |
int atom1, int atom2) { |
892 |
– |
#ifdef IS_MPI |
893 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
894 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
895 |
– |
|
896 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
897 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
898 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
899 |
– |
} |
900 |
– |
|
901 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
902 |
– |
idat.t1 = &(atomRowData.torque[atom1]); |
903 |
– |
idat.t2 = &(atomColData.torque[atom2]); |
904 |
– |
} |
905 |
– |
|
906 |
– |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
907 |
– |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
908 |
– |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
909 |
– |
} |
910 |
– |
#else |
911 |
– |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
912 |
– |
ff_->getAtomType(idents[atom2]) ); |
913 |
– |
|
914 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
915 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
916 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
917 |
– |
} |
918 |
– |
|
919 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
920 |
– |
idat.t1 = &(snap_->atomData.torque[atom1]); |
921 |
– |
idat.t2 = &(snap_->atomData.torque[atom2]); |
922 |
– |
} |
923 |
– |
|
924 |
– |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
925 |
– |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
926 |
– |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
927 |
– |
} |
928 |
– |
#endif |
929 |
– |
} |
930 |
– |
|
931 |
– |
|
932 |
– |
void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
933 |
– |
#ifdef IS_MPI |
934 |
– |
pot_row[atom1] += 0.5 * *(idat.pot); |
935 |
– |
pot_col[atom2] += 0.5 * *(idat.pot); |
936 |
– |
#else |
937 |
– |
pairwisePot += *(idat.pot); |
938 |
– |
#endif |
939 |
– |
|
940 |
– |
} |
941 |
– |
|
942 |
– |
|
935 |
|
/* |
936 |
|
* buildNeighborList |
937 |
|
* |
942 |
|
|
943 |
|
vector<pair<int, int> > neighborList; |
944 |
|
groupCutoffs cuts; |
945 |
+ |
bool doAllPairs = false; |
946 |
+ |
|
947 |
|
#ifdef IS_MPI |
948 |
|
cellListRow_.clear(); |
949 |
|
cellListCol_.clear(); |
963 |
|
nCells_.y() = (int) ( Hy.length() )/ rList_; |
964 |
|
nCells_.z() = (int) ( Hz.length() )/ rList_; |
965 |
|
|
966 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
967 |
+ |
|
968 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
969 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
970 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
971 |
+ |
|
972 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
973 |
|
Vector3d rs, scaled, dr; |
974 |
|
Vector3i whichCell; |
982 |
|
cellList_.resize(nCtot); |
983 |
|
#endif |
984 |
|
|
985 |
+ |
if (!doAllPairs) { |
986 |
|
#ifdef IS_MPI |
986 |
– |
for (int i = 0; i < nGroupsInRow_; i++) { |
987 |
– |
rs = cgRowData.position[i]; |
987 |
|
|
988 |
< |
// scaled positions relative to the box vectors |
989 |
< |
scaled = invHmat * rs; |
990 |
< |
|
991 |
< |
// wrap the vector back into the unit box by subtracting integer box |
992 |
< |
// numbers |
993 |
< |
for (int j = 0; j < 3; j++) { |
994 |
< |
scaled[j] -= roundMe(scaled[j]); |
995 |
< |
scaled[j] += 0.5; |
996 |
< |
} |
997 |
< |
|
998 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
999 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1000 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1001 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1002 |
< |
|
1003 |
< |
// find single index of this cell: |
1004 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1005 |
< |
|
1006 |
< |
// add this cutoff group to the list of groups in this cell; |
1007 |
< |
cellListRow_[cellIndex].push_back(i); |
1008 |
< |
} |
1009 |
< |
|
1010 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
1011 |
< |
rs = cgColData.position[i]; |
1012 |
< |
|
1013 |
< |
// scaled positions relative to the box vectors |
1014 |
< |
scaled = invHmat * rs; |
1015 |
< |
|
1016 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1017 |
< |
// numbers |
1018 |
< |
for (int j = 0; j < 3; j++) { |
1019 |
< |
scaled[j] -= roundMe(scaled[j]); |
1020 |
< |
scaled[j] += 0.5; |
1021 |
< |
} |
1022 |
< |
|
1023 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1024 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1025 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1026 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1027 |
< |
|
1028 |
< |
// find single index of this cell: |
1029 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1030 |
< |
|
1031 |
< |
// add this cutoff group to the list of groups in this cell; |
1032 |
< |
cellListCol_[cellIndex].push_back(i); |
1033 |
< |
} |
988 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
989 |
> |
rs = cgRowData.position[i]; |
990 |
> |
|
991 |
> |
// scaled positions relative to the box vectors |
992 |
> |
scaled = invHmat * rs; |
993 |
> |
|
994 |
> |
// wrap the vector back into the unit box by subtracting integer box |
995 |
> |
// numbers |
996 |
> |
for (int j = 0; j < 3; j++) { |
997 |
> |
scaled[j] -= roundMe(scaled[j]); |
998 |
> |
scaled[j] += 0.5; |
999 |
> |
} |
1000 |
> |
|
1001 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1002 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1003 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1004 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1005 |
> |
|
1006 |
> |
// find single index of this cell: |
1007 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1008 |
> |
|
1009 |
> |
// add this cutoff group to the list of groups in this cell; |
1010 |
> |
cellListRow_[cellIndex].push_back(i); |
1011 |
> |
} |
1012 |
> |
|
1013 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1014 |
> |
rs = cgColData.position[i]; |
1015 |
> |
|
1016 |
> |
// scaled positions relative to the box vectors |
1017 |
> |
scaled = invHmat * rs; |
1018 |
> |
|
1019 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1020 |
> |
// numbers |
1021 |
> |
for (int j = 0; j < 3; j++) { |
1022 |
> |
scaled[j] -= roundMe(scaled[j]); |
1023 |
> |
scaled[j] += 0.5; |
1024 |
> |
} |
1025 |
> |
|
1026 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1027 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1028 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1029 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1030 |
> |
|
1031 |
> |
// find single index of this cell: |
1032 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1033 |
> |
|
1034 |
> |
// add this cutoff group to the list of groups in this cell; |
1035 |
> |
cellListCol_[cellIndex].push_back(i); |
1036 |
> |
} |
1037 |
|
#else |
1038 |
< |
for (int i = 0; i < nGroups_; i++) { |
1039 |
< |
rs = snap_->cgData.position[i]; |
1040 |
< |
|
1041 |
< |
// scaled positions relative to the box vectors |
1042 |
< |
scaled = invHmat * rs; |
1043 |
< |
|
1044 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1045 |
< |
// numbers |
1046 |
< |
for (int j = 0; j < 3; j++) { |
1047 |
< |
scaled[j] -= roundMe(scaled[j]); |
1048 |
< |
scaled[j] += 0.5; |
1038 |
> |
for (int i = 0; i < nGroups_; i++) { |
1039 |
> |
rs = snap_->cgData.position[i]; |
1040 |
> |
|
1041 |
> |
// scaled positions relative to the box vectors |
1042 |
> |
scaled = invHmat * rs; |
1043 |
> |
|
1044 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1045 |
> |
// numbers |
1046 |
> |
for (int j = 0; j < 3; j++) { |
1047 |
> |
scaled[j] -= roundMe(scaled[j]); |
1048 |
> |
scaled[j] += 0.5; |
1049 |
> |
} |
1050 |
> |
|
1051 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1052 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1053 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1054 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1055 |
> |
|
1056 |
> |
// find single index of this cell: |
1057 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1058 |
> |
|
1059 |
> |
// add this cutoff group to the list of groups in this cell; |
1060 |
> |
cellList_[cellIndex].push_back(i); |
1061 |
|
} |
1048 |
– |
|
1049 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1050 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1051 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1052 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1053 |
– |
|
1054 |
– |
// find single index of this cell: |
1055 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1056 |
– |
|
1057 |
– |
// add this cutoff group to the list of groups in this cell; |
1058 |
– |
cellList_[cellIndex].push_back(i); |
1059 |
– |
} |
1062 |
|
#endif |
1063 |
|
|
1064 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1065 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1066 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1067 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1068 |
< |
int m1 = Vlinear(m1v, nCells_); |
1067 |
< |
|
1068 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1069 |
< |
os != cellOffsets_.end(); ++os) { |
1064 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1065 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1066 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1067 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1068 |
> |
int m1 = Vlinear(m1v, nCells_); |
1069 |
|
|
1070 |
< |
Vector3i m2v = m1v + (*os); |
1071 |
< |
|
1072 |
< |
if (m2v.x() >= nCells_.x()) { |
1073 |
< |
m2v.x() = 0; |
1074 |
< |
} else if (m2v.x() < 0) { |
1075 |
< |
m2v.x() = nCells_.x() - 1; |
1076 |
< |
} |
1077 |
< |
|
1078 |
< |
if (m2v.y() >= nCells_.y()) { |
1079 |
< |
m2v.y() = 0; |
1080 |
< |
} else if (m2v.y() < 0) { |
1081 |
< |
m2v.y() = nCells_.y() - 1; |
1082 |
< |
} |
1083 |
< |
|
1084 |
< |
if (m2v.z() >= nCells_.z()) { |
1085 |
< |
m2v.z() = 0; |
1086 |
< |
} else if (m2v.z() < 0) { |
1087 |
< |
m2v.z() = nCells_.z() - 1; |
1088 |
< |
} |
1089 |
< |
|
1090 |
< |
int m2 = Vlinear (m2v, nCells_); |
1091 |
< |
|
1070 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1071 |
> |
os != cellOffsets_.end(); ++os) { |
1072 |
> |
|
1073 |
> |
Vector3i m2v = m1v + (*os); |
1074 |
> |
|
1075 |
> |
if (m2v.x() >= nCells_.x()) { |
1076 |
> |
m2v.x() = 0; |
1077 |
> |
} else if (m2v.x() < 0) { |
1078 |
> |
m2v.x() = nCells_.x() - 1; |
1079 |
> |
} |
1080 |
> |
|
1081 |
> |
if (m2v.y() >= nCells_.y()) { |
1082 |
> |
m2v.y() = 0; |
1083 |
> |
} else if (m2v.y() < 0) { |
1084 |
> |
m2v.y() = nCells_.y() - 1; |
1085 |
> |
} |
1086 |
> |
|
1087 |
> |
if (m2v.z() >= nCells_.z()) { |
1088 |
> |
m2v.z() = 0; |
1089 |
> |
} else if (m2v.z() < 0) { |
1090 |
> |
m2v.z() = nCells_.z() - 1; |
1091 |
> |
} |
1092 |
> |
|
1093 |
> |
int m2 = Vlinear (m2v, nCells_); |
1094 |
> |
|
1095 |
|
#ifdef IS_MPI |
1096 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1097 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1098 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1099 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1100 |
< |
|
1101 |
< |
// Always do this if we're in different cells or if |
1102 |
< |
// we're in the same cell and the global index of the |
1103 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1104 |
< |
|
1105 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1106 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1107 |
< |
snap_->wrapVector(dr); |
1108 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1109 |
< |
if (dr.lengthSquare() < cuts.third) { |
1110 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1096 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1097 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1098 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1099 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1100 |
> |
|
1101 |
> |
// Always do this if we're in different cells or if |
1102 |
> |
// we're in the same cell and the global index of the |
1103 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1104 |
> |
|
1105 |
> |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1106 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1107 |
> |
snap_->wrapVector(dr); |
1108 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1109 |
> |
if (dr.lengthSquare() < cuts.third) { |
1110 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1111 |
> |
} |
1112 |
|
} |
1113 |
|
} |
1114 |
|
} |
1112 |
– |
} |
1115 |
|
#else |
1116 |
< |
|
1117 |
< |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1118 |
< |
j1 != cellList_[m1].end(); ++j1) { |
1119 |
< |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1120 |
< |
j2 != cellList_[m2].end(); ++j2) { |
1121 |
< |
|
1122 |
< |
// Always do this if we're in different cells or if |
1123 |
< |
// we're in the same cell and the global index of the |
1124 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1125 |
< |
|
1126 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1127 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1128 |
< |
snap_->wrapVector(dr); |
1129 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1130 |
< |
if (dr.lengthSquare() < cuts.third) { |
1131 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1116 |
> |
|
1117 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1118 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1119 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1120 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1121 |
> |
|
1122 |
> |
// Always do this if we're in different cells or if |
1123 |
> |
// we're in the same cell and the global index of the |
1124 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1125 |
> |
|
1126 |
> |
if (m2 != m1 || (*j2) < (*j1)) { |
1127 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1128 |
> |
snap_->wrapVector(dr); |
1129 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1130 |
> |
if (dr.lengthSquare() < cuts.third) { |
1131 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1132 |
> |
} |
1133 |
|
} |
1134 |
|
} |
1135 |
|
} |
1133 |
– |
} |
1136 |
|
#endif |
1137 |
+ |
} |
1138 |
|
} |
1139 |
|
} |
1140 |
|
} |
1141 |
+ |
} else { |
1142 |
+ |
// branch to do all cutoff group pairs |
1143 |
+ |
#ifdef IS_MPI |
1144 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1145 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1146 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1147 |
+ |
snap_->wrapVector(dr); |
1148 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1149 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1150 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1151 |
+ |
} |
1152 |
+ |
} |
1153 |
+ |
} |
1154 |
+ |
#else |
1155 |
+ |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1156 |
+ |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1157 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1158 |
+ |
snap_->wrapVector(dr); |
1159 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1160 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1161 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1162 |
+ |
} |
1163 |
+ |
} |
1164 |
+ |
} |
1165 |
+ |
#endif |
1166 |
|
} |
1167 |
< |
|
1167 |
> |
|
1168 |
|
// save the local cutoff group positions for the check that is |
1169 |
|
// done on each loop: |
1170 |
|
saved_CG_positions_.clear(); |
1171 |
|
for (int i = 0; i < nGroups_; i++) |
1172 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1173 |
< |
|
1173 |
> |
|
1174 |
|
return neighborList; |
1175 |
|
} |
1176 |
|
} //end namespace OpenMD |