ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1575 by gezelter, Fri Jun 3 21:39:49 2011 UTC vs.
Revision 1589 by gezelter, Sun Jul 10 16:05:34 2011 UTC

# Line 57 | Line 57 | namespace OpenMD {
57      storageLayout_ = sman_->getStorageLayout();
58      ff_ = info_->getForceField();
59      nLocal_ = snap_->getNumberOfAtoms();
60 <    nGroups_ = snap_->getNumberOfCutoffGroups();
61 <
60 >    
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62      // gather the information for atomtype IDs (atids):
63 <    identsLocal = info_->getIdentArray();
63 >    idents = info_->getIdentArray();
64      AtomLocalToGlobal = info_->getGlobalAtomIndices();
65      cgLocalToGlobal = info_->getGlobalGroupIndices();
66      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67    vector<RealType> massFactorsLocal = info_->getMassFactors();
68    PairList excludes = info_->getExcludedInteractions();
69    PairList oneTwo = info_->getOneTwoInteractions();
70    PairList oneThree = info_->getOneThreeInteractions();
71    PairList oneFour = info_->getOneFourInteractions();
67  
68 +    massFactors = info_->getMassFactors();
69 +
70 +    PairList* excludes = info_->getExcludedInteractions();
71 +    PairList* oneTwo = info_->getOneTwoInteractions();
72 +    PairList* oneThree = info_->getOneThreeInteractions();
73 +    PairList* oneFour = info_->getOneFourInteractions();
74 +
75   #ifdef IS_MPI
76  
77      AtomCommIntRow = new Communicator<Row,int>(nLocal_);
# Line 104 | Line 106 | namespace OpenMD {
106      cgColData.resize(nGroupsInCol_);
107      cgColData.setStorageLayout(DataStorage::dslPosition);
108          
109 <    identsRow.reserve(nAtomsInRow_);
110 <    identsCol.reserve(nAtomsInCol_);
109 >    identsRow.resize(nAtomsInRow_);
110 >    identsCol.resize(nAtomsInCol_);
111      
112 <    AtomCommIntRow->gather(identsLocal, identsRow);
113 <    AtomCommIntColumn->gather(identsLocal, identsCol);
112 >    AtomCommIntRow->gather(idents, identsRow);
113 >    AtomCommIntColumn->gather(idents, identsCol);
114      
115 +    // allocate memory for the parallel objects
116 +    AtomRowToGlobal.resize(nAtomsInRow_);
117 +    AtomColToGlobal.resize(nAtomsInCol_);
118 +    cgRowToGlobal.resize(nGroupsInRow_);
119 +    cgColToGlobal.resize(nGroupsInCol_);
120 +    massFactorsRow.resize(nAtomsInRow_);
121 +    massFactorsCol.resize(nAtomsInCol_);
122 +    pot_row.resize(nAtomsInRow_);
123 +    pot_col.resize(nAtomsInCol_);
124 +
125      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
126      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
127      
128      cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
129      cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
130  
131 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
132 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
131 >    AtomCommRealRow->gather(massFactors, massFactorsRow);
132 >    AtomCommRealColumn->gather(massFactors, massFactorsCol);
133  
134      groupListRow_.clear();
135 <    groupListRow_.reserve(nGroupsInRow_);
135 >    groupListRow_.resize(nGroupsInRow_);
136      for (int i = 0; i < nGroupsInRow_; i++) {
137        int gid = cgRowToGlobal[i];
138        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 131 | Line 143 | namespace OpenMD {
143      }
144  
145      groupListCol_.clear();
146 <    groupListCol_.reserve(nGroupsInCol_);
146 >    groupListCol_.resize(nGroupsInCol_);
147      for (int i = 0; i < nGroupsInCol_; i++) {
148        int gid = cgColToGlobal[i];
149        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 141 | Line 153 | namespace OpenMD {
153        }      
154      }
155  
156 <    skipsForRowAtom.clear();
157 <    skipsForRowAtom.reserve(nAtomsInRow_);
156 >    excludesForAtom.clear();
157 >    excludesForAtom.resize(nAtomsInRow_);
158 >    toposForAtom.clear();
159 >    toposForAtom.resize(nAtomsInRow_);
160 >    topoDist.clear();
161 >    topoDist.resize(nAtomsInRow_);
162      for (int i = 0; i < nAtomsInRow_; i++) {
163        int iglob = AtomRowToGlobal[i];
148      for (int j = 0; j < nAtomsInCol_; j++) {
149        int jglob = AtomColToGlobal[j];        
150        if (excludes.hasPair(iglob, jglob))
151          skipsForRowAtom[i].push_back(j);      
152      }      
153    }
164  
155    toposForRowAtom.clear();
156    toposForRowAtom.reserve(nAtomsInRow_);
157    for (int i = 0; i < nAtomsInRow_; i++) {
158      int iglob = AtomRowToGlobal[i];
159      int nTopos = 0;
165        for (int j = 0; j < nAtomsInCol_; j++) {
166 <        int jglob = AtomColToGlobal[j];        
167 <        if (oneTwo.hasPair(iglob, jglob)) {
168 <          toposForRowAtom[i].push_back(j);
169 <          topoDistRow[i][nTopos] = 1;
170 <          nTopos++;
166 >        int jglob = AtomColToGlobal[j];
167 >
168 >        if (excludes->hasPair(iglob, jglob))
169 >          excludesForAtom[i].push_back(j);      
170 >        
171 >        if (oneTwo->hasPair(iglob, jglob)) {
172 >          toposForAtom[i].push_back(j);
173 >          topoDist[i].push_back(1);
174 >        } else {
175 >          if (oneThree->hasPair(iglob, jglob)) {
176 >            toposForAtom[i].push_back(j);
177 >            topoDist[i].push_back(2);
178 >          } else {
179 >            if (oneFour->hasPair(iglob, jglob)) {
180 >              toposForAtom[i].push_back(j);
181 >              topoDist[i].push_back(3);
182 >            }
183 >          }
184          }
167        if (oneThree.hasPair(iglob, jglob)) {
168          toposForRowAtom[i].push_back(j);
169          topoDistRow[i][nTopos] = 2;
170          nTopos++;
171        }
172        if (oneFour.hasPair(iglob, jglob)) {
173          toposForRowAtom[i].push_back(j);
174          topoDistRow[i][nTopos] = 3;
175          nTopos++;
176        }
185        }      
186      }
187  
188   #endif
189  
190      groupList_.clear();
191 <    groupList_.reserve(nGroups_);
191 >    groupList_.resize(nGroups_);
192      for (int i = 0; i < nGroups_; i++) {
193        int gid = cgLocalToGlobal[i];
194        for (int j = 0; j < nLocal_; j++) {
195          int aid = AtomLocalToGlobal[j];
196 <        if (globalGroupMembership[aid] == gid)
196 >        if (globalGroupMembership[aid] == gid) {
197            groupList_[i].push_back(j);
198 +        }
199        }      
200      }
201  
202 <    skipsForLocalAtom.clear();
203 <    skipsForLocalAtom.reserve(nLocal_);
202 >    excludesForAtom.clear();
203 >    excludesForAtom.resize(nLocal_);
204 >    toposForAtom.clear();
205 >    toposForAtom.resize(nLocal_);
206 >    topoDist.clear();
207 >    topoDist.resize(nLocal_);
208  
209      for (int i = 0; i < nLocal_; i++) {
210        int iglob = AtomLocalToGlobal[i];
211 +
212        for (int j = 0; j < nLocal_; j++) {
213 <        int jglob = AtomLocalToGlobal[j];        
214 <        if (excludes.hasPair(iglob, jglob))
215 <          skipsForLocalAtom[i].push_back(j);      
213 >        int jglob = AtomLocalToGlobal[j];
214 >
215 >        if (excludes->hasPair(iglob, jglob))
216 >          excludesForAtom[i].push_back(j);              
217 >        
218 >        if (oneTwo->hasPair(iglob, jglob)) {
219 >          toposForAtom[i].push_back(j);
220 >          topoDist[i].push_back(1);
221 >        } else {
222 >          if (oneThree->hasPair(iglob, jglob)) {
223 >            toposForAtom[i].push_back(j);
224 >            topoDist[i].push_back(2);
225 >          } else {
226 >            if (oneFour->hasPair(iglob, jglob)) {
227 >              toposForAtom[i].push_back(j);
228 >              topoDist[i].push_back(3);
229 >            }
230 >          }
231 >        }
232        }      
233      }
234 +    
235 +    createGtypeCutoffMap();
236  
237 <    toposForLocalAtom.clear();
238 <    toposForLocalAtom.reserve(nLocal_);
239 <    for (int i = 0; i < nLocal_; i++) {
240 <      int iglob = AtomLocalToGlobal[i];
241 <      int nTopos = 0;
242 <      for (int j = 0; j < nLocal_; j++) {
243 <        int jglob = AtomLocalToGlobal[j];        
244 <        if (oneTwo.hasPair(iglob, jglob)) {
245 <          toposForLocalAtom[i].push_back(j);
246 <          topoDistLocal[i][nTopos] = 1;
247 <          nTopos++;
237 >  }
238 >  
239 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
240 >    
241 >    RealType tol = 1e-6;
242 >    RealType rc;
243 >    int atid;
244 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
245 >    map<int, RealType> atypeCutoff;
246 >      
247 >    for (set<AtomType*>::iterator at = atypes.begin();
248 >         at != atypes.end(); ++at){
249 >      atid = (*at)->getIdent();
250 >      if (userChoseCutoff_)
251 >        atypeCutoff[atid] = userCutoff_;
252 >      else
253 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
254 >    }
255 >
256 >    vector<RealType> gTypeCutoffs;
257 >    // first we do a single loop over the cutoff groups to find the
258 >    // largest cutoff for any atypes present in this group.
259 > #ifdef IS_MPI
260 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
261 >    groupRowToGtype.resize(nGroupsInRow_);
262 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
263 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
264 >      for (vector<int>::iterator ia = atomListRow.begin();
265 >           ia != atomListRow.end(); ++ia) {            
266 >        int atom1 = (*ia);
267 >        atid = identsRow[atom1];
268 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
269 >          groupCutoffRow[cg1] = atypeCutoff[atid];
270          }
271 <        if (oneThree.hasPair(iglob, jglob)) {
272 <          toposForLocalAtom[i].push_back(j);
273 <          topoDistLocal[i][nTopos] = 2;
274 <          nTopos++;
271 >      }
272 >
273 >      bool gTypeFound = false;
274 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
275 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
276 >          groupRowToGtype[cg1] = gt;
277 >          gTypeFound = true;
278 >        }
279 >      }
280 >      if (!gTypeFound) {
281 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
282 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
283 >      }
284 >      
285 >    }
286 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
287 >    groupColToGtype.resize(nGroupsInCol_);
288 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
289 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
290 >      for (vector<int>::iterator jb = atomListCol.begin();
291 >           jb != atomListCol.end(); ++jb) {            
292 >        int atom2 = (*jb);
293 >        atid = identsCol[atom2];
294 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
295 >          groupCutoffCol[cg2] = atypeCutoff[atid];
296          }
297 <        if (oneFour.hasPair(iglob, jglob)) {
298 <          toposForLocalAtom[i].push_back(j);
299 <          topoDistLocal[i][nTopos] = 3;
300 <          nTopos++;
297 >      }
298 >      bool gTypeFound = false;
299 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
300 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
301 >          groupColToGtype[cg2] = gt;
302 >          gTypeFound = true;
303 >        }
304 >      }
305 >      if (!gTypeFound) {
306 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
307 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
308 >      }
309 >    }
310 > #else
311 >
312 >    vector<RealType> groupCutoff(nGroups_, 0.0);
313 >    groupToGtype.resize(nGroups_);
314 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
315 >
316 >      groupCutoff[cg1] = 0.0;
317 >      vector<int> atomList = getAtomsInGroupRow(cg1);
318 >
319 >      for (vector<int>::iterator ia = atomList.begin();
320 >           ia != atomList.end(); ++ia) {            
321 >        int atom1 = (*ia);
322 >        atid = idents[atom1];
323 >        if (atypeCutoff[atid] > groupCutoff[cg1]) {
324 >          groupCutoff[cg1] = atypeCutoff[atid];
325          }
326 +      }
327 +
328 +      bool gTypeFound = false;
329 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
330 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
331 +          groupToGtype[cg1] = gt;
332 +          gTypeFound = true;
333 +        }
334 +      }
335 +      if (!gTypeFound) {
336 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
337 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
338        }      
339      }
340 + #endif
341 +
342 +    // Now we find the maximum group cutoff value present in the simulation
343 +
344 +    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
345 +
346 + #ifdef IS_MPI
347 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
348 + #endif
349 +    
350 +    RealType tradRcut = groupMax;
351 +
352 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
353 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
354 +        RealType thisRcut;
355 +        switch(cutoffPolicy_) {
356 +        case TRADITIONAL:
357 +          thisRcut = tradRcut;
358 +          break;
359 +        case MIX:
360 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
361 +          break;
362 +        case MAX:
363 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
364 +          break;
365 +        default:
366 +          sprintf(painCave.errMsg,
367 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
368 +                  "hit an unknown cutoff policy!\n");
369 +          painCave.severity = OPENMD_ERROR;
370 +          painCave.isFatal = 1;
371 +          simError();
372 +          break;
373 +        }
374 +
375 +        pair<int,int> key = make_pair(i,j);
376 +        gTypeCutoffMap[key].first = thisRcut;
377 +
378 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
379 +
380 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
381 +        
382 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
383 +
384 +        // sanity check
385 +        
386 +        if (userChoseCutoff_) {
387 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
388 +            sprintf(painCave.errMsg,
389 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
390 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
391 +            painCave.severity = OPENMD_ERROR;
392 +            painCave.isFatal = 1;
393 +            simError();            
394 +          }
395 +        }
396 +      }
397 +    }
398    }
230  
231  void ForceMatrixDecomposition::zeroWorkArrays() {
399  
400 <    for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
401 <      longRangePot_[j] = 0.0;
400 >
401 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
402 >    int i, j;  
403 > #ifdef IS_MPI
404 >    i = groupRowToGtype[cg1];
405 >    j = groupColToGtype[cg2];
406 > #else
407 >    i = groupToGtype[cg1];
408 >    j = groupToGtype[cg2];
409 > #endif    
410 >    return gTypeCutoffMap[make_pair(i,j)];
411 >  }
412 >
413 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
414 >    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
415 >      if (toposForAtom[atom1][j] == atom2)
416 >        return topoDist[atom1][j];
417      }
418 +    return 0;
419 +  }
420  
421 +  void ForceMatrixDecomposition::zeroWorkArrays() {
422 +    pairwisePot = 0.0;
423 +    embeddingPot = 0.0;
424 +
425   #ifdef IS_MPI
426      if (storageLayout_ & DataStorage::dslForce) {
427        fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
# Line 249 | Line 437 | namespace OpenMD {
437           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
438  
439      fill(pot_col.begin(), pot_col.end(),
440 <         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
253 <    
254 <    pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
440 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
441  
442      if (storageLayout_ & DataStorage::dslParticlePot) {    
443        fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
# Line 275 | Line 461 | namespace OpenMD {
461             atomColData.functionalDerivative.end(), 0.0);
462      }
463  
464 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
465 +      fill(atomRowData.skippedCharge.begin(),
466 +           atomRowData.skippedCharge.end(), 0.0);
467 +      fill(atomColData.skippedCharge.begin(),
468 +           atomColData.skippedCharge.end(), 0.0);
469 +    }
470 +
471   #else
472      
473      if (storageLayout_ & DataStorage::dslParticlePot) {      
# Line 294 | Line 487 | namespace OpenMD {
487        fill(snap_->atomData.functionalDerivative.begin(),
488             snap_->atomData.functionalDerivative.end(), 0.0);
489      }
490 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
491 +      fill(snap_->atomData.skippedCharge.begin(),
492 +           snap_->atomData.skippedCharge.end(), 0.0);
493 +    }
494   #endif
495      
496    }
# Line 401 | Line 598 | namespace OpenMD {
598      
599      if (storageLayout_ & DataStorage::dslTorque) {
600  
601 <      int nt = snap_->atomData.force.size();
601 >      int nt = snap_->atomData.torque.size();
602        vector<Vector3d> trq_tmp(nt, V3Zero);
603  
604        AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
605 <      for (int i = 0; i < n; i++) {
605 >      for (int i = 0; i < nt; i++) {
606          snap_->atomData.torque[i] += trq_tmp[i];
607          trq_tmp[i] = 0.0;
608        }
609        
610        AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
611 <      for (int i = 0; i < n; i++)
611 >      for (int i = 0; i < nt; i++)
612          snap_->atomData.torque[i] += trq_tmp[i];
613 +    }
614 +
615 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
616 +
617 +      int ns = snap_->atomData.skippedCharge.size();
618 +      vector<RealType> skch_tmp(ns, 0.0);
619 +
620 +      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
621 +      for (int i = 0; i < ns; i++) {
622 +        snap_->atomData.skippedCharge[i] = skch_tmp[i];
623 +        skch_tmp[i] = 0.0;
624 +      }
625 +      
626 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
627 +      for (int i = 0; i < ns; i++)
628 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
629      }
630      
631      nLocal_ = snap_->getNumberOfAtoms();
# Line 425 | Line 638 | namespace OpenMD {
638      AtomCommPotRow->scatter(pot_row, pot_temp);
639  
640      for (int ii = 0;  ii < pot_temp.size(); ii++ )
641 <      pot_local += pot_temp[ii];
641 >      pairwisePot += pot_temp[ii];
642      
643      fill(pot_temp.begin(), pot_temp.end(),
644           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
# Line 433 | Line 646 | namespace OpenMD {
646      AtomCommPotColumn->scatter(pot_col, pot_temp);    
647      
648      for (int ii = 0;  ii < pot_temp.size(); ii++ )
649 <      pot_local += pot_temp[ii];
437 <    
649 >      pairwisePot += pot_temp[ii];    
650   #endif
651 +
652    }
653  
654    int ForceMatrixDecomposition::getNAtomsInRow() {  
# Line 510 | Line 723 | namespace OpenMD {
723   #ifdef IS_MPI
724      return massFactorsRow[atom1];
725   #else
726 <    return massFactorsLocal[atom1];
726 >    return massFactors[atom1];
727   #endif
728    }
729  
# Line 518 | Line 731 | namespace OpenMD {
731   #ifdef IS_MPI
732      return massFactorsCol[atom2];
733   #else
734 <    return massFactorsLocal[atom2];
734 >    return massFactors[atom2];
735   #endif
736  
737    }
# Line 536 | Line 749 | namespace OpenMD {
749      return d;    
750    }
751  
752 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
753 < #ifdef IS_MPI
541 <    return skipsForRowAtom[atom1];
542 < #else
543 <    return skipsForLocalAtom[atom1];
544 < #endif
752 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
753 >    return excludesForAtom[atom1];
754    }
755  
756    /**
757 <   * There are a number of reasons to skip a pair or a
549 <   * particle. Mostly we do this to exclude atoms who are involved in
550 <   * short range interactions (bonds, bends, torsions), but we also
551 <   * need to exclude some overcounted interactions that result from
757 >   * We need to exclude some overcounted interactions that result from
758     * the parallel decomposition.
759     */
760    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
# Line 568 | Line 774 | namespace OpenMD {
774      } else {
775        if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
776      }
777 + #endif
778 +    return false;
779 +  }
780 +
781 +  /**
782 +   * We need to handle the interactions for atoms who are involved in
783 +   * the same rigid body as well as some short range interactions
784 +   * (bonds, bends, torsions) differently from other interactions.
785 +   * We'll still visit the pairwise routines, but with a flag that
786 +   * tells those routines to exclude the pair from direct long range
787 +   * interactions.  Some indirect interactions (notably reaction
788 +   * field) must still be handled for these pairs.
789 +   */
790 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
791 +    int unique_id_2;
792 +    
793 + #ifdef IS_MPI
794 +    // in MPI, we have to look up the unique IDs for the row atom.
795 +    unique_id_2 = AtomColToGlobal[atom2];
796   #else
797      // in the normal loop, the atom numbers are unique
573    unique_id_1 = atom1;
798      unique_id_2 = atom2;
799   #endif
800      
801 < #ifdef IS_MPI
802 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
579 <         i != skipsForRowAtom[atom1].end(); ++i) {
801 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
802 >         i != excludesForAtom[atom1].end(); ++i) {
803        if ( (*i) == unique_id_2 ) return true;
581    }    
582 #else
583    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
584         i != skipsForLocalAtom[atom1].end(); ++i) {
585      if ( (*i) == unique_id_2 ) return true;
586    }    
587 #endif
588  }
589
590  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
591    
592 #ifdef IS_MPI
593    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
594      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
804      }
596 #else
597    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
598      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
599    }
600 #endif
805  
806 <    // zero is default for unconnected (i.e. normal) pair interactions
603 <    return 0;
806 >    return false;
807    }
808  
809 +
810    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
811   #ifdef IS_MPI
812      atomRowData.force[atom1] += fg;
# Line 620 | Line 824 | namespace OpenMD {
824    }
825  
826      // filling interaction blocks with pointers
827 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
828 <    InteractionData idat;
827 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
828 >                                                     int atom1, int atom2) {
829  
830 +    idat.excluded = excludeAtomPair(atom1, atom2);
831 +  
832   #ifdef IS_MPI
833      
834      idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
835                               ff_->getAtomType(identsCol[atom2]) );
630
836      
837      if (storageLayout_ & DataStorage::dslAmat) {
838        idat.A1 = &(atomRowData.aMat[atom1]);
# Line 664 | Line 869 | namespace OpenMD {
869        idat.particlePot2 = &(atomColData.particlePot[atom2]);
870      }
871  
872 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
873 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
874 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
875 +    }
876 +
877   #else
878  
879 <    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
880 <                             ff_->getAtomType(identsLocal[atom2]) );
879 >    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
880 >                             ff_->getAtomType(idents[atom2]) );
881  
882      if (storageLayout_ & DataStorage::dslAmat) {
883        idat.A1 = &(snap_->atomData.aMat[atom1]);
# Line 684 | Line 894 | namespace OpenMD {
894        idat.t2 = &(snap_->atomData.torque[atom2]);
895      }
896  
897 <    if (storageLayout_ & DataStorage::dslDensity) {
897 >    if (storageLayout_ & DataStorage::dslDensity) {    
898        idat.rho1 = &(snap_->atomData.density[atom1]);
899        idat.rho2 = &(snap_->atomData.density[atom2]);
900      }
# Line 704 | Line 914 | namespace OpenMD {
914        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
915      }
916  
917 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
918 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
919 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
920 +    }
921   #endif
708    return idat;
922    }
923  
924    
925 <  void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {    
925 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
926   #ifdef IS_MPI
927      pot_row[atom1] += 0.5 *  *(idat.pot);
928      pot_col[atom2] += 0.5 *  *(idat.pot);
# Line 717 | Line 930 | namespace OpenMD {
930      atomRowData.force[atom1] += *(idat.f1);
931      atomColData.force[atom2] -= *(idat.f1);
932   #else
933 <    longRangePot_ += *(idat.pot);
934 <    
933 >    pairwisePot += *(idat.pot);
934 >
935      snap_->atomData.force[atom1] += *(idat.f1);
936      snap_->atomData.force[atom2] -= *(idat.f1);
937   #endif
938 <
938 >    
939    }
940  
728
729  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
730
731    InteractionData idat;
732 #ifdef IS_MPI
733    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
734                             ff_->getAtomType(identsCol[atom2]) );
735
736    if (storageLayout_ & DataStorage::dslElectroFrame) {
737      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
738      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
739    }
740    if (storageLayout_ & DataStorage::dslTorque) {
741      idat.t1 = &(atomRowData.torque[atom1]);
742      idat.t2 = &(atomColData.torque[atom2]);
743    }
744 #else
745    idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
746                             ff_->getAtomType(identsLocal[atom2]) );
747
748    if (storageLayout_ & DataStorage::dslElectroFrame) {
749      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
750      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
751    }
752    if (storageLayout_ & DataStorage::dslTorque) {
753      idat.t1 = &(snap_->atomData.torque[atom1]);
754      idat.t2 = &(snap_->atomData.torque[atom2]);
755    }
756 #endif    
757  }
758
941    /*
942     * buildNeighborList
943     *
# Line 765 | Line 947 | namespace OpenMD {
947    vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
948        
949      vector<pair<int, int> > neighborList;
950 +    groupCutoffs cuts;
951 +    bool doAllPairs = false;
952 +
953   #ifdef IS_MPI
954      cellListRow_.clear();
955      cellListCol_.clear();
# Line 772 | Line 957 | namespace OpenMD {
957      cellList_.clear();
958   #endif
959  
960 <    // dangerous to not do error checking.
776 <    RealType rCut_;
777 <
778 <    RealType rList_ = (rCut_ + skinThickness_);
960 >    RealType rList_ = (largestRcut_ + skinThickness_);
961      RealType rl2 = rList_ * rList_;
962      Snapshot* snap_ = sman_->getCurrentSnapshot();
963      Mat3x3d Hmat = snap_->getHmat();
# Line 787 | Line 969 | namespace OpenMD {
969      nCells_.y() = (int) ( Hy.length() )/ rList_;
970      nCells_.z() = (int) ( Hz.length() )/ rList_;
971  
972 +    // handle small boxes where the cell offsets can end up repeating cells
973 +    
974 +    if (nCells_.x() < 3) doAllPairs = true;
975 +    if (nCells_.y() < 3) doAllPairs = true;
976 +    if (nCells_.z() < 3) doAllPairs = true;
977 +
978      Mat3x3d invHmat = snap_->getInvHmat();
979      Vector3d rs, scaled, dr;
980      Vector3i whichCell;
981      int cellIndex;
982 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
983  
984   #ifdef IS_MPI
985 <    for (int i = 0; i < nGroupsInRow_; i++) {
986 <      rs = cgRowData.position[i];
798 <      // scaled positions relative to the box vectors
799 <      scaled = invHmat * rs;
800 <      // wrap the vector back into the unit box by subtracting integer box
801 <      // numbers
802 <      for (int j = 0; j < 3; j++)
803 <        scaled[j] -= roundMe(scaled[j]);
804 <    
805 <      // find xyz-indices of cell that cutoffGroup is in.
806 <      whichCell.x() = nCells_.x() * scaled.x();
807 <      whichCell.y() = nCells_.y() * scaled.y();
808 <      whichCell.z() = nCells_.z() * scaled.z();
809 <
810 <      // find single index of this cell:
811 <      cellIndex = Vlinear(whichCell, nCells_);
812 <      // add this cutoff group to the list of groups in this cell;
813 <      cellListRow_[cellIndex].push_back(i);
814 <    }
815 <
816 <    for (int i = 0; i < nGroupsInCol_; i++) {
817 <      rs = cgColData.position[i];
818 <      // scaled positions relative to the box vectors
819 <      scaled = invHmat * rs;
820 <      // wrap the vector back into the unit box by subtracting integer box
821 <      // numbers
822 <      for (int j = 0; j < 3; j++)
823 <        scaled[j] -= roundMe(scaled[j]);
824 <
825 <      // find xyz-indices of cell that cutoffGroup is in.
826 <      whichCell.x() = nCells_.x() * scaled.x();
827 <      whichCell.y() = nCells_.y() * scaled.y();
828 <      whichCell.z() = nCells_.z() * scaled.z();
829 <
830 <      // find single index of this cell:
831 <      cellIndex = Vlinear(whichCell, nCells_);
832 <      // add this cutoff group to the list of groups in this cell;
833 <      cellListCol_[cellIndex].push_back(i);
834 <    }
985 >    cellListRow_.resize(nCtot);
986 >    cellListCol_.resize(nCtot);
987   #else
988 <    for (int i = 0; i < nGroups_; i++) {
837 <      rs = snap_->cgData.position[i];
838 <      // scaled positions relative to the box vectors
839 <      scaled = invHmat * rs;
840 <      // wrap the vector back into the unit box by subtracting integer box
841 <      // numbers
842 <      for (int j = 0; j < 3; j++)
843 <        scaled[j] -= roundMe(scaled[j]);
844 <
845 <      // find xyz-indices of cell that cutoffGroup is in.
846 <      whichCell.x() = nCells_.x() * scaled.x();
847 <      whichCell.y() = nCells_.y() * scaled.y();
848 <      whichCell.z() = nCells_.z() * scaled.z();
849 <
850 <      // find single index of this cell:
851 <      cellIndex = Vlinear(whichCell, nCells_);
852 <      // add this cutoff group to the list of groups in this cell;
853 <      cellList_[cellIndex].push_back(i);
854 <    }
988 >    cellList_.resize(nCtot);
989   #endif
990  
991 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
992 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
859 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
860 <          Vector3i m1v(m1x, m1y, m1z);
861 <          int m1 = Vlinear(m1v, nCells_);
991 >    if (!doAllPairs) {
992 > #ifdef IS_MPI
993  
994 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
995 <               os != cellOffsets_.end(); ++os) {
996 <            
997 <            Vector3i m2v = m1v + (*os);
998 <            
999 <            if (m2v.x() >= nCells_.x()) {
1000 <              m2v.x() = 0;          
1001 <            } else if (m2v.x() < 0) {
1002 <              m2v.x() = nCells_.x() - 1;
1003 <            }
1004 <            
1005 <            if (m2v.y() >= nCells_.y()) {
1006 <              m2v.y() = 0;          
1007 <            } else if (m2v.y() < 0) {
1008 <              m2v.y() = nCells_.y() - 1;
1009 <            }
1010 <            
1011 <            if (m2v.z() >= nCells_.z()) {
1012 <              m2v.z() = 0;          
1013 <            } else if (m2v.z() < 0) {
1014 <              m2v.z() = nCells_.z() - 1;
1015 <            }
1016 <            
1017 <            int m2 = Vlinear (m2v, nCells_);
994 >      for (int i = 0; i < nGroupsInRow_; i++) {
995 >        rs = cgRowData.position[i];
996 >        
997 >        // scaled positions relative to the box vectors
998 >        scaled = invHmat * rs;
999 >        
1000 >        // wrap the vector back into the unit box by subtracting integer box
1001 >        // numbers
1002 >        for (int j = 0; j < 3; j++) {
1003 >          scaled[j] -= roundMe(scaled[j]);
1004 >          scaled[j] += 0.5;
1005 >        }
1006 >        
1007 >        // find xyz-indices of cell that cutoffGroup is in.
1008 >        whichCell.x() = nCells_.x() * scaled.x();
1009 >        whichCell.y() = nCells_.y() * scaled.y();
1010 >        whichCell.z() = nCells_.z() * scaled.z();
1011 >        
1012 >        // find single index of this cell:
1013 >        cellIndex = Vlinear(whichCell, nCells_);
1014 >        
1015 >        // add this cutoff group to the list of groups in this cell;
1016 >        cellListRow_[cellIndex].push_back(i);
1017 >      }
1018 >      
1019 >      for (int i = 0; i < nGroupsInCol_; i++) {
1020 >        rs = cgColData.position[i];
1021 >        
1022 >        // scaled positions relative to the box vectors
1023 >        scaled = invHmat * rs;
1024 >        
1025 >        // wrap the vector back into the unit box by subtracting integer box
1026 >        // numbers
1027 >        for (int j = 0; j < 3; j++) {
1028 >          scaled[j] -= roundMe(scaled[j]);
1029 >          scaled[j] += 0.5;
1030 >        }
1031 >        
1032 >        // find xyz-indices of cell that cutoffGroup is in.
1033 >        whichCell.x() = nCells_.x() * scaled.x();
1034 >        whichCell.y() = nCells_.y() * scaled.y();
1035 >        whichCell.z() = nCells_.z() * scaled.z();
1036 >        
1037 >        // find single index of this cell:
1038 >        cellIndex = Vlinear(whichCell, nCells_);
1039 >        
1040 >        // add this cutoff group to the list of groups in this cell;
1041 >        cellListCol_[cellIndex].push_back(i);
1042 >      }
1043 > #else
1044 >      for (int i = 0; i < nGroups_; i++) {
1045 >        rs = snap_->cgData.position[i];
1046 >        
1047 >        // scaled positions relative to the box vectors
1048 >        scaled = invHmat * rs;
1049 >        
1050 >        // wrap the vector back into the unit box by subtracting integer box
1051 >        // numbers
1052 >        for (int j = 0; j < 3; j++) {
1053 >          scaled[j] -= roundMe(scaled[j]);
1054 >          scaled[j] += 0.5;
1055 >        }
1056 >        
1057 >        // find xyz-indices of cell that cutoffGroup is in.
1058 >        whichCell.x() = nCells_.x() * scaled.x();
1059 >        whichCell.y() = nCells_.y() * scaled.y();
1060 >        whichCell.z() = nCells_.z() * scaled.z();
1061 >        
1062 >        // find single index of this cell:
1063 >        cellIndex = Vlinear(whichCell, nCells_);      
1064 >        
1065 >        // add this cutoff group to the list of groups in this cell;
1066 >        cellList_[cellIndex].push_back(i);
1067 >      }
1068 > #endif
1069  
1070 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1071 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1072 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1073 +            Vector3i m1v(m1x, m1y, m1z);
1074 +            int m1 = Vlinear(m1v, nCells_);
1075 +            
1076 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1077 +                 os != cellOffsets_.end(); ++os) {
1078 +              
1079 +              Vector3i m2v = m1v + (*os);
1080 +              
1081 +              if (m2v.x() >= nCells_.x()) {
1082 +                m2v.x() = 0;          
1083 +              } else if (m2v.x() < 0) {
1084 +                m2v.x() = nCells_.x() - 1;
1085 +              }
1086 +              
1087 +              if (m2v.y() >= nCells_.y()) {
1088 +                m2v.y() = 0;          
1089 +              } else if (m2v.y() < 0) {
1090 +                m2v.y() = nCells_.y() - 1;
1091 +              }
1092 +              
1093 +              if (m2v.z() >= nCells_.z()) {
1094 +                m2v.z() = 0;          
1095 +              } else if (m2v.z() < 0) {
1096 +                m2v.z() = nCells_.z() - 1;
1097 +              }
1098 +              
1099 +              int m2 = Vlinear (m2v, nCells_);
1100 +              
1101   #ifdef IS_MPI
1102 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1103 <                 j1 != cellListRow_[m1].end(); ++j1) {
1104 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1105 <                   j2 != cellListCol_[m2].end(); ++j2) {
1106 <                              
1107 <                // Always do this if we're in different cells or if
1108 <                // we're in the same cell and the global index of the
1109 <                // j2 cutoff group is less than the j1 cutoff group
1110 <
1111 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1112 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1113 <                  snap_->wrapVector(dr);
1114 <                  if (dr.lengthSquare() < rl2) {
1115 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1102 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1103 >                   j1 != cellListRow_[m1].end(); ++j1) {
1104 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1105 >                     j2 != cellListCol_[m2].end(); ++j2) {
1106 >                  
1107 >                  // Always do this if we're in different cells or if
1108 >                  // we're in the same cell and the global index of the
1109 >                  // j2 cutoff group is less than the j1 cutoff group
1110 >                  
1111 >                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1112 >                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1113 >                    snap_->wrapVector(dr);
1114 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1115 >                    if (dr.lengthSquare() < cuts.third) {
1116 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1117 >                    }
1118                    }
1119                  }
1120                }
906            }
1121   #else
1122 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1123 <                 j1 != cellList_[m1].end(); ++j1) {
1124 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1125 <                   j2 != cellList_[m2].end(); ++j2) {
1126 <                              
1127 <                // Always do this if we're in different cells or if
1128 <                // we're in the same cell and the global index of the
1129 <                // j2 cutoff group is less than the j1 cutoff group
1130 <
1131 <                if (m2 != m1 || (*j2) < (*j1)) {
1132 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1133 <                  snap_->wrapVector(dr);
1134 <                  if (dr.lengthSquare() < rl2) {
1135 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1122 >              
1123 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1124 >                   j1 != cellList_[m1].end(); ++j1) {
1125 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1126 >                     j2 != cellList_[m2].end(); ++j2) {
1127 >                  
1128 >                  // Always do this if we're in different cells or if
1129 >                  // we're in the same cell and the global index of the
1130 >                  // j2 cutoff group is less than the j1 cutoff group
1131 >                  
1132 >                  if (m2 != m1 || (*j2) < (*j1)) {
1133 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1134 >                    snap_->wrapVector(dr);
1135 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1136 >                    if (dr.lengthSquare() < cuts.third) {
1137 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1138 >                    }
1139                    }
1140                  }
1141                }
925            }
1142   #endif
1143 +            }
1144            }
1145          }
1146        }
1147 +    } else {
1148 +      // branch to do all cutoff group pairs
1149 + #ifdef IS_MPI
1150 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1151 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1152 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1153 +          snap_->wrapVector(dr);
1154 +          cuts = getGroupCutoffs( j1, j2 );
1155 +          if (dr.lengthSquare() < cuts.third) {
1156 +            neighborList.push_back(make_pair(j1, j2));
1157 +          }
1158 +        }
1159 +      }
1160 + #else
1161 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1162 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1163 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1164 +          snap_->wrapVector(dr);
1165 +          cuts = getGroupCutoffs( j1, j2 );
1166 +          if (dr.lengthSquare() < cuts.third) {
1167 +            neighborList.push_back(make_pair(j1, j2));
1168 +          }
1169 +        }
1170 +      }        
1171 + #endif
1172      }
1173 <
1173 >      
1174      // save the local cutoff group positions for the check that is
1175      // done on each loop:
1176      saved_CG_positions_.clear();
1177      for (int i = 0; i < nGroups_; i++)
1178        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1179 <
1179 >    
1180      return neighborList;
1181    }
1182   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines