ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC vs.
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1760 by gezelter, Thu Jun 21 19:26:46 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 < #include "parallel/ForceDecomposition.hpp"
42 > #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
93 <  
94 <  void ForceDecomposition::distributeInitialData() {
95 < #ifdef IS_MPI    
96 <    Snapshot* snap = sman_->getCurrentSnapshot();
97 <    int nLocal = snap->getNumberOfAtoms();
98 <    int nGroups = snap->getNumberOfCutoffGroups();
93 >  void ForceMatrixDecomposition::distributeInitialData() {
94 >    snap_ = sman_->getCurrentSnapshot();
95 >    storageLayout_ = sman_->getStorageLayout();
96 >    ff_ = info_->getForceField();
97 >    nLocal_ = snap_->getNumberOfAtoms();
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 <    AtomCommIntI = new Communicator<Row,int>(nLocal);
61 <    AtomCommRealI = new Communicator<Row,RealType>(nLocal);
62 <    AtomCommVectorI = new Communicator<Row,Vector3d>(nLocal);
63 <    AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nLocal);
106 >    massFactors = info_->getMassFactors();
107  
108 <    AtomCommIntJ = new Communicator<Column,int>(nLocal);
109 <    AtomCommRealJ = new Communicator<Column,RealType>(nLocal);
110 <    AtomCommVectorJ = new Communicator<Column,Vector3d>(nLocal);
111 <    AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nLocal);
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112 >    
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119 > #ifdef IS_MPI
120 >
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    cgCommIntI = new Communicator<Row,int>(nGroups);
125 <    cgCommVectorI = new Communicator<Row,Vector3d>(nGroups);
126 <    cgCommIntJ = new Communicator<Column,int>(nGroups);
127 <    cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    int nAtomsInRow = AtomCommIntI->getSize();
131 <    int nAtomsInCol = AtomCommIntJ->getSize();
132 <    int nGroupsInRow = cgCommIntI->getSize();
133 <    int nGroupsInCol = cgCommIntJ->getSize();
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
137 <                                      vector<RealType> (nAtomsInRow, 0.0));
138 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
139 <                                      vector<RealType> (nAtomsInCol, 0.0));
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140 >
141 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 >    nGroupsInRow_ = cgPlanIntRow->getSize();
144 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 >
146 >    // Modify the data storage objects with the correct layouts and sizes:
147 >    atomRowData.resize(nAtomsInRow_);
148 >    atomRowData.setStorageLayout(storageLayout_);
149 >    atomColData.resize(nAtomsInCol_);
150 >    atomColData.setStorageLayout(storageLayout_);
151 >    cgRowData.resize(nGroupsInRow_);
152 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
153 >    cgColData.resize(nGroupsInCol_);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163      
164 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166 >    
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 <    // gather the information for atomtype IDs (atids):
172 <    AtomCommIntI->gather(info_->getIdentArray(), identsRow);
173 <    AtomCommIntJ->gather(info_->getIdentArray(), identsCol);
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 <    AtomLocalToGlobal = info_->getLocalToGlobalAtomIndex();
177 <    AtomCommIntI->gather(AtomLocalToGlobal, AtomRowToGlobal);
93 <    AtomCommIntJ->gather(AtomLocalToGlobal, AtomColToGlobal);
176 >    pot_row.resize(nAtomsInRow_);
177 >    pot_col.resize(nAtomsInCol_);
178  
179 <    cgLocalToGlobal = info_->getLocalToGlobalCutoffGroupIndex();
180 <    cgCommIntI->gather(cgLocalToGlobal, cgRowToGlobal);
181 <    cgCommIntJ->gather(cgLocalToGlobal, cgColToGlobal);
179 >    expot_row.resize(nAtomsInRow_);
180 >    expot_col.resize(nAtomsInCol_);
181 >
182 >    AtomRowToGlobal.resize(nAtomsInRow_);
183 >    AtomColToGlobal.resize(nAtomsInCol_);
184 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 >
187 >    cgRowToGlobal.resize(nGroupsInRow_);
188 >    cgColToGlobal.resize(nGroupsInCol_);
189 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 >
192 >    massFactorsRow.resize(nAtomsInRow_);
193 >    massFactorsCol.resize(nAtomsInCol_);
194 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 >
197 >    groupListRow_.clear();
198 >    groupListRow_.resize(nGroupsInRow_);
199 >    for (int i = 0; i < nGroupsInRow_; i++) {
200 >      int gid = cgRowToGlobal[i];
201 >      for (int j = 0; j < nAtomsInRow_; j++) {
202 >        int aid = AtomRowToGlobal[j];
203 >        if (globalGroupMembership[aid] == gid)
204 >          groupListRow_[i].push_back(j);
205 >      }      
206 >    }
207 >
208 >    groupListCol_.clear();
209 >    groupListCol_.resize(nGroupsInCol_);
210 >    for (int i = 0; i < nGroupsInCol_; i++) {
211 >      int gid = cgColToGlobal[i];
212 >      for (int j = 0; j < nAtomsInCol_; j++) {
213 >        int aid = AtomColToGlobal[j];
214 >        if (globalGroupMembership[aid] == gid)
215 >          groupListCol_[i].push_back(j);
216 >      }      
217 >    }
218  
219 +    excludesForAtom.clear();
220 +    excludesForAtom.resize(nAtomsInRow_);
221 +    toposForAtom.clear();
222 +    toposForAtom.resize(nAtomsInRow_);
223 +    topoDist.clear();
224 +    topoDist.resize(nAtomsInRow_);
225 +    for (int i = 0; i < nAtomsInRow_; i++) {
226 +      int iglob = AtomRowToGlobal[i];
227 +
228 +      for (int j = 0; j < nAtomsInCol_; j++) {
229 +        int jglob = AtomColToGlobal[j];
230 +
231 +        if (excludes->hasPair(iglob, jglob))
232 +          excludesForAtom[i].push_back(j);      
233 +        
234 +        if (oneTwo->hasPair(iglob, jglob)) {
235 +          toposForAtom[i].push_back(j);
236 +          topoDist[i].push_back(1);
237 +        } else {
238 +          if (oneThree->hasPair(iglob, jglob)) {
239 +            toposForAtom[i].push_back(j);
240 +            topoDist[i].push_back(2);
241 +          } else {
242 +            if (oneFour->hasPair(iglob, jglob)) {
243 +              toposForAtom[i].push_back(j);
244 +              topoDist[i].push_back(3);
245 +            }
246 +          }
247 +        }
248 +      }      
249 +    }
250 +
251 + #else
252 +    excludesForAtom.clear();
253 +    excludesForAtom.resize(nLocal_);
254 +    toposForAtom.clear();
255 +    toposForAtom.resize(nLocal_);
256 +    topoDist.clear();
257 +    topoDist.resize(nLocal_);
258 +
259 +    for (int i = 0; i < nLocal_; i++) {
260 +      int iglob = AtomLocalToGlobal[i];
261 +
262 +      for (int j = 0; j < nLocal_; j++) {
263 +        int jglob = AtomLocalToGlobal[j];
264 +
265 +        if (excludes->hasPair(iglob, jglob))
266 +          excludesForAtom[i].push_back(j);              
267 +        
268 +        if (oneTwo->hasPair(iglob, jglob)) {
269 +          toposForAtom[i].push_back(j);
270 +          topoDist[i].push_back(1);
271 +        } else {
272 +          if (oneThree->hasPair(iglob, jglob)) {
273 +            toposForAtom[i].push_back(j);
274 +            topoDist[i].push_back(2);
275 +          } else {
276 +            if (oneFour->hasPair(iglob, jglob)) {
277 +              toposForAtom[i].push_back(j);
278 +              topoDist[i].push_back(3);
279 +            }
280 +          }
281 +        }
282 +      }      
283 +    }
284 + #endif
285 +
286 +    // allocate memory for the parallel objects
287 +    atypesLocal.resize(nLocal_);
288 +
289 +    for (int i = 0; i < nLocal_; i++)
290 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 +
292 +    groupList_.clear();
293 +    groupList_.resize(nGroups_);
294 +    for (int i = 0; i < nGroups_; i++) {
295 +      int gid = cgLocalToGlobal[i];
296 +      for (int j = 0; j < nLocal_; j++) {
297 +        int aid = AtomLocalToGlobal[j];
298 +        if (globalGroupMembership[aid] == gid) {
299 +          groupList_[i].push_back(j);
300 +        }
301 +      }      
302 +    }
303 +
304 +
305 +    createGtypeCutoffMap();
306 +
307 +  }
308 +  
309 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 +    
311 +    RealType tol = 1e-6;
312 +    largestRcut_ = 0.0;
313 +    RealType rc;
314 +    int atid;
315 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
316 +    
317 +    map<int, RealType> atypeCutoff;
318        
319 +    for (set<AtomType*>::iterator at = atypes.begin();
320 +         at != atypes.end(); ++at){
321 +      atid = (*at)->getIdent();
322 +      if (userChoseCutoff_)
323 +        atypeCutoff[atid] = userCutoff_;
324 +      else
325 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
326 +    }
327 +    
328 +    vector<RealType> gTypeCutoffs;
329 +    // first we do a single loop over the cutoff groups to find the
330 +    // largest cutoff for any atypes present in this group.
331 + #ifdef IS_MPI
332 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
333 +    groupRowToGtype.resize(nGroupsInRow_);
334 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
335 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
336 +      for (vector<int>::iterator ia = atomListRow.begin();
337 +           ia != atomListRow.end(); ++ia) {            
338 +        int atom1 = (*ia);
339 +        atid = identsRow[atom1];
340 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
341 +          groupCutoffRow[cg1] = atypeCutoff[atid];
342 +        }
343 +      }
344 +
345 +      bool gTypeFound = false;
346 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
347 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
348 +          groupRowToGtype[cg1] = gt;
349 +          gTypeFound = true;
350 +        }
351 +      }
352 +      if (!gTypeFound) {
353 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
354 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
355 +      }
356        
357 +    }
358 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
359 +    groupColToGtype.resize(nGroupsInCol_);
360 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
361 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
362 +      for (vector<int>::iterator jb = atomListCol.begin();
363 +           jb != atomListCol.end(); ++jb) {            
364 +        int atom2 = (*jb);
365 +        atid = identsCol[atom2];
366 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
367 +          groupCutoffCol[cg2] = atypeCutoff[atid];
368 +        }
369 +      }
370 +      bool gTypeFound = false;
371 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
372 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
373 +          groupColToGtype[cg2] = gt;
374 +          gTypeFound = true;
375 +        }
376 +      }
377 +      if (!gTypeFound) {
378 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
379 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
380 +      }
381 +    }
382 + #else
383  
384 +    vector<RealType> groupCutoff(nGroups_, 0.0);
385 +    groupToGtype.resize(nGroups_);
386 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
387 +      groupCutoff[cg1] = 0.0;
388 +      vector<int> atomList = getAtomsInGroupRow(cg1);
389 +      for (vector<int>::iterator ia = atomList.begin();
390 +           ia != atomList.end(); ++ia) {            
391 +        int atom1 = (*ia);
392 +        atid = idents[atom1];
393 +        if (atypeCutoff[atid] > groupCutoff[cg1])
394 +          groupCutoff[cg1] = atypeCutoff[atid];
395 +      }
396 +      
397 +      bool gTypeFound = false;
398 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
399 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
400 +          groupToGtype[cg1] = gt;
401 +          gTypeFound = true;
402 +        }
403 +      }
404 +      if (!gTypeFound) {      
405 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
406 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
407 +      }      
408 +    }
409 + #endif
410  
411 +    // Now we find the maximum group cutoff value present in the simulation
412  
413 <    // still need:
414 <    // topoDist
415 <    // exclude
413 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
414 >                                     gTypeCutoffs.end());
415 >
416 > #ifdef IS_MPI
417 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
418 >                              MPI::MAX);
419   #endif
420 +    
421 +    RealType tradRcut = groupMax;
422 +
423 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
424 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
425 +        RealType thisRcut;
426 +        switch(cutoffPolicy_) {
427 +        case TRADITIONAL:
428 +          thisRcut = tradRcut;
429 +          break;
430 +        case MIX:
431 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
432 +          break;
433 +        case MAX:
434 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
435 +          break;
436 +        default:
437 +          sprintf(painCave.errMsg,
438 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
439 +                  "hit an unknown cutoff policy!\n");
440 +          painCave.severity = OPENMD_ERROR;
441 +          painCave.isFatal = 1;
442 +          simError();
443 +          break;
444 +        }
445 +
446 +        pair<int,int> key = make_pair(i,j);
447 +        gTypeCutoffMap[key].first = thisRcut;
448 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
449 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
450 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
451 +        // sanity check
452 +        
453 +        if (userChoseCutoff_) {
454 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
455 +            sprintf(painCave.errMsg,
456 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
457 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
458 +            painCave.severity = OPENMD_ERROR;
459 +            painCave.isFatal = 1;
460 +            simError();            
461 +          }
462 +        }
463 +      }
464 +    }
465    }
466 +
467 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
468 +    int i, j;  
469 + #ifdef IS_MPI
470 +    i = groupRowToGtype[cg1];
471 +    j = groupColToGtype[cg2];
472 + #else
473 +    i = groupToGtype[cg1];
474 +    j = groupToGtype[cg2];
475 + #endif    
476 +    return gTypeCutoffMap[make_pair(i,j)];
477 +  }
478 +
479 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
480 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
481 +      if (toposForAtom[atom1][j] == atom2)
482 +        return topoDist[atom1][j];
483 +    }
484 +    return 0;
485 +  }
486 +
487 +  void ForceMatrixDecomposition::zeroWorkArrays() {
488 +    pairwisePot = 0.0;
489 +    embeddingPot = 0.0;
490 +    excludedPot = 0.0;
491 +
492 + #ifdef IS_MPI
493 +    if (storageLayout_ & DataStorage::dslForce) {
494 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 +    }
497 +
498 +    if (storageLayout_ & DataStorage::dslTorque) {
499 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 +    }
502      
503 +    fill(pot_row.begin(), pot_row.end(),
504 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505  
506 +    fill(pot_col.begin(), pot_col.end(),
507 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
508  
509 <  void ForceDecomposition::distributeData()  {
509 >    fill(expot_row.begin(), expot_row.end(),
510 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511 >
512 >    fill(expot_col.begin(), expot_col.end(),
513 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
514 >
515 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
516 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 >           0.0);
518 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 >           0.0);
520 >    }
521 >
522 >    if (storageLayout_ & DataStorage::dslDensity) {      
523 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 >    }
526 >
527 >    if (storageLayout_ & DataStorage::dslFunctional) {  
528 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 >           0.0);
530 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
531 >           0.0);
532 >    }
533 >
534 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
535 >      fill(atomRowData.functionalDerivative.begin(),
536 >           atomRowData.functionalDerivative.end(), 0.0);
537 >      fill(atomColData.functionalDerivative.begin(),
538 >           atomColData.functionalDerivative.end(), 0.0);
539 >    }
540 >
541 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
542 >      fill(atomRowData.skippedCharge.begin(),
543 >           atomRowData.skippedCharge.end(), 0.0);
544 >      fill(atomColData.skippedCharge.begin(),
545 >           atomColData.skippedCharge.end(), 0.0);
546 >    }
547 >
548 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
549 >      fill(atomRowData.flucQFrc.begin(),
550 >           atomRowData.flucQFrc.end(), 0.0);
551 >      fill(atomColData.flucQFrc.begin(),
552 >           atomColData.flucQFrc.end(), 0.0);
553 >    }
554 >
555 >    if (storageLayout_ & DataStorage::dslElectricField) {    
556 >      fill(atomRowData.electricField.begin(),
557 >           atomRowData.electricField.end(), V3Zero);
558 >      fill(atomColData.electricField.begin(),
559 >           atomColData.electricField.end(), V3Zero);
560 >    }
561 >
562 >    if (storageLayout_ & DataStorage::dslFlucQForce) {    
563 >      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
564 >           0.0);
565 >      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
566 >           0.0);
567 >    }
568 >
569 > #endif
570 >    // even in parallel, we need to zero out the local arrays:
571 >
572 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
573 >      fill(snap_->atomData.particlePot.begin(),
574 >           snap_->atomData.particlePot.end(), 0.0);
575 >    }
576 >    
577 >    if (storageLayout_ & DataStorage::dslDensity) {      
578 >      fill(snap_->atomData.density.begin(),
579 >           snap_->atomData.density.end(), 0.0);
580 >    }
581 >
582 >    if (storageLayout_ & DataStorage::dslFunctional) {
583 >      fill(snap_->atomData.functional.begin(),
584 >           snap_->atomData.functional.end(), 0.0);
585 >    }
586 >
587 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
588 >      fill(snap_->atomData.functionalDerivative.begin(),
589 >           snap_->atomData.functionalDerivative.end(), 0.0);
590 >    }
591 >
592 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
593 >      fill(snap_->atomData.skippedCharge.begin(),
594 >           snap_->atomData.skippedCharge.end(), 0.0);
595 >    }
596 >
597 >    if (storageLayout_ & DataStorage::dslElectricField) {      
598 >      fill(snap_->atomData.electricField.begin(),
599 >           snap_->atomData.electricField.end(), V3Zero);
600 >    }
601 >  }
602 >
603 >
604 >  void ForceMatrixDecomposition::distributeData()  {
605 >    snap_ = sman_->getCurrentSnapshot();
606 >    storageLayout_ = sman_->getStorageLayout();
607   #ifdef IS_MPI
114    Snapshot* snap = sman_->getCurrentSnapshot();
608      
609      // gather up the atomic positions
610 <    AtomCommVectorI->gather(snap->atomData.position,
611 <                            snap->atomIData.position);
612 <    AtomCommVectorJ->gather(snap->atomData.position,
613 <                            snap->atomJData.position);
610 >    AtomPlanVectorRow->gather(snap_->atomData.position,
611 >                              atomRowData.position);
612 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
613 >                                 atomColData.position);
614      
615      // gather up the cutoff group positions
616 <    cgCommVectorI->gather(snap->cgData.position,
617 <                          snap->cgIData.position);
618 <    cgCommVectorJ->gather(snap->cgData.position,
619 <                          snap->cgJData.position);
616 >
617 >    cgPlanVectorRow->gather(snap_->cgData.position,
618 >                            cgRowData.position);
619 >
620 >    cgPlanVectorColumn->gather(snap_->cgData.position,
621 >                               cgColData.position);
622 >
623 >
624 >
625 >    if (needVelocities_) {
626 >      // gather up the atomic velocities
627 >      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
628 >                                   atomColData.velocity);
629 >      
630 >      cgPlanVectorColumn->gather(snap_->cgData.velocity,
631 >                                 cgColData.velocity);
632 >    }
633 >
634      
635      // if needed, gather the atomic rotation matrices
636 <    if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) {
637 <      AtomCommMatrixI->gather(snap->atomData.aMat,
638 <                              snap->atomIData.aMat);
639 <      AtomCommMatrixJ->gather(snap->atomData.aMat,
640 <                              snap->atomJData.aMat);
636 >    if (storageLayout_ & DataStorage::dslAmat) {
637 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
638 >                                atomRowData.aMat);
639 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
640 >                                   atomColData.aMat);
641      }
642      
643      // if needed, gather the atomic eletrostatic frames
644 <    if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) {
645 <      AtomCommMatrixI->gather(snap->atomData.electroFrame,
646 <                              snap->atomIData.electroFrame);
647 <      AtomCommMatrixJ->gather(snap->atomData.electroFrame,
648 <                              snap->atomJData.electroFrame);
644 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
645 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
646 >                                atomRowData.electroFrame);
647 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
648 >                                   atomColData.electroFrame);
649      }
650 +
651 +    // if needed, gather the atomic fluctuating charge values
652 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 +                              atomRowData.flucQPos);
655 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 +                                 atomColData.flucQPos);
657 +    }
658 +
659   #endif      
660    }
661    
662 <  void ForceDecomposition::collectIntermediateData() {
662 >  /* collects information obtained during the pre-pair loop onto local
663 >   * data structures.
664 >   */
665 >  void ForceMatrixDecomposition::collectIntermediateData() {
666 >    snap_ = sman_->getCurrentSnapshot();
667 >    storageLayout_ = sman_->getStorageLayout();
668   #ifdef IS_MPI
148    Snapshot* snap = sman_->getCurrentSnapshot();
669      
670 <    if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) {
670 >    if (storageLayout_ & DataStorage::dslDensity) {
671 >      
672 >      AtomPlanRealRow->scatter(atomRowData.density,
673 >                               snap_->atomData.density);
674 >      
675 >      int n = snap_->atomData.density.size();
676 >      vector<RealType> rho_tmp(n, 0.0);
677 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 >      for (int i = 0; i < n; i++)
679 >        snap_->atomData.density[i] += rho_tmp[i];
680 >    }
681  
682 <      AtomCommRealI->scatter(snap->atomIData.density,
683 <                             snap->atomData.density);
684 <
685 <      int n = snap->atomData.density.size();
686 <      std::vector<RealType> rho_tmp(n, 0.0);
687 <      AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp);
682 >    if (storageLayout_ & DataStorage::dslElectricField) {
683 >      
684 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
685 >                                 snap_->atomData.electricField);
686 >      
687 >      int n = snap_->atomData.electricField.size();
688 >      vector<Vector3d> field_tmp(n, V3Zero);
689 >      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
690        for (int i = 0; i < n; i++)
691 <        snap->atomData.density[i] += rho_tmp[i];
691 >        snap_->atomData.electricField[i] += field_tmp[i];
692      }
693   #endif
694    }
695 <  
696 <  void ForceDecomposition::distributeIntermediateData() {
695 >
696 >  /*
697 >   * redistributes information obtained during the pre-pair loop out to
698 >   * row and column-indexed data structures
699 >   */
700 >  void ForceMatrixDecomposition::distributeIntermediateData() {
701 >    snap_ = sman_->getCurrentSnapshot();
702 >    storageLayout_ = sman_->getStorageLayout();
703   #ifdef IS_MPI
704 <    Snapshot* snap = sman_->getCurrentSnapshot();
705 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) {
706 <      AtomCommRealI->gather(snap->atomData.functional,
707 <                            snap->atomIData.functional);
708 <      AtomCommRealJ->gather(snap->atomData.functional,
171 <                            snap->atomJData.functional);
704 >    if (storageLayout_ & DataStorage::dslFunctional) {
705 >      AtomPlanRealRow->gather(snap_->atomData.functional,
706 >                              atomRowData.functional);
707 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
708 >                                 atomColData.functional);
709      }
710      
711 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) {
712 <      AtomCommRealI->gather(snap->atomData.functionalDerivative,
713 <                            snap->atomIData.functionalDerivative);
714 <      AtomCommRealJ->gather(snap->atomData.functionalDerivative,
715 <                            snap->atomJData.functionalDerivative);
711 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
712 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
713 >                              atomRowData.functionalDerivative);
714 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
715 >                                 atomColData.functionalDerivative);
716      }
717   #endif
718    }
719    
720    
721 <  void ForceDecomposition::collectData() {
722 < #ifdef IS_MPI
723 <    Snapshot* snap = sman_->getCurrentSnapshot();
724 <    
725 <    int n = snap->atomData.force.size();
721 >  void ForceMatrixDecomposition::collectData() {
722 >    snap_ = sman_->getCurrentSnapshot();
723 >    storageLayout_ = sman_->getStorageLayout();
724 > #ifdef IS_MPI    
725 >    int n = snap_->atomData.force.size();
726      vector<Vector3d> frc_tmp(n, V3Zero);
727      
728 <    AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp);
728 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
729      for (int i = 0; i < n; i++) {
730 <      snap->atomData.force[i] += frc_tmp[i];
730 >      snap_->atomData.force[i] += frc_tmp[i];
731        frc_tmp[i] = 0.0;
732      }
733      
734 <    AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp);
735 <    for (int i = 0; i < n; i++)
736 <      snap->atomData.force[i] += frc_tmp[i];
737 <    
738 <    
739 <    if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) {
734 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
735 >    for (int i = 0; i < n; i++) {
736 >      snap_->atomData.force[i] += frc_tmp[i];
737 >    }
738 >        
739 >    if (storageLayout_ & DataStorage::dslTorque) {
740  
741 <      int nt = snap->atomData.force.size();
741 >      int nt = snap_->atomData.torque.size();
742        vector<Vector3d> trq_tmp(nt, V3Zero);
743  
744 <      AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp);
745 <      for (int i = 0; i < n; i++) {
746 <        snap->atomData.torque[i] += trq_tmp[i];
744 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
745 >      for (int i = 0; i < nt; i++) {
746 >        snap_->atomData.torque[i] += trq_tmp[i];
747          trq_tmp[i] = 0.0;
748        }
749        
750 <      AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp);
751 <      for (int i = 0; i < n; i++)
752 <        snap->atomData.torque[i] += trq_tmp[i];
750 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
751 >      for (int i = 0; i < nt; i++)
752 >        snap_->atomData.torque[i] += trq_tmp[i];
753      }
217    
218    int nLocal = snap->getNumberOfAtoms();
754  
755 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
756 <                                       vector<RealType> (nLocal, 0.0));
755 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
756 >
757 >      int ns = snap_->atomData.skippedCharge.size();
758 >      vector<RealType> skch_tmp(ns, 0.0);
759 >
760 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
761 >      for (int i = 0; i < ns; i++) {
762 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
763 >        skch_tmp[i] = 0.0;
764 >      }
765 >      
766 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
767 >      for (int i = 0; i < ns; i++)
768 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
769 >            
770 >    }
771      
772 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
773 <      AtomCommRealI->scatter(pot_row[i], pot_temp[i]);
774 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
775 <        pot_local[i] += pot_temp[i][ii];
772 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
773 >
774 >      int nq = snap_->atomData.flucQFrc.size();
775 >      vector<RealType> fqfrc_tmp(nq, 0.0);
776 >
777 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
778 >      for (int i = 0; i < nq; i++) {
779 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
780 >        fqfrc_tmp[i] = 0.0;
781        }
782 +      
783 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
784 +      for (int i = 0; i < nq; i++)
785 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
786 +            
787 +    }
788 +
789 +    nLocal_ = snap_->getNumberOfAtoms();
790 +
791 +    vector<potVec> pot_temp(nLocal_,
792 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
793 +    vector<potVec> expot_temp(nLocal_,
794 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
795 +
796 +    // scatter/gather pot_row into the members of my column
797 +          
798 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
799 +    AtomPlanPotRow->scatter(expot_row, expot_temp);
800 +
801 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
802 +      pairwisePot += pot_temp[ii];
803 +
804 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
805 +      excludedPot += expot_temp[ii];
806 +        
807 +    if (storageLayout_ & DataStorage::dslParticlePot) {
808 +      // This is the pairwise contribution to the particle pot.  The
809 +      // embedding contribution is added in each of the low level
810 +      // non-bonded routines.  In single processor, this is done in
811 +      // unpackInteractionData, not in collectData.
812 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
813 +        for (int i = 0; i < nLocal_; i++) {
814 +          // factor of two is because the total potential terms are divided
815 +          // by 2 in parallel due to row/ column scatter      
816 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
817 +        }
818 +      }
819 +    }
820 +
821 +    fill(pot_temp.begin(), pot_temp.end(),
822 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
823 +    fill(expot_temp.begin(), expot_temp.end(),
824 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
825 +      
826 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
827 +    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
828 +    
829 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
830 +      pairwisePot += pot_temp[ii];    
831 +
832 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
833 +      excludedPot += expot_temp[ii];    
834 +
835 +    if (storageLayout_ & DataStorage::dslParticlePot) {
836 +      // This is the pairwise contribution to the particle pot.  The
837 +      // embedding contribution is added in each of the low level
838 +      // non-bonded routines.  In single processor, this is done in
839 +      // unpackInteractionData, not in collectData.
840 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
841 +        for (int i = 0; i < nLocal_; i++) {
842 +          // factor of two is because the total potential terms are divided
843 +          // by 2 in parallel due to row/ column scatter      
844 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
845 +        }
846 +      }
847 +    }
848 +    
849 +    if (storageLayout_ & DataStorage::dslParticlePot) {
850 +      int npp = snap_->atomData.particlePot.size();
851 +      vector<RealType> ppot_temp(npp, 0.0);
852 +
853 +      // This is the direct or embedding contribution to the particle
854 +      // pot.
855 +      
856 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
857 +      for (int i = 0; i < npp; i++) {
858 +        snap_->atomData.particlePot[i] += ppot_temp[i];
859 +      }
860 +
861 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
862 +      
863 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
864 +      for (int i = 0; i < npp; i++) {
865 +        snap_->atomData.particlePot[i] += ppot_temp[i];
866 +      }
867 +    }
868 +
869 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
870 +      RealType ploc1 = pairwisePot[ii];
871 +      RealType ploc2 = 0.0;
872 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
873 +      pairwisePot[ii] = ploc2;
874 +    }
875 +
876 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
877 +      RealType ploc1 = excludedPot[ii];
878 +      RealType ploc2 = 0.0;
879 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
880 +      excludedPot[ii] = ploc2;
881 +    }
882 +
883 +    // Here be dragons.
884 +    MPI::Intracomm col = colComm.getComm();
885 +
886 +    col.Allreduce(MPI::IN_PLACE,
887 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
888 +                  MPI::REALTYPE, MPI::SUM);
889 +
890 +
891 + #endif
892 +
893 +  }
894 +
895 +  /**
896 +   * Collects information obtained during the post-pair (and embedding
897 +   * functional) loops onto local data structures.
898 +   */
899 +  void ForceMatrixDecomposition::collectSelfData() {
900 +    snap_ = sman_->getCurrentSnapshot();
901 +    storageLayout_ = sman_->getStorageLayout();
902 +
903 + #ifdef IS_MPI
904 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
905 +      RealType ploc1 = embeddingPot[ii];
906 +      RealType ploc2 = 0.0;
907 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
908 +      embeddingPot[ii] = ploc2;
909 +    }    
910 + #endif
911 +    
912 +  }
913 +
914 +
915 +
916 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
917 + #ifdef IS_MPI
918 +    return nAtomsInRow_;
919 + #else
920 +    return nLocal_;
921 + #endif
922 +  }
923 +
924 +  /**
925 +   * returns the list of atoms belonging to this group.  
926 +   */
927 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
928 + #ifdef IS_MPI
929 +    return groupListRow_[cg1];
930 + #else
931 +    return groupList_[cg1];
932 + #endif
933 +  }
934 +
935 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
936 + #ifdef IS_MPI
937 +    return groupListCol_[cg2];
938 + #else
939 +    return groupList_[cg2];
940 + #endif
941 +  }
942 +  
943 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
944 +    Vector3d d;
945 +    
946 + #ifdef IS_MPI
947 +    d = cgColData.position[cg2] - cgRowData.position[cg1];
948 + #else
949 +    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
950 + #endif
951 +    
952 +    snap_->wrapVector(d);
953 +    return d;    
954 +  }
955 +
956 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
957 + #ifdef IS_MPI
958 +    return cgColData.velocity[cg2];
959 + #else
960 +    return snap_->cgData.velocity[cg2];
961 + #endif
962 +  }
963 +
964 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
965 + #ifdef IS_MPI
966 +    return atomColData.velocity[atom2];
967 + #else
968 +    return snap_->atomData.velocity[atom2];
969 + #endif
970 +  }
971 +
972 +
973 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
974 +
975 +    Vector3d d;
976 +    
977 + #ifdef IS_MPI
978 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
979 + #else
980 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
981 + #endif
982 +
983 +    snap_->wrapVector(d);
984 +    return d;    
985 +  }
986 +  
987 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
988 +    Vector3d d;
989 +    
990 + #ifdef IS_MPI
991 +    d = cgColData.position[cg2] - atomColData.position[atom2];
992 + #else
993 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
994 + #endif
995 +    
996 +    snap_->wrapVector(d);
997 +    return d;    
998 +  }
999 +
1000 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1001 + #ifdef IS_MPI
1002 +    return massFactorsRow[atom1];
1003 + #else
1004 +    return massFactors[atom1];
1005 + #endif
1006 +  }
1007 +
1008 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1009 + #ifdef IS_MPI
1010 +    return massFactorsCol[atom2];
1011 + #else
1012 +    return massFactors[atom2];
1013 + #endif
1014 +
1015 +  }
1016 +    
1017 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1018 +    Vector3d d;
1019 +    
1020 + #ifdef IS_MPI
1021 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
1022 + #else
1023 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1024 + #endif
1025 +
1026 +    snap_->wrapVector(d);
1027 +    return d;    
1028 +  }
1029 +
1030 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1031 +    return excludesForAtom[atom1];
1032 +  }
1033 +
1034 +  /**
1035 +   * We need to exclude some overcounted interactions that result from
1036 +   * the parallel decomposition.
1037 +   */
1038 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1039 +    int unique_id_1, unique_id_2, group1, group2;
1040 +        
1041 + #ifdef IS_MPI
1042 +    // in MPI, we have to look up the unique IDs for each atom
1043 +    unique_id_1 = AtomRowToGlobal[atom1];
1044 +    unique_id_2 = AtomColToGlobal[atom2];
1045 +    group1 = cgRowToGlobal[cg1];
1046 +    group2 = cgColToGlobal[cg2];
1047 + #else
1048 +    unique_id_1 = AtomLocalToGlobal[atom1];
1049 +    unique_id_2 = AtomLocalToGlobal[atom2];
1050 +    group1 = cgLocalToGlobal[cg1];
1051 +    group2 = cgLocalToGlobal[cg2];
1052 + #endif  
1053 +
1054 +    if (unique_id_1 == unique_id_2) return true;
1055 +
1056 + #ifdef IS_MPI
1057 +    // this prevents us from doing the pair on multiple processors
1058 +    if (unique_id_1 < unique_id_2) {
1059 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1060 +    } else {
1061 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1062 +    }
1063 + #endif    
1064 +
1065 + #ifndef IS_MPI
1066 +    if (group1 == group2) {
1067 +      if (unique_id_1 < unique_id_2) return true;
1068 +    }
1069 + #endif
1070 +    
1071 +    return false;
1072 +  }
1073 +
1074 +  /**
1075 +   * We need to handle the interactions for atoms who are involved in
1076 +   * the same rigid body as well as some short range interactions
1077 +   * (bonds, bends, torsions) differently from other interactions.
1078 +   * We'll still visit the pairwise routines, but with a flag that
1079 +   * tells those routines to exclude the pair from direct long range
1080 +   * interactions.  Some indirect interactions (notably reaction
1081 +   * field) must still be handled for these pairs.
1082 +   */
1083 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1084 +
1085 +    // excludesForAtom was constructed to use row/column indices in the MPI
1086 +    // version, and to use local IDs in the non-MPI version:
1087 +    
1088 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1089 +         i != excludesForAtom[atom1].end(); ++i) {
1090 +      if ( (*i) == atom2 ) return true;
1091 +    }
1092 +
1093 +    return false;
1094 +  }
1095 +
1096 +
1097 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1098 + #ifdef IS_MPI
1099 +    atomRowData.force[atom1] += fg;
1100 + #else
1101 +    snap_->atomData.force[atom1] += fg;
1102 + #endif
1103 +  }
1104 +
1105 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1106 + #ifdef IS_MPI
1107 +    atomColData.force[atom2] += fg;
1108 + #else
1109 +    snap_->atomData.force[atom2] += fg;
1110 + #endif
1111 +  }
1112 +
1113 +    // filling interaction blocks with pointers
1114 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1115 +                                                     int atom1, int atom2) {
1116 +
1117 +    idat.excluded = excludeAtomPair(atom1, atom2);
1118 +  
1119 + #ifdef IS_MPI
1120 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1121 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1122 +    //                         ff_->getAtomType(identsCol[atom2]) );
1123 +    
1124 +    if (storageLayout_ & DataStorage::dslAmat) {
1125 +      idat.A1 = &(atomRowData.aMat[atom1]);
1126 +      idat.A2 = &(atomColData.aMat[atom2]);
1127 +    }
1128 +    
1129 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
1130 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1131 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1132 +    }
1133 +
1134 +    if (storageLayout_ & DataStorage::dslTorque) {
1135 +      idat.t1 = &(atomRowData.torque[atom1]);
1136 +      idat.t2 = &(atomColData.torque[atom2]);
1137 +    }
1138 +
1139 +    if (storageLayout_ & DataStorage::dslDensity) {
1140 +      idat.rho1 = &(atomRowData.density[atom1]);
1141 +      idat.rho2 = &(atomColData.density[atom2]);
1142      }
1143 +
1144 +    if (storageLayout_ & DataStorage::dslFunctional) {
1145 +      idat.frho1 = &(atomRowData.functional[atom1]);
1146 +      idat.frho2 = &(atomColData.functional[atom2]);
1147 +    }
1148 +
1149 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1150 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1151 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1152 +    }
1153 +
1154 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1155 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1156 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1157 +    }
1158 +
1159 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1160 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1161 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1162 +    }
1163 +
1164 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1165 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1166 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1167 +    }
1168 +
1169 + #else
1170 +    
1171 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1172 +
1173 +    if (storageLayout_ & DataStorage::dslAmat) {
1174 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
1175 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1176 +    }
1177 +
1178 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
1179 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1180 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1181 +    }
1182 +
1183 +    if (storageLayout_ & DataStorage::dslTorque) {
1184 +      idat.t1 = &(snap_->atomData.torque[atom1]);
1185 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1186 +    }
1187 +
1188 +    if (storageLayout_ & DataStorage::dslDensity) {    
1189 +      idat.rho1 = &(snap_->atomData.density[atom1]);
1190 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1191 +    }
1192 +
1193 +    if (storageLayout_ & DataStorage::dslFunctional) {
1194 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1195 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1196 +    }
1197 +
1198 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1199 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1200 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1201 +    }
1202 +
1203 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1204 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1205 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1206 +    }
1207 +
1208 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1209 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1210 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1211 +    }
1212 +
1213 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1214 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1215 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1216 +    }
1217 +
1218   #endif
1219    }
1220 +
1221    
1222 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1223 + #ifdef IS_MPI
1224 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1225 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1226 +    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1227 +    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1228 +
1229 +    atomRowData.force[atom1] += *(idat.f1);
1230 +    atomColData.force[atom2] -= *(idat.f1);
1231 +
1232 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1233 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1234 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1235 +    }
1236 +
1237 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1238 +      atomRowData.electricField[atom1] += *(idat.eField1);
1239 +      atomColData.electricField[atom2] += *(idat.eField2);
1240 +    }
1241 +
1242 + #else
1243 +    pairwisePot += *(idat.pot);
1244 +    excludedPot += *(idat.excludedPot);
1245 +
1246 +    snap_->atomData.force[atom1] += *(idat.f1);
1247 +    snap_->atomData.force[atom2] -= *(idat.f1);
1248 +
1249 +    if (idat.doParticlePot) {
1250 +      // This is the pairwise contribution to the particle pot.  The
1251 +      // embedding contribution is added in each of the low level
1252 +      // non-bonded routines.  In parallel, this calculation is done
1253 +      // in collectData, not in unpackInteractionData.
1254 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1255 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1256 +    }
1257 +    
1258 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1259 +      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1260 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1261 +    }
1262 +
1263 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1264 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1265 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1266 +    }
1267 +
1268 + #endif
1269 +    
1270 +  }
1271 +
1272 +  /*
1273 +   * buildNeighborList
1274 +   *
1275 +   * first element of pair is row-indexed CutoffGroup
1276 +   * second element of pair is column-indexed CutoffGroup
1277 +   */
1278 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1279 +      
1280 +    vector<pair<int, int> > neighborList;
1281 +    groupCutoffs cuts;
1282 +    bool doAllPairs = false;
1283 +
1284 + #ifdef IS_MPI
1285 +    cellListRow_.clear();
1286 +    cellListCol_.clear();
1287 + #else
1288 +    cellList_.clear();
1289 + #endif
1290 +
1291 +    RealType rList_ = (largestRcut_ + skinThickness_);
1292 +    RealType rl2 = rList_ * rList_;
1293 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1294 +    Mat3x3d Hmat = snap_->getHmat();
1295 +    Vector3d Hx = Hmat.getColumn(0);
1296 +    Vector3d Hy = Hmat.getColumn(1);
1297 +    Vector3d Hz = Hmat.getColumn(2);
1298 +
1299 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1300 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1301 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1302 +
1303 +    // handle small boxes where the cell offsets can end up repeating cells
1304 +    
1305 +    if (nCells_.x() < 3) doAllPairs = true;
1306 +    if (nCells_.y() < 3) doAllPairs = true;
1307 +    if (nCells_.z() < 3) doAllPairs = true;
1308 +
1309 +    Mat3x3d invHmat = snap_->getInvHmat();
1310 +    Vector3d rs, scaled, dr;
1311 +    Vector3i whichCell;
1312 +    int cellIndex;
1313 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1314 +
1315 + #ifdef IS_MPI
1316 +    cellListRow_.resize(nCtot);
1317 +    cellListCol_.resize(nCtot);
1318 + #else
1319 +    cellList_.resize(nCtot);
1320 + #endif
1321 +
1322 +    if (!doAllPairs) {
1323 + #ifdef IS_MPI
1324 +
1325 +      for (int i = 0; i < nGroupsInRow_; i++) {
1326 +        rs = cgRowData.position[i];
1327 +        
1328 +        // scaled positions relative to the box vectors
1329 +        scaled = invHmat * rs;
1330 +        
1331 +        // wrap the vector back into the unit box by subtracting integer box
1332 +        // numbers
1333 +        for (int j = 0; j < 3; j++) {
1334 +          scaled[j] -= roundMe(scaled[j]);
1335 +          scaled[j] += 0.5;
1336 +        }
1337 +        
1338 +        // find xyz-indices of cell that cutoffGroup is in.
1339 +        whichCell.x() = nCells_.x() * scaled.x();
1340 +        whichCell.y() = nCells_.y() * scaled.y();
1341 +        whichCell.z() = nCells_.z() * scaled.z();
1342 +        
1343 +        // find single index of this cell:
1344 +        cellIndex = Vlinear(whichCell, nCells_);
1345 +        
1346 +        // add this cutoff group to the list of groups in this cell;
1347 +        cellListRow_[cellIndex].push_back(i);
1348 +      }
1349 +      for (int i = 0; i < nGroupsInCol_; i++) {
1350 +        rs = cgColData.position[i];
1351 +        
1352 +        // scaled positions relative to the box vectors
1353 +        scaled = invHmat * rs;
1354 +        
1355 +        // wrap the vector back into the unit box by subtracting integer box
1356 +        // numbers
1357 +        for (int j = 0; j < 3; j++) {
1358 +          scaled[j] -= roundMe(scaled[j]);
1359 +          scaled[j] += 0.5;
1360 +        }
1361 +        
1362 +        // find xyz-indices of cell that cutoffGroup is in.
1363 +        whichCell.x() = nCells_.x() * scaled.x();
1364 +        whichCell.y() = nCells_.y() * scaled.y();
1365 +        whichCell.z() = nCells_.z() * scaled.z();
1366 +        
1367 +        // find single index of this cell:
1368 +        cellIndex = Vlinear(whichCell, nCells_);
1369 +        
1370 +        // add this cutoff group to the list of groups in this cell;
1371 +        cellListCol_[cellIndex].push_back(i);
1372 +      }
1373 +    
1374 + #else
1375 +      for (int i = 0; i < nGroups_; i++) {
1376 +        rs = snap_->cgData.position[i];
1377 +        
1378 +        // scaled positions relative to the box vectors
1379 +        scaled = invHmat * rs;
1380 +        
1381 +        // wrap the vector back into the unit box by subtracting integer box
1382 +        // numbers
1383 +        for (int j = 0; j < 3; j++) {
1384 +          scaled[j] -= roundMe(scaled[j]);
1385 +          scaled[j] += 0.5;
1386 +        }
1387 +        
1388 +        // find xyz-indices of cell that cutoffGroup is in.
1389 +        whichCell.x() = nCells_.x() * scaled.x();
1390 +        whichCell.y() = nCells_.y() * scaled.y();
1391 +        whichCell.z() = nCells_.z() * scaled.z();
1392 +        
1393 +        // find single index of this cell:
1394 +        cellIndex = Vlinear(whichCell, nCells_);
1395 +        
1396 +        // add this cutoff group to the list of groups in this cell;
1397 +        cellList_[cellIndex].push_back(i);
1398 +      }
1399 +
1400 + #endif
1401 +
1402 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1403 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1404 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1405 +            Vector3i m1v(m1x, m1y, m1z);
1406 +            int m1 = Vlinear(m1v, nCells_);
1407 +            
1408 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1409 +                 os != cellOffsets_.end(); ++os) {
1410 +              
1411 +              Vector3i m2v = m1v + (*os);
1412 +            
1413 +
1414 +              if (m2v.x() >= nCells_.x()) {
1415 +                m2v.x() = 0;          
1416 +              } else if (m2v.x() < 0) {
1417 +                m2v.x() = nCells_.x() - 1;
1418 +              }
1419 +              
1420 +              if (m2v.y() >= nCells_.y()) {
1421 +                m2v.y() = 0;          
1422 +              } else if (m2v.y() < 0) {
1423 +                m2v.y() = nCells_.y() - 1;
1424 +              }
1425 +              
1426 +              if (m2v.z() >= nCells_.z()) {
1427 +                m2v.z() = 0;          
1428 +              } else if (m2v.z() < 0) {
1429 +                m2v.z() = nCells_.z() - 1;
1430 +              }
1431 +
1432 +              int m2 = Vlinear (m2v, nCells_);
1433 +              
1434 + #ifdef IS_MPI
1435 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1436 +                   j1 != cellListRow_[m1].end(); ++j1) {
1437 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1438 +                     j2 != cellListCol_[m2].end(); ++j2) {
1439 +                  
1440 +                  // In parallel, we need to visit *all* pairs of row
1441 +                  // & column indicies and will divide labor in the
1442 +                  // force evaluation later.
1443 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1444 +                  snap_->wrapVector(dr);
1445 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1446 +                  if (dr.lengthSquare() < cuts.third) {
1447 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1448 +                  }                  
1449 +                }
1450 +              }
1451 + #else
1452 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1453 +                   j1 != cellList_[m1].end(); ++j1) {
1454 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1455 +                     j2 != cellList_[m2].end(); ++j2) {
1456 +    
1457 +                  // Always do this if we're in different cells or if
1458 +                  // we're in the same cell and the global index of
1459 +                  // the j2 cutoff group is greater than or equal to
1460 +                  // the j1 cutoff group.  Note that Rappaport's code
1461 +                  // has a "less than" conditional here, but that
1462 +                  // deals with atom-by-atom computation.  OpenMD
1463 +                  // allows atoms within a single cutoff group to
1464 +                  // interact with each other.
1465 +
1466 +
1467 +
1468 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1469 +
1470 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1471 +                    snap_->wrapVector(dr);
1472 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1473 +                    if (dr.lengthSquare() < cuts.third) {
1474 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1475 +                    }
1476 +                  }
1477 +                }
1478 +              }
1479 + #endif
1480 +            }
1481 +          }
1482 +        }
1483 +      }
1484 +    } else {
1485 +      // branch to do all cutoff group pairs
1486 + #ifdef IS_MPI
1487 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1488 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1489 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1490 +          snap_->wrapVector(dr);
1491 +          cuts = getGroupCutoffs( j1, j2 );
1492 +          if (dr.lengthSquare() < cuts.third) {
1493 +            neighborList.push_back(make_pair(j1, j2));
1494 +          }
1495 +        }
1496 +      }      
1497 + #else
1498 +      // include all groups here.
1499 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1500 +        // include self group interactions j2 == j1
1501 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1502 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1503 +          snap_->wrapVector(dr);
1504 +          cuts = getGroupCutoffs( j1, j2 );
1505 +          if (dr.lengthSquare() < cuts.third) {
1506 +            neighborList.push_back(make_pair(j1, j2));
1507 +          }
1508 +        }    
1509 +      }
1510 + #endif
1511 +    }
1512 +      
1513 +    // save the local cutoff group positions for the check that is
1514 +    // done on each loop:
1515 +    saved_CG_positions_.clear();
1516 +    for (int i = 0; i < nGroups_; i++)
1517 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1518 +    
1519 +    return neighborList;
1520 +  }
1521   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines