1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
#include "math/SquareMatrix3.hpp" |
43 |
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
#include "brains/SnapshotManager.hpp" |
45 |
#include "brains/PairList.hpp" |
46 |
|
47 |
using namespace std; |
48 |
namespace OpenMD { |
49 |
|
50 |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 |
|
52 |
// In a parallel computation, row and colum scans must visit all |
53 |
// surrounding cells (not just the 14 upper triangular blocks that |
54 |
// are used when the processor can see all pairs) |
55 |
#ifdef IS_MPI |
56 |
cellOffsets_.clear(); |
57 |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
58 |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
59 |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
61 |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
62 |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
63 |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
64 |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
65 |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
66 |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
67 |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
68 |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
69 |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
70 |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
71 |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
72 |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
73 |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
74 |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
75 |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
76 |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
77 |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
78 |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
79 |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
80 |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
81 |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
82 |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
83 |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
84 |
#endif |
85 |
} |
86 |
|
87 |
|
88 |
/** |
89 |
* distributeInitialData is essentially a copy of the older fortran |
90 |
* SimulationSetup |
91 |
*/ |
92 |
void ForceMatrixDecomposition::distributeInitialData() { |
93 |
snap_ = sman_->getCurrentSnapshot(); |
94 |
storageLayout_ = sman_->getStorageLayout(); |
95 |
ff_ = info_->getForceField(); |
96 |
nLocal_ = snap_->getNumberOfAtoms(); |
97 |
|
98 |
nGroups_ = info_->getNLocalCutoffGroups(); |
99 |
// gather the information for atomtype IDs (atids): |
100 |
idents = info_->getIdentArray(); |
101 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
102 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
103 |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
104 |
|
105 |
massFactors = info_->getMassFactors(); |
106 |
|
107 |
PairList* excludes = info_->getExcludedInteractions(); |
108 |
PairList* oneTwo = info_->getOneTwoInteractions(); |
109 |
PairList* oneThree = info_->getOneThreeInteractions(); |
110 |
PairList* oneFour = info_->getOneFourInteractions(); |
111 |
|
112 |
#ifdef IS_MPI |
113 |
|
114 |
MPI::Intracomm row = rowComm.getComm(); |
115 |
MPI::Intracomm col = colComm.getComm(); |
116 |
|
117 |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
118 |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
119 |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
120 |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
121 |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
122 |
|
123 |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
124 |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
125 |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
126 |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
127 |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
128 |
|
129 |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
130 |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
131 |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
132 |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
133 |
|
134 |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
135 |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
136 |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
137 |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
138 |
|
139 |
// Modify the data storage objects with the correct layouts and sizes: |
140 |
atomRowData.resize(nAtomsInRow_); |
141 |
atomRowData.setStorageLayout(storageLayout_); |
142 |
atomColData.resize(nAtomsInCol_); |
143 |
atomColData.setStorageLayout(storageLayout_); |
144 |
cgRowData.resize(nGroupsInRow_); |
145 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
146 |
cgColData.resize(nGroupsInCol_); |
147 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
148 |
|
149 |
identsRow.resize(nAtomsInRow_); |
150 |
identsCol.resize(nAtomsInCol_); |
151 |
|
152 |
AtomPlanIntRow->gather(idents, identsRow); |
153 |
AtomPlanIntColumn->gather(idents, identsCol); |
154 |
|
155 |
// allocate memory for the parallel objects |
156 |
atypesRow.resize(nAtomsInRow_); |
157 |
atypesCol.resize(nAtomsInCol_); |
158 |
|
159 |
for (int i = 0; i < nAtomsInRow_; i++) |
160 |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
161 |
for (int i = 0; i < nAtomsInCol_; i++) |
162 |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
163 |
|
164 |
pot_row.resize(nAtomsInRow_); |
165 |
pot_col.resize(nAtomsInCol_); |
166 |
|
167 |
AtomRowToGlobal.resize(nAtomsInRow_); |
168 |
AtomColToGlobal.resize(nAtomsInCol_); |
169 |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
170 |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
171 |
|
172 |
cgRowToGlobal.resize(nGroupsInRow_); |
173 |
cgColToGlobal.resize(nGroupsInCol_); |
174 |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
175 |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
176 |
|
177 |
massFactorsRow.resize(nAtomsInRow_); |
178 |
massFactorsCol.resize(nAtomsInCol_); |
179 |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
180 |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
181 |
|
182 |
groupListRow_.clear(); |
183 |
groupListRow_.resize(nGroupsInRow_); |
184 |
for (int i = 0; i < nGroupsInRow_; i++) { |
185 |
int gid = cgRowToGlobal[i]; |
186 |
for (int j = 0; j < nAtomsInRow_; j++) { |
187 |
int aid = AtomRowToGlobal[j]; |
188 |
if (globalGroupMembership[aid] == gid) |
189 |
groupListRow_[i].push_back(j); |
190 |
} |
191 |
} |
192 |
|
193 |
groupListCol_.clear(); |
194 |
groupListCol_.resize(nGroupsInCol_); |
195 |
for (int i = 0; i < nGroupsInCol_; i++) { |
196 |
int gid = cgColToGlobal[i]; |
197 |
for (int j = 0; j < nAtomsInCol_; j++) { |
198 |
int aid = AtomColToGlobal[j]; |
199 |
if (globalGroupMembership[aid] == gid) |
200 |
groupListCol_[i].push_back(j); |
201 |
} |
202 |
} |
203 |
|
204 |
excludesForAtom.clear(); |
205 |
excludesForAtom.resize(nAtomsInRow_); |
206 |
toposForAtom.clear(); |
207 |
toposForAtom.resize(nAtomsInRow_); |
208 |
topoDist.clear(); |
209 |
topoDist.resize(nAtomsInRow_); |
210 |
for (int i = 0; i < nAtomsInRow_; i++) { |
211 |
int iglob = AtomRowToGlobal[i]; |
212 |
|
213 |
for (int j = 0; j < nAtomsInCol_; j++) { |
214 |
int jglob = AtomColToGlobal[j]; |
215 |
|
216 |
if (excludes->hasPair(iglob, jglob)) |
217 |
excludesForAtom[i].push_back(j); |
218 |
|
219 |
if (oneTwo->hasPair(iglob, jglob)) { |
220 |
toposForAtom[i].push_back(j); |
221 |
topoDist[i].push_back(1); |
222 |
} else { |
223 |
if (oneThree->hasPair(iglob, jglob)) { |
224 |
toposForAtom[i].push_back(j); |
225 |
topoDist[i].push_back(2); |
226 |
} else { |
227 |
if (oneFour->hasPair(iglob, jglob)) { |
228 |
toposForAtom[i].push_back(j); |
229 |
topoDist[i].push_back(3); |
230 |
} |
231 |
} |
232 |
} |
233 |
} |
234 |
} |
235 |
|
236 |
#endif |
237 |
|
238 |
// allocate memory for the parallel objects |
239 |
atypesLocal.resize(nLocal_); |
240 |
|
241 |
for (int i = 0; i < nLocal_; i++) |
242 |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
243 |
|
244 |
groupList_.clear(); |
245 |
groupList_.resize(nGroups_); |
246 |
for (int i = 0; i < nGroups_; i++) { |
247 |
int gid = cgLocalToGlobal[i]; |
248 |
for (int j = 0; j < nLocal_; j++) { |
249 |
int aid = AtomLocalToGlobal[j]; |
250 |
if (globalGroupMembership[aid] == gid) { |
251 |
groupList_[i].push_back(j); |
252 |
} |
253 |
} |
254 |
} |
255 |
|
256 |
excludesForAtom.clear(); |
257 |
excludesForAtom.resize(nLocal_); |
258 |
toposForAtom.clear(); |
259 |
toposForAtom.resize(nLocal_); |
260 |
topoDist.clear(); |
261 |
topoDist.resize(nLocal_); |
262 |
|
263 |
for (int i = 0; i < nLocal_; i++) { |
264 |
int iglob = AtomLocalToGlobal[i]; |
265 |
|
266 |
for (int j = 0; j < nLocal_; j++) { |
267 |
int jglob = AtomLocalToGlobal[j]; |
268 |
|
269 |
if (excludes->hasPair(iglob, jglob)) |
270 |
excludesForAtom[i].push_back(j); |
271 |
|
272 |
if (oneTwo->hasPair(iglob, jglob)) { |
273 |
toposForAtom[i].push_back(j); |
274 |
topoDist[i].push_back(1); |
275 |
} else { |
276 |
if (oneThree->hasPair(iglob, jglob)) { |
277 |
toposForAtom[i].push_back(j); |
278 |
topoDist[i].push_back(2); |
279 |
} else { |
280 |
if (oneFour->hasPair(iglob, jglob)) { |
281 |
toposForAtom[i].push_back(j); |
282 |
topoDist[i].push_back(3); |
283 |
} |
284 |
} |
285 |
} |
286 |
} |
287 |
} |
288 |
|
289 |
createGtypeCutoffMap(); |
290 |
|
291 |
} |
292 |
|
293 |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
294 |
|
295 |
RealType tol = 1e-6; |
296 |
largestRcut_ = 0.0; |
297 |
RealType rc; |
298 |
int atid; |
299 |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
300 |
|
301 |
map<int, RealType> atypeCutoff; |
302 |
|
303 |
for (set<AtomType*>::iterator at = atypes.begin(); |
304 |
at != atypes.end(); ++at){ |
305 |
atid = (*at)->getIdent(); |
306 |
if (userChoseCutoff_) |
307 |
atypeCutoff[atid] = userCutoff_; |
308 |
else |
309 |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
310 |
} |
311 |
|
312 |
vector<RealType> gTypeCutoffs; |
313 |
// first we do a single loop over the cutoff groups to find the |
314 |
// largest cutoff for any atypes present in this group. |
315 |
#ifdef IS_MPI |
316 |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
317 |
groupRowToGtype.resize(nGroupsInRow_); |
318 |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
319 |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
320 |
for (vector<int>::iterator ia = atomListRow.begin(); |
321 |
ia != atomListRow.end(); ++ia) { |
322 |
int atom1 = (*ia); |
323 |
atid = identsRow[atom1]; |
324 |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
325 |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
326 |
} |
327 |
} |
328 |
|
329 |
bool gTypeFound = false; |
330 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
331 |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
332 |
groupRowToGtype[cg1] = gt; |
333 |
gTypeFound = true; |
334 |
} |
335 |
} |
336 |
if (!gTypeFound) { |
337 |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
338 |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
339 |
} |
340 |
|
341 |
} |
342 |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
343 |
groupColToGtype.resize(nGroupsInCol_); |
344 |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
345 |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
346 |
for (vector<int>::iterator jb = atomListCol.begin(); |
347 |
jb != atomListCol.end(); ++jb) { |
348 |
int atom2 = (*jb); |
349 |
atid = identsCol[atom2]; |
350 |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
351 |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
352 |
} |
353 |
} |
354 |
bool gTypeFound = false; |
355 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
356 |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
357 |
groupColToGtype[cg2] = gt; |
358 |
gTypeFound = true; |
359 |
} |
360 |
} |
361 |
if (!gTypeFound) { |
362 |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
363 |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
364 |
} |
365 |
} |
366 |
#else |
367 |
|
368 |
vector<RealType> groupCutoff(nGroups_, 0.0); |
369 |
groupToGtype.resize(nGroups_); |
370 |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
371 |
groupCutoff[cg1] = 0.0; |
372 |
vector<int> atomList = getAtomsInGroupRow(cg1); |
373 |
for (vector<int>::iterator ia = atomList.begin(); |
374 |
ia != atomList.end(); ++ia) { |
375 |
int atom1 = (*ia); |
376 |
atid = idents[atom1]; |
377 |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
378 |
groupCutoff[cg1] = atypeCutoff[atid]; |
379 |
} |
380 |
|
381 |
bool gTypeFound = false; |
382 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
383 |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
384 |
groupToGtype[cg1] = gt; |
385 |
gTypeFound = true; |
386 |
} |
387 |
} |
388 |
if (!gTypeFound) { |
389 |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
390 |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
391 |
} |
392 |
} |
393 |
#endif |
394 |
|
395 |
// Now we find the maximum group cutoff value present in the simulation |
396 |
|
397 |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
398 |
gTypeCutoffs.end()); |
399 |
|
400 |
#ifdef IS_MPI |
401 |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
402 |
MPI::MAX); |
403 |
#endif |
404 |
|
405 |
RealType tradRcut = groupMax; |
406 |
|
407 |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
408 |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
409 |
RealType thisRcut; |
410 |
switch(cutoffPolicy_) { |
411 |
case TRADITIONAL: |
412 |
thisRcut = tradRcut; |
413 |
break; |
414 |
case MIX: |
415 |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
416 |
break; |
417 |
case MAX: |
418 |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
419 |
break; |
420 |
default: |
421 |
sprintf(painCave.errMsg, |
422 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
423 |
"hit an unknown cutoff policy!\n"); |
424 |
painCave.severity = OPENMD_ERROR; |
425 |
painCave.isFatal = 1; |
426 |
simError(); |
427 |
break; |
428 |
} |
429 |
|
430 |
pair<int,int> key = make_pair(i,j); |
431 |
gTypeCutoffMap[key].first = thisRcut; |
432 |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
433 |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
434 |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
435 |
// sanity check |
436 |
|
437 |
if (userChoseCutoff_) { |
438 |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
439 |
sprintf(painCave.errMsg, |
440 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
441 |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
442 |
painCave.severity = OPENMD_ERROR; |
443 |
painCave.isFatal = 1; |
444 |
simError(); |
445 |
} |
446 |
} |
447 |
} |
448 |
} |
449 |
} |
450 |
|
451 |
|
452 |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
453 |
int i, j; |
454 |
#ifdef IS_MPI |
455 |
i = groupRowToGtype[cg1]; |
456 |
j = groupColToGtype[cg2]; |
457 |
#else |
458 |
i = groupToGtype[cg1]; |
459 |
j = groupToGtype[cg2]; |
460 |
#endif |
461 |
return gTypeCutoffMap[make_pair(i,j)]; |
462 |
} |
463 |
|
464 |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
465 |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
466 |
if (toposForAtom[atom1][j] == atom2) |
467 |
return topoDist[atom1][j]; |
468 |
} |
469 |
return 0; |
470 |
} |
471 |
|
472 |
void ForceMatrixDecomposition::zeroWorkArrays() { |
473 |
pairwisePot = 0.0; |
474 |
embeddingPot = 0.0; |
475 |
|
476 |
#ifdef IS_MPI |
477 |
if (storageLayout_ & DataStorage::dslForce) { |
478 |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
479 |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
480 |
} |
481 |
|
482 |
if (storageLayout_ & DataStorage::dslTorque) { |
483 |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
484 |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
485 |
} |
486 |
|
487 |
fill(pot_row.begin(), pot_row.end(), |
488 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
489 |
|
490 |
fill(pot_col.begin(), pot_col.end(), |
491 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
492 |
|
493 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
494 |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
495 |
0.0); |
496 |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
497 |
0.0); |
498 |
} |
499 |
|
500 |
if (storageLayout_ & DataStorage::dslDensity) { |
501 |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
502 |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
503 |
} |
504 |
|
505 |
if (storageLayout_ & DataStorage::dslFunctional) { |
506 |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
507 |
0.0); |
508 |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
509 |
0.0); |
510 |
} |
511 |
|
512 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
513 |
fill(atomRowData.functionalDerivative.begin(), |
514 |
atomRowData.functionalDerivative.end(), 0.0); |
515 |
fill(atomColData.functionalDerivative.begin(), |
516 |
atomColData.functionalDerivative.end(), 0.0); |
517 |
} |
518 |
|
519 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
520 |
fill(atomRowData.skippedCharge.begin(), |
521 |
atomRowData.skippedCharge.end(), 0.0); |
522 |
fill(atomColData.skippedCharge.begin(), |
523 |
atomColData.skippedCharge.end(), 0.0); |
524 |
} |
525 |
|
526 |
#endif |
527 |
// even in parallel, we need to zero out the local arrays: |
528 |
|
529 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
530 |
fill(snap_->atomData.particlePot.begin(), |
531 |
snap_->atomData.particlePot.end(), 0.0); |
532 |
} |
533 |
|
534 |
if (storageLayout_ & DataStorage::dslDensity) { |
535 |
fill(snap_->atomData.density.begin(), |
536 |
snap_->atomData.density.end(), 0.0); |
537 |
} |
538 |
if (storageLayout_ & DataStorage::dslFunctional) { |
539 |
fill(snap_->atomData.functional.begin(), |
540 |
snap_->atomData.functional.end(), 0.0); |
541 |
} |
542 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
543 |
fill(snap_->atomData.functionalDerivative.begin(), |
544 |
snap_->atomData.functionalDerivative.end(), 0.0); |
545 |
} |
546 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
547 |
fill(snap_->atomData.skippedCharge.begin(), |
548 |
snap_->atomData.skippedCharge.end(), 0.0); |
549 |
} |
550 |
|
551 |
} |
552 |
|
553 |
|
554 |
void ForceMatrixDecomposition::distributeData() { |
555 |
snap_ = sman_->getCurrentSnapshot(); |
556 |
storageLayout_ = sman_->getStorageLayout(); |
557 |
#ifdef IS_MPI |
558 |
|
559 |
// gather up the atomic positions |
560 |
AtomPlanVectorRow->gather(snap_->atomData.position, |
561 |
atomRowData.position); |
562 |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
563 |
atomColData.position); |
564 |
|
565 |
// gather up the cutoff group positions |
566 |
|
567 |
cgPlanVectorRow->gather(snap_->cgData.position, |
568 |
cgRowData.position); |
569 |
|
570 |
cgPlanVectorColumn->gather(snap_->cgData.position, |
571 |
cgColData.position); |
572 |
|
573 |
|
574 |
// if needed, gather the atomic rotation matrices |
575 |
if (storageLayout_ & DataStorage::dslAmat) { |
576 |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
577 |
atomRowData.aMat); |
578 |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
579 |
atomColData.aMat); |
580 |
} |
581 |
|
582 |
// if needed, gather the atomic eletrostatic frames |
583 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
584 |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
585 |
atomRowData.electroFrame); |
586 |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
587 |
atomColData.electroFrame); |
588 |
} |
589 |
|
590 |
#endif |
591 |
} |
592 |
|
593 |
/* collects information obtained during the pre-pair loop onto local |
594 |
* data structures. |
595 |
*/ |
596 |
void ForceMatrixDecomposition::collectIntermediateData() { |
597 |
snap_ = sman_->getCurrentSnapshot(); |
598 |
storageLayout_ = sman_->getStorageLayout(); |
599 |
#ifdef IS_MPI |
600 |
|
601 |
if (storageLayout_ & DataStorage::dslDensity) { |
602 |
|
603 |
AtomPlanRealRow->scatter(atomRowData.density, |
604 |
snap_->atomData.density); |
605 |
|
606 |
int n = snap_->atomData.density.size(); |
607 |
vector<RealType> rho_tmp(n, 0.0); |
608 |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
609 |
for (int i = 0; i < n; i++) |
610 |
snap_->atomData.density[i] += rho_tmp[i]; |
611 |
} |
612 |
#endif |
613 |
} |
614 |
|
615 |
/* |
616 |
* redistributes information obtained during the pre-pair loop out to |
617 |
* row and column-indexed data structures |
618 |
*/ |
619 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
620 |
snap_ = sman_->getCurrentSnapshot(); |
621 |
storageLayout_ = sman_->getStorageLayout(); |
622 |
#ifdef IS_MPI |
623 |
if (storageLayout_ & DataStorage::dslFunctional) { |
624 |
AtomPlanRealRow->gather(snap_->atomData.functional, |
625 |
atomRowData.functional); |
626 |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
627 |
atomColData.functional); |
628 |
} |
629 |
|
630 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
631 |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
632 |
atomRowData.functionalDerivative); |
633 |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
634 |
atomColData.functionalDerivative); |
635 |
} |
636 |
#endif |
637 |
} |
638 |
|
639 |
|
640 |
void ForceMatrixDecomposition::collectData() { |
641 |
snap_ = sman_->getCurrentSnapshot(); |
642 |
storageLayout_ = sman_->getStorageLayout(); |
643 |
#ifdef IS_MPI |
644 |
int n = snap_->atomData.force.size(); |
645 |
vector<Vector3d> frc_tmp(n, V3Zero); |
646 |
|
647 |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
648 |
for (int i = 0; i < n; i++) { |
649 |
snap_->atomData.force[i] += frc_tmp[i]; |
650 |
frc_tmp[i] = 0.0; |
651 |
} |
652 |
|
653 |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
654 |
for (int i = 0; i < n; i++) { |
655 |
snap_->atomData.force[i] += frc_tmp[i]; |
656 |
} |
657 |
|
658 |
if (storageLayout_ & DataStorage::dslTorque) { |
659 |
|
660 |
int nt = snap_->atomData.torque.size(); |
661 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
662 |
|
663 |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
664 |
for (int i = 0; i < nt; i++) { |
665 |
snap_->atomData.torque[i] += trq_tmp[i]; |
666 |
trq_tmp[i] = 0.0; |
667 |
} |
668 |
|
669 |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
670 |
for (int i = 0; i < nt; i++) |
671 |
snap_->atomData.torque[i] += trq_tmp[i]; |
672 |
} |
673 |
|
674 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
675 |
|
676 |
int ns = snap_->atomData.skippedCharge.size(); |
677 |
vector<RealType> skch_tmp(ns, 0.0); |
678 |
|
679 |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
680 |
for (int i = 0; i < ns; i++) { |
681 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
682 |
skch_tmp[i] = 0.0; |
683 |
} |
684 |
|
685 |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
686 |
for (int i = 0; i < ns; i++) |
687 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
688 |
} |
689 |
|
690 |
nLocal_ = snap_->getNumberOfAtoms(); |
691 |
|
692 |
vector<potVec> pot_temp(nLocal_, |
693 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
694 |
|
695 |
// scatter/gather pot_row into the members of my column |
696 |
|
697 |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
698 |
|
699 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
700 |
pairwisePot += pot_temp[ii]; |
701 |
|
702 |
fill(pot_temp.begin(), pot_temp.end(), |
703 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
704 |
|
705 |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
706 |
|
707 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
708 |
pairwisePot += pot_temp[ii]; |
709 |
|
710 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
711 |
RealType ploc1 = pairwisePot[ii]; |
712 |
RealType ploc2 = 0.0; |
713 |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
714 |
pairwisePot[ii] = ploc2; |
715 |
} |
716 |
|
717 |
#endif |
718 |
|
719 |
} |
720 |
|
721 |
int ForceMatrixDecomposition::getNAtomsInRow() { |
722 |
#ifdef IS_MPI |
723 |
return nAtomsInRow_; |
724 |
#else |
725 |
return nLocal_; |
726 |
#endif |
727 |
} |
728 |
|
729 |
/** |
730 |
* returns the list of atoms belonging to this group. |
731 |
*/ |
732 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
733 |
#ifdef IS_MPI |
734 |
return groupListRow_[cg1]; |
735 |
#else |
736 |
return groupList_[cg1]; |
737 |
#endif |
738 |
} |
739 |
|
740 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
741 |
#ifdef IS_MPI |
742 |
return groupListCol_[cg2]; |
743 |
#else |
744 |
return groupList_[cg2]; |
745 |
#endif |
746 |
} |
747 |
|
748 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
749 |
Vector3d d; |
750 |
|
751 |
#ifdef IS_MPI |
752 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
753 |
#else |
754 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
755 |
#endif |
756 |
|
757 |
snap_->wrapVector(d); |
758 |
return d; |
759 |
} |
760 |
|
761 |
|
762 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
763 |
|
764 |
Vector3d d; |
765 |
|
766 |
#ifdef IS_MPI |
767 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
768 |
#else |
769 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
770 |
#endif |
771 |
|
772 |
snap_->wrapVector(d); |
773 |
return d; |
774 |
} |
775 |
|
776 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
777 |
Vector3d d; |
778 |
|
779 |
#ifdef IS_MPI |
780 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
781 |
#else |
782 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
783 |
#endif |
784 |
|
785 |
snap_->wrapVector(d); |
786 |
return d; |
787 |
} |
788 |
|
789 |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
790 |
#ifdef IS_MPI |
791 |
return massFactorsRow[atom1]; |
792 |
#else |
793 |
return massFactors[atom1]; |
794 |
#endif |
795 |
} |
796 |
|
797 |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
798 |
#ifdef IS_MPI |
799 |
return massFactorsCol[atom2]; |
800 |
#else |
801 |
return massFactors[atom2]; |
802 |
#endif |
803 |
|
804 |
} |
805 |
|
806 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
807 |
Vector3d d; |
808 |
|
809 |
#ifdef IS_MPI |
810 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
811 |
#else |
812 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
813 |
#endif |
814 |
|
815 |
snap_->wrapVector(d); |
816 |
return d; |
817 |
} |
818 |
|
819 |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
820 |
return excludesForAtom[atom1]; |
821 |
} |
822 |
|
823 |
/** |
824 |
* We need to exclude some overcounted interactions that result from |
825 |
* the parallel decomposition. |
826 |
*/ |
827 |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
828 |
int unique_id_1, unique_id_2; |
829 |
|
830 |
#ifdef IS_MPI |
831 |
// in MPI, we have to look up the unique IDs for each atom |
832 |
unique_id_1 = AtomRowToGlobal[atom1]; |
833 |
unique_id_2 = AtomColToGlobal[atom2]; |
834 |
|
835 |
// this situation should only arise in MPI simulations |
836 |
if (unique_id_1 == unique_id_2) return true; |
837 |
|
838 |
// this prevents us from doing the pair on multiple processors |
839 |
if (unique_id_1 < unique_id_2) { |
840 |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
841 |
} else { |
842 |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
843 |
} |
844 |
#endif |
845 |
return false; |
846 |
} |
847 |
|
848 |
/** |
849 |
* We need to handle the interactions for atoms who are involved in |
850 |
* the same rigid body as well as some short range interactions |
851 |
* (bonds, bends, torsions) differently from other interactions. |
852 |
* We'll still visit the pairwise routines, but with a flag that |
853 |
* tells those routines to exclude the pair from direct long range |
854 |
* interactions. Some indirect interactions (notably reaction |
855 |
* field) must still be handled for these pairs. |
856 |
*/ |
857 |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
858 |
int unique_id_2; |
859 |
#ifdef IS_MPI |
860 |
// in MPI, we have to look up the unique IDs for the row atom. |
861 |
unique_id_2 = AtomColToGlobal[atom2]; |
862 |
#else |
863 |
// in the normal loop, the atom numbers are unique |
864 |
unique_id_2 = atom2; |
865 |
#endif |
866 |
|
867 |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
868 |
i != excludesForAtom[atom1].end(); ++i) { |
869 |
if ( (*i) == unique_id_2 ) return true; |
870 |
} |
871 |
|
872 |
return false; |
873 |
} |
874 |
|
875 |
|
876 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
877 |
#ifdef IS_MPI |
878 |
atomRowData.force[atom1] += fg; |
879 |
#else |
880 |
snap_->atomData.force[atom1] += fg; |
881 |
#endif |
882 |
} |
883 |
|
884 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
885 |
#ifdef IS_MPI |
886 |
atomColData.force[atom2] += fg; |
887 |
#else |
888 |
snap_->atomData.force[atom2] += fg; |
889 |
#endif |
890 |
} |
891 |
|
892 |
// filling interaction blocks with pointers |
893 |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
894 |
int atom1, int atom2) { |
895 |
|
896 |
idat.excluded = excludeAtomPair(atom1, atom2); |
897 |
|
898 |
#ifdef IS_MPI |
899 |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
900 |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
901 |
// ff_->getAtomType(identsCol[atom2]) ); |
902 |
|
903 |
if (storageLayout_ & DataStorage::dslAmat) { |
904 |
idat.A1 = &(atomRowData.aMat[atom1]); |
905 |
idat.A2 = &(atomColData.aMat[atom2]); |
906 |
} |
907 |
|
908 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
909 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
910 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
911 |
} |
912 |
|
913 |
if (storageLayout_ & DataStorage::dslTorque) { |
914 |
idat.t1 = &(atomRowData.torque[atom1]); |
915 |
idat.t2 = &(atomColData.torque[atom2]); |
916 |
} |
917 |
|
918 |
if (storageLayout_ & DataStorage::dslDensity) { |
919 |
idat.rho1 = &(atomRowData.density[atom1]); |
920 |
idat.rho2 = &(atomColData.density[atom2]); |
921 |
} |
922 |
|
923 |
if (storageLayout_ & DataStorage::dslFunctional) { |
924 |
idat.frho1 = &(atomRowData.functional[atom1]); |
925 |
idat.frho2 = &(atomColData.functional[atom2]); |
926 |
} |
927 |
|
928 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
929 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
930 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
931 |
} |
932 |
|
933 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
934 |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
935 |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
936 |
} |
937 |
|
938 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
939 |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
940 |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
941 |
} |
942 |
|
943 |
#else |
944 |
|
945 |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
946 |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
947 |
// ff_->getAtomType(idents[atom2]) ); |
948 |
|
949 |
if (storageLayout_ & DataStorage::dslAmat) { |
950 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
951 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
952 |
} |
953 |
|
954 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
955 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
956 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
957 |
} |
958 |
|
959 |
if (storageLayout_ & DataStorage::dslTorque) { |
960 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
961 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
962 |
} |
963 |
|
964 |
if (storageLayout_ & DataStorage::dslDensity) { |
965 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
966 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
967 |
} |
968 |
|
969 |
if (storageLayout_ & DataStorage::dslFunctional) { |
970 |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
971 |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
972 |
} |
973 |
|
974 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
975 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
976 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
977 |
} |
978 |
|
979 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
980 |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
981 |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
982 |
} |
983 |
|
984 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
985 |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
986 |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
987 |
} |
988 |
#endif |
989 |
} |
990 |
|
991 |
|
992 |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
993 |
#ifdef IS_MPI |
994 |
pot_row[atom1] += 0.5 * *(idat.pot); |
995 |
pot_col[atom2] += 0.5 * *(idat.pot); |
996 |
|
997 |
atomRowData.force[atom1] += *(idat.f1); |
998 |
atomColData.force[atom2] -= *(idat.f1); |
999 |
#else |
1000 |
pairwisePot += *(idat.pot); |
1001 |
|
1002 |
snap_->atomData.force[atom1] += *(idat.f1); |
1003 |
snap_->atomData.force[atom2] -= *(idat.f1); |
1004 |
#endif |
1005 |
|
1006 |
} |
1007 |
|
1008 |
/* |
1009 |
* buildNeighborList |
1010 |
* |
1011 |
* first element of pair is row-indexed CutoffGroup |
1012 |
* second element of pair is column-indexed CutoffGroup |
1013 |
*/ |
1014 |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1015 |
|
1016 |
vector<pair<int, int> > neighborList; |
1017 |
groupCutoffs cuts; |
1018 |
bool doAllPairs = false; |
1019 |
|
1020 |
#ifdef IS_MPI |
1021 |
cellListRow_.clear(); |
1022 |
cellListCol_.clear(); |
1023 |
#else |
1024 |
cellList_.clear(); |
1025 |
#endif |
1026 |
|
1027 |
RealType rList_ = (largestRcut_ + skinThickness_); |
1028 |
RealType rl2 = rList_ * rList_; |
1029 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1030 |
Mat3x3d Hmat = snap_->getHmat(); |
1031 |
Vector3d Hx = Hmat.getColumn(0); |
1032 |
Vector3d Hy = Hmat.getColumn(1); |
1033 |
Vector3d Hz = Hmat.getColumn(2); |
1034 |
|
1035 |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1036 |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1037 |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1038 |
|
1039 |
// handle small boxes where the cell offsets can end up repeating cells |
1040 |
|
1041 |
if (nCells_.x() < 3) doAllPairs = true; |
1042 |
if (nCells_.y() < 3) doAllPairs = true; |
1043 |
if (nCells_.z() < 3) doAllPairs = true; |
1044 |
|
1045 |
Mat3x3d invHmat = snap_->getInvHmat(); |
1046 |
Vector3d rs, scaled, dr; |
1047 |
Vector3i whichCell; |
1048 |
int cellIndex; |
1049 |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1050 |
|
1051 |
#ifdef IS_MPI |
1052 |
cellListRow_.resize(nCtot); |
1053 |
cellListCol_.resize(nCtot); |
1054 |
#else |
1055 |
cellList_.resize(nCtot); |
1056 |
#endif |
1057 |
|
1058 |
if (!doAllPairs) { |
1059 |
#ifdef IS_MPI |
1060 |
|
1061 |
for (int i = 0; i < nGroupsInRow_; i++) { |
1062 |
rs = cgRowData.position[i]; |
1063 |
|
1064 |
// scaled positions relative to the box vectors |
1065 |
scaled = invHmat * rs; |
1066 |
|
1067 |
// wrap the vector back into the unit box by subtracting integer box |
1068 |
// numbers |
1069 |
for (int j = 0; j < 3; j++) { |
1070 |
scaled[j] -= roundMe(scaled[j]); |
1071 |
scaled[j] += 0.5; |
1072 |
} |
1073 |
|
1074 |
// find xyz-indices of cell that cutoffGroup is in. |
1075 |
whichCell.x() = nCells_.x() * scaled.x(); |
1076 |
whichCell.y() = nCells_.y() * scaled.y(); |
1077 |
whichCell.z() = nCells_.z() * scaled.z(); |
1078 |
|
1079 |
// find single index of this cell: |
1080 |
cellIndex = Vlinear(whichCell, nCells_); |
1081 |
|
1082 |
// add this cutoff group to the list of groups in this cell; |
1083 |
cellListRow_[cellIndex].push_back(i); |
1084 |
} |
1085 |
for (int i = 0; i < nGroupsInCol_; i++) { |
1086 |
rs = cgColData.position[i]; |
1087 |
|
1088 |
// scaled positions relative to the box vectors |
1089 |
scaled = invHmat * rs; |
1090 |
|
1091 |
// wrap the vector back into the unit box by subtracting integer box |
1092 |
// numbers |
1093 |
for (int j = 0; j < 3; j++) { |
1094 |
scaled[j] -= roundMe(scaled[j]); |
1095 |
scaled[j] += 0.5; |
1096 |
} |
1097 |
|
1098 |
// find xyz-indices of cell that cutoffGroup is in. |
1099 |
whichCell.x() = nCells_.x() * scaled.x(); |
1100 |
whichCell.y() = nCells_.y() * scaled.y(); |
1101 |
whichCell.z() = nCells_.z() * scaled.z(); |
1102 |
|
1103 |
// find single index of this cell: |
1104 |
cellIndex = Vlinear(whichCell, nCells_); |
1105 |
|
1106 |
// add this cutoff group to the list of groups in this cell; |
1107 |
cellListCol_[cellIndex].push_back(i); |
1108 |
} |
1109 |
|
1110 |
#else |
1111 |
for (int i = 0; i < nGroups_; i++) { |
1112 |
rs = snap_->cgData.position[i]; |
1113 |
|
1114 |
// scaled positions relative to the box vectors |
1115 |
scaled = invHmat * rs; |
1116 |
|
1117 |
// wrap the vector back into the unit box by subtracting integer box |
1118 |
// numbers |
1119 |
for (int j = 0; j < 3; j++) { |
1120 |
scaled[j] -= roundMe(scaled[j]); |
1121 |
scaled[j] += 0.5; |
1122 |
} |
1123 |
|
1124 |
// find xyz-indices of cell that cutoffGroup is in. |
1125 |
whichCell.x() = nCells_.x() * scaled.x(); |
1126 |
whichCell.y() = nCells_.y() * scaled.y(); |
1127 |
whichCell.z() = nCells_.z() * scaled.z(); |
1128 |
|
1129 |
// find single index of this cell: |
1130 |
cellIndex = Vlinear(whichCell, nCells_); |
1131 |
|
1132 |
// add this cutoff group to the list of groups in this cell; |
1133 |
cellList_[cellIndex].push_back(i); |
1134 |
} |
1135 |
|
1136 |
#endif |
1137 |
|
1138 |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1139 |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1140 |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1141 |
Vector3i m1v(m1x, m1y, m1z); |
1142 |
int m1 = Vlinear(m1v, nCells_); |
1143 |
|
1144 |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1145 |
os != cellOffsets_.end(); ++os) { |
1146 |
|
1147 |
Vector3i m2v = m1v + (*os); |
1148 |
|
1149 |
|
1150 |
if (m2v.x() >= nCells_.x()) { |
1151 |
m2v.x() = 0; |
1152 |
} else if (m2v.x() < 0) { |
1153 |
m2v.x() = nCells_.x() - 1; |
1154 |
} |
1155 |
|
1156 |
if (m2v.y() >= nCells_.y()) { |
1157 |
m2v.y() = 0; |
1158 |
} else if (m2v.y() < 0) { |
1159 |
m2v.y() = nCells_.y() - 1; |
1160 |
} |
1161 |
|
1162 |
if (m2v.z() >= nCells_.z()) { |
1163 |
m2v.z() = 0; |
1164 |
} else if (m2v.z() < 0) { |
1165 |
m2v.z() = nCells_.z() - 1; |
1166 |
} |
1167 |
|
1168 |
int m2 = Vlinear (m2v, nCells_); |
1169 |
|
1170 |
#ifdef IS_MPI |
1171 |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1172 |
j1 != cellListRow_[m1].end(); ++j1) { |
1173 |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1174 |
j2 != cellListCol_[m2].end(); ++j2) { |
1175 |
|
1176 |
// In parallel, we need to visit *all* pairs of row |
1177 |
// & column indicies and will divide labor in the |
1178 |
// force evaluation later. |
1179 |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1180 |
snap_->wrapVector(dr); |
1181 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1182 |
if (dr.lengthSquare() < cuts.third) { |
1183 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1184 |
} |
1185 |
} |
1186 |
} |
1187 |
#else |
1188 |
|
1189 |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1190 |
j1 != cellList_[m1].end(); ++j1) { |
1191 |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1192 |
j2 != cellList_[m2].end(); ++j2) { |
1193 |
|
1194 |
// Always do this if we're in different cells or if |
1195 |
// we're in the same cell and the global index of the |
1196 |
// j2 cutoff group is less than the j1 cutoff group |
1197 |
|
1198 |
if (m2 != m1 || (*j2) < (*j1)) { |
1199 |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1200 |
snap_->wrapVector(dr); |
1201 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1202 |
if (dr.lengthSquare() < cuts.third) { |
1203 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1204 |
} |
1205 |
} |
1206 |
} |
1207 |
} |
1208 |
#endif |
1209 |
} |
1210 |
} |
1211 |
} |
1212 |
} |
1213 |
} else { |
1214 |
// branch to do all cutoff group pairs |
1215 |
#ifdef IS_MPI |
1216 |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1217 |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1218 |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1219 |
snap_->wrapVector(dr); |
1220 |
cuts = getGroupCutoffs( j1, j2 ); |
1221 |
if (dr.lengthSquare() < cuts.third) { |
1222 |
neighborList.push_back(make_pair(j1, j2)); |
1223 |
} |
1224 |
} |
1225 |
} |
1226 |
#else |
1227 |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1228 |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1229 |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1230 |
snap_->wrapVector(dr); |
1231 |
cuts = getGroupCutoffs( j1, j2 ); |
1232 |
if (dr.lengthSquare() < cuts.third) { |
1233 |
neighborList.push_back(make_pair(j1, j2)); |
1234 |
} |
1235 |
} |
1236 |
} |
1237 |
#endif |
1238 |
} |
1239 |
|
1240 |
// save the local cutoff group positions for the check that is |
1241 |
// done on each loop: |
1242 |
saved_CG_positions_.clear(); |
1243 |
for (int i = 0; i < nGroups_; i++) |
1244 |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1245 |
|
1246 |
return neighborList; |
1247 |
} |
1248 |
} //end namespace OpenMD |