1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
#include "math/SquareMatrix3.hpp" |
43 |
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
#include "brains/SnapshotManager.hpp" |
45 |
#include "brains/PairList.hpp" |
46 |
|
47 |
using namespace std; |
48 |
namespace OpenMD { |
49 |
|
50 |
/** |
51 |
* distributeInitialData is essentially a copy of the older fortran |
52 |
* SimulationSetup |
53 |
*/ |
54 |
|
55 |
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
snap_ = sman_->getCurrentSnapshot(); |
57 |
storageLayout_ = sman_->getStorageLayout(); |
58 |
ff_ = info_->getForceField(); |
59 |
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
|
61 |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
// gather the information for atomtype IDs (atids): |
63 |
idents = info_->getIdentArray(); |
64 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
|
68 |
massFactors = info_->getMassFactors(); |
69 |
|
70 |
PairList* excludes = info_->getExcludedInteractions(); |
71 |
PairList* oneTwo = info_->getOneTwoInteractions(); |
72 |
PairList* oneThree = info_->getOneThreeInteractions(); |
73 |
PairList* oneFour = info_->getOneFourInteractions(); |
74 |
|
75 |
#ifdef IS_MPI |
76 |
|
77 |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 |
|
83 |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 |
|
89 |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
91 |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
92 |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
93 |
|
94 |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
95 |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
96 |
nGroupsInRow_ = cgCommIntRow->getSize(); |
97 |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
98 |
|
99 |
// Modify the data storage objects with the correct layouts and sizes: |
100 |
atomRowData.resize(nAtomsInRow_); |
101 |
atomRowData.setStorageLayout(storageLayout_); |
102 |
atomColData.resize(nAtomsInCol_); |
103 |
atomColData.setStorageLayout(storageLayout_); |
104 |
cgRowData.resize(nGroupsInRow_); |
105 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 |
cgColData.resize(nGroupsInCol_); |
107 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
108 |
|
109 |
identsRow.resize(nAtomsInRow_); |
110 |
identsCol.resize(nAtomsInCol_); |
111 |
|
112 |
AtomCommIntRow->gather(idents, identsRow); |
113 |
AtomCommIntColumn->gather(idents, identsCol); |
114 |
|
115 |
// allocate memory for the parallel objects |
116 |
atypesRow.resize(nAtomsInRow_); |
117 |
atypesCol.resize(nAtomsInCol_); |
118 |
|
119 |
for (int i = 0; i < nAtomsInRow_; i++) |
120 |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
121 |
for (int i = 0; i < nAtomsInCol_; i++) |
122 |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
123 |
|
124 |
pot_row.resize(nAtomsInRow_); |
125 |
pot_col.resize(nAtomsInCol_); |
126 |
|
127 |
AtomRowToGlobal.resize(nAtomsInRow_); |
128 |
AtomColToGlobal.resize(nAtomsInCol_); |
129 |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
130 |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
131 |
|
132 |
cgRowToGlobal.resize(nGroupsInRow_); |
133 |
cgColToGlobal.resize(nGroupsInCol_); |
134 |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
135 |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
136 |
|
137 |
massFactorsRow.resize(nAtomsInRow_); |
138 |
massFactorsCol.resize(nAtomsInCol_); |
139 |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
140 |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
141 |
|
142 |
groupListRow_.clear(); |
143 |
groupListRow_.resize(nGroupsInRow_); |
144 |
for (int i = 0; i < nGroupsInRow_; i++) { |
145 |
int gid = cgRowToGlobal[i]; |
146 |
for (int j = 0; j < nAtomsInRow_; j++) { |
147 |
int aid = AtomRowToGlobal[j]; |
148 |
if (globalGroupMembership[aid] == gid) |
149 |
groupListRow_[i].push_back(j); |
150 |
} |
151 |
} |
152 |
|
153 |
groupListCol_.clear(); |
154 |
groupListCol_.resize(nGroupsInCol_); |
155 |
for (int i = 0; i < nGroupsInCol_; i++) { |
156 |
int gid = cgColToGlobal[i]; |
157 |
for (int j = 0; j < nAtomsInCol_; j++) { |
158 |
int aid = AtomColToGlobal[j]; |
159 |
if (globalGroupMembership[aid] == gid) |
160 |
groupListCol_[i].push_back(j); |
161 |
} |
162 |
} |
163 |
|
164 |
excludesForAtom.clear(); |
165 |
excludesForAtom.resize(nAtomsInRow_); |
166 |
toposForAtom.clear(); |
167 |
toposForAtom.resize(nAtomsInRow_); |
168 |
topoDist.clear(); |
169 |
topoDist.resize(nAtomsInRow_); |
170 |
for (int i = 0; i < nAtomsInRow_; i++) { |
171 |
int iglob = AtomRowToGlobal[i]; |
172 |
|
173 |
for (int j = 0; j < nAtomsInCol_; j++) { |
174 |
int jglob = AtomColToGlobal[j]; |
175 |
|
176 |
if (excludes->hasPair(iglob, jglob)) |
177 |
excludesForAtom[i].push_back(j); |
178 |
|
179 |
if (oneTwo->hasPair(iglob, jglob)) { |
180 |
toposForAtom[i].push_back(j); |
181 |
topoDist[i].push_back(1); |
182 |
} else { |
183 |
if (oneThree->hasPair(iglob, jglob)) { |
184 |
toposForAtom[i].push_back(j); |
185 |
topoDist[i].push_back(2); |
186 |
} else { |
187 |
if (oneFour->hasPair(iglob, jglob)) { |
188 |
toposForAtom[i].push_back(j); |
189 |
topoDist[i].push_back(3); |
190 |
} |
191 |
} |
192 |
} |
193 |
} |
194 |
} |
195 |
|
196 |
#endif |
197 |
|
198 |
// allocate memory for the parallel objects |
199 |
atypesLocal.resize(nLocal_); |
200 |
|
201 |
for (int i = 0; i < nLocal_; i++) |
202 |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 |
|
204 |
groupList_.clear(); |
205 |
groupList_.resize(nGroups_); |
206 |
for (int i = 0; i < nGroups_; i++) { |
207 |
int gid = cgLocalToGlobal[i]; |
208 |
for (int j = 0; j < nLocal_; j++) { |
209 |
int aid = AtomLocalToGlobal[j]; |
210 |
if (globalGroupMembership[aid] == gid) { |
211 |
groupList_[i].push_back(j); |
212 |
} |
213 |
} |
214 |
} |
215 |
|
216 |
excludesForAtom.clear(); |
217 |
excludesForAtom.resize(nLocal_); |
218 |
toposForAtom.clear(); |
219 |
toposForAtom.resize(nLocal_); |
220 |
topoDist.clear(); |
221 |
topoDist.resize(nLocal_); |
222 |
|
223 |
for (int i = 0; i < nLocal_; i++) { |
224 |
int iglob = AtomLocalToGlobal[i]; |
225 |
|
226 |
for (int j = 0; j < nLocal_; j++) { |
227 |
int jglob = AtomLocalToGlobal[j]; |
228 |
|
229 |
if (excludes->hasPair(iglob, jglob)) |
230 |
excludesForAtom[i].push_back(j); |
231 |
|
232 |
if (oneTwo->hasPair(iglob, jglob)) { |
233 |
toposForAtom[i].push_back(j); |
234 |
topoDist[i].push_back(1); |
235 |
} else { |
236 |
if (oneThree->hasPair(iglob, jglob)) { |
237 |
toposForAtom[i].push_back(j); |
238 |
topoDist[i].push_back(2); |
239 |
} else { |
240 |
if (oneFour->hasPair(iglob, jglob)) { |
241 |
toposForAtom[i].push_back(j); |
242 |
topoDist[i].push_back(3); |
243 |
} |
244 |
} |
245 |
} |
246 |
} |
247 |
} |
248 |
|
249 |
createGtypeCutoffMap(); |
250 |
|
251 |
} |
252 |
|
253 |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
254 |
|
255 |
RealType tol = 1e-6; |
256 |
RealType rc; |
257 |
int atid; |
258 |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
259 |
map<int, RealType> atypeCutoff; |
260 |
|
261 |
for (set<AtomType*>::iterator at = atypes.begin(); |
262 |
at != atypes.end(); ++at){ |
263 |
atid = (*at)->getIdent(); |
264 |
if (userChoseCutoff_) |
265 |
atypeCutoff[atid] = userCutoff_; |
266 |
else |
267 |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
268 |
} |
269 |
|
270 |
vector<RealType> gTypeCutoffs; |
271 |
// first we do a single loop over the cutoff groups to find the |
272 |
// largest cutoff for any atypes present in this group. |
273 |
#ifdef IS_MPI |
274 |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
275 |
groupRowToGtype.resize(nGroupsInRow_); |
276 |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
277 |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
278 |
for (vector<int>::iterator ia = atomListRow.begin(); |
279 |
ia != atomListRow.end(); ++ia) { |
280 |
int atom1 = (*ia); |
281 |
atid = identsRow[atom1]; |
282 |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
283 |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
284 |
} |
285 |
} |
286 |
|
287 |
bool gTypeFound = false; |
288 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
289 |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
290 |
groupRowToGtype[cg1] = gt; |
291 |
gTypeFound = true; |
292 |
} |
293 |
} |
294 |
if (!gTypeFound) { |
295 |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
296 |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
297 |
} |
298 |
|
299 |
} |
300 |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
301 |
groupColToGtype.resize(nGroupsInCol_); |
302 |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
303 |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
304 |
for (vector<int>::iterator jb = atomListCol.begin(); |
305 |
jb != atomListCol.end(); ++jb) { |
306 |
int atom2 = (*jb); |
307 |
atid = identsCol[atom2]; |
308 |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
309 |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
310 |
} |
311 |
} |
312 |
bool gTypeFound = false; |
313 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
314 |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
315 |
groupColToGtype[cg2] = gt; |
316 |
gTypeFound = true; |
317 |
} |
318 |
} |
319 |
if (!gTypeFound) { |
320 |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
321 |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
322 |
} |
323 |
} |
324 |
#else |
325 |
|
326 |
vector<RealType> groupCutoff(nGroups_, 0.0); |
327 |
groupToGtype.resize(nGroups_); |
328 |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
329 |
|
330 |
groupCutoff[cg1] = 0.0; |
331 |
vector<int> atomList = getAtomsInGroupRow(cg1); |
332 |
|
333 |
for (vector<int>::iterator ia = atomList.begin(); |
334 |
ia != atomList.end(); ++ia) { |
335 |
int atom1 = (*ia); |
336 |
atid = idents[atom1]; |
337 |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
338 |
groupCutoff[cg1] = atypeCutoff[atid]; |
339 |
} |
340 |
} |
341 |
|
342 |
bool gTypeFound = false; |
343 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
344 |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
345 |
groupToGtype[cg1] = gt; |
346 |
gTypeFound = true; |
347 |
} |
348 |
} |
349 |
if (!gTypeFound) { |
350 |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
351 |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
352 |
} |
353 |
} |
354 |
#endif |
355 |
|
356 |
// Now we find the maximum group cutoff value present in the simulation |
357 |
|
358 |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
359 |
gTypeCutoffs.end()); |
360 |
|
361 |
#ifdef IS_MPI |
362 |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
363 |
MPI::MAX); |
364 |
#endif |
365 |
|
366 |
RealType tradRcut = groupMax; |
367 |
|
368 |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
369 |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
370 |
RealType thisRcut; |
371 |
switch(cutoffPolicy_) { |
372 |
case TRADITIONAL: |
373 |
thisRcut = tradRcut; |
374 |
break; |
375 |
case MIX: |
376 |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
377 |
break; |
378 |
case MAX: |
379 |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
380 |
break; |
381 |
default: |
382 |
sprintf(painCave.errMsg, |
383 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
384 |
"hit an unknown cutoff policy!\n"); |
385 |
painCave.severity = OPENMD_ERROR; |
386 |
painCave.isFatal = 1; |
387 |
simError(); |
388 |
break; |
389 |
} |
390 |
|
391 |
pair<int,int> key = make_pair(i,j); |
392 |
gTypeCutoffMap[key].first = thisRcut; |
393 |
|
394 |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
395 |
|
396 |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
397 |
|
398 |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
399 |
|
400 |
// sanity check |
401 |
|
402 |
if (userChoseCutoff_) { |
403 |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
404 |
sprintf(painCave.errMsg, |
405 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
406 |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
407 |
painCave.severity = OPENMD_ERROR; |
408 |
painCave.isFatal = 1; |
409 |
simError(); |
410 |
} |
411 |
} |
412 |
} |
413 |
} |
414 |
} |
415 |
|
416 |
|
417 |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
418 |
int i, j; |
419 |
#ifdef IS_MPI |
420 |
i = groupRowToGtype[cg1]; |
421 |
j = groupColToGtype[cg2]; |
422 |
#else |
423 |
i = groupToGtype[cg1]; |
424 |
j = groupToGtype[cg2]; |
425 |
#endif |
426 |
return gTypeCutoffMap[make_pair(i,j)]; |
427 |
} |
428 |
|
429 |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
430 |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
431 |
if (toposForAtom[atom1][j] == atom2) |
432 |
return topoDist[atom1][j]; |
433 |
} |
434 |
return 0; |
435 |
} |
436 |
|
437 |
void ForceMatrixDecomposition::zeroWorkArrays() { |
438 |
pairwisePot = 0.0; |
439 |
embeddingPot = 0.0; |
440 |
|
441 |
#ifdef IS_MPI |
442 |
if (storageLayout_ & DataStorage::dslForce) { |
443 |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
444 |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
445 |
} |
446 |
|
447 |
if (storageLayout_ & DataStorage::dslTorque) { |
448 |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
449 |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
450 |
} |
451 |
|
452 |
fill(pot_row.begin(), pot_row.end(), |
453 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
454 |
|
455 |
fill(pot_col.begin(), pot_col.end(), |
456 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
457 |
|
458 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
459 |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
460 |
0.0); |
461 |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
462 |
0.0); |
463 |
} |
464 |
|
465 |
if (storageLayout_ & DataStorage::dslDensity) { |
466 |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
467 |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
468 |
} |
469 |
|
470 |
if (storageLayout_ & DataStorage::dslFunctional) { |
471 |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
472 |
0.0); |
473 |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
474 |
0.0); |
475 |
} |
476 |
|
477 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
478 |
fill(atomRowData.functionalDerivative.begin(), |
479 |
atomRowData.functionalDerivative.end(), 0.0); |
480 |
fill(atomColData.functionalDerivative.begin(), |
481 |
atomColData.functionalDerivative.end(), 0.0); |
482 |
} |
483 |
|
484 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
485 |
fill(atomRowData.skippedCharge.begin(), |
486 |
atomRowData.skippedCharge.end(), 0.0); |
487 |
fill(atomColData.skippedCharge.begin(), |
488 |
atomColData.skippedCharge.end(), 0.0); |
489 |
} |
490 |
|
491 |
#endif |
492 |
// even in parallel, we need to zero out the local arrays: |
493 |
|
494 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
495 |
fill(snap_->atomData.particlePot.begin(), |
496 |
snap_->atomData.particlePot.end(), 0.0); |
497 |
} |
498 |
|
499 |
if (storageLayout_ & DataStorage::dslDensity) { |
500 |
fill(snap_->atomData.density.begin(), |
501 |
snap_->atomData.density.end(), 0.0); |
502 |
} |
503 |
if (storageLayout_ & DataStorage::dslFunctional) { |
504 |
fill(snap_->atomData.functional.begin(), |
505 |
snap_->atomData.functional.end(), 0.0); |
506 |
} |
507 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
508 |
fill(snap_->atomData.functionalDerivative.begin(), |
509 |
snap_->atomData.functionalDerivative.end(), 0.0); |
510 |
} |
511 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
512 |
fill(snap_->atomData.skippedCharge.begin(), |
513 |
snap_->atomData.skippedCharge.end(), 0.0); |
514 |
} |
515 |
|
516 |
} |
517 |
|
518 |
|
519 |
void ForceMatrixDecomposition::distributeData() { |
520 |
snap_ = sman_->getCurrentSnapshot(); |
521 |
storageLayout_ = sman_->getStorageLayout(); |
522 |
#ifdef IS_MPI |
523 |
|
524 |
// gather up the atomic positions |
525 |
AtomCommVectorRow->gather(snap_->atomData.position, |
526 |
atomRowData.position); |
527 |
AtomCommVectorColumn->gather(snap_->atomData.position, |
528 |
atomColData.position); |
529 |
|
530 |
// gather up the cutoff group positions |
531 |
cgCommVectorRow->gather(snap_->cgData.position, |
532 |
cgRowData.position); |
533 |
cgCommVectorColumn->gather(snap_->cgData.position, |
534 |
cgColData.position); |
535 |
|
536 |
// if needed, gather the atomic rotation matrices |
537 |
if (storageLayout_ & DataStorage::dslAmat) { |
538 |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
539 |
atomRowData.aMat); |
540 |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
541 |
atomColData.aMat); |
542 |
} |
543 |
|
544 |
// if needed, gather the atomic eletrostatic frames |
545 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
546 |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
547 |
atomRowData.electroFrame); |
548 |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
549 |
atomColData.electroFrame); |
550 |
} |
551 |
|
552 |
#endif |
553 |
} |
554 |
|
555 |
/* collects information obtained during the pre-pair loop onto local |
556 |
* data structures. |
557 |
*/ |
558 |
void ForceMatrixDecomposition::collectIntermediateData() { |
559 |
snap_ = sman_->getCurrentSnapshot(); |
560 |
storageLayout_ = sman_->getStorageLayout(); |
561 |
#ifdef IS_MPI |
562 |
|
563 |
if (storageLayout_ & DataStorage::dslDensity) { |
564 |
|
565 |
AtomCommRealRow->scatter(atomRowData.density, |
566 |
snap_->atomData.density); |
567 |
|
568 |
int n = snap_->atomData.density.size(); |
569 |
vector<RealType> rho_tmp(n, 0.0); |
570 |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
571 |
for (int i = 0; i < n; i++) |
572 |
snap_->atomData.density[i] += rho_tmp[i]; |
573 |
} |
574 |
#endif |
575 |
} |
576 |
|
577 |
/* |
578 |
* redistributes information obtained during the pre-pair loop out to |
579 |
* row and column-indexed data structures |
580 |
*/ |
581 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
582 |
snap_ = sman_->getCurrentSnapshot(); |
583 |
storageLayout_ = sman_->getStorageLayout(); |
584 |
#ifdef IS_MPI |
585 |
if (storageLayout_ & DataStorage::dslFunctional) { |
586 |
AtomCommRealRow->gather(snap_->atomData.functional, |
587 |
atomRowData.functional); |
588 |
AtomCommRealColumn->gather(snap_->atomData.functional, |
589 |
atomColData.functional); |
590 |
} |
591 |
|
592 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
593 |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
594 |
atomRowData.functionalDerivative); |
595 |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
596 |
atomColData.functionalDerivative); |
597 |
} |
598 |
#endif |
599 |
} |
600 |
|
601 |
|
602 |
void ForceMatrixDecomposition::collectData() { |
603 |
snap_ = sman_->getCurrentSnapshot(); |
604 |
storageLayout_ = sman_->getStorageLayout(); |
605 |
#ifdef IS_MPI |
606 |
int n = snap_->atomData.force.size(); |
607 |
vector<Vector3d> frc_tmp(n, V3Zero); |
608 |
|
609 |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
610 |
for (int i = 0; i < n; i++) { |
611 |
snap_->atomData.force[i] += frc_tmp[i]; |
612 |
frc_tmp[i] = 0.0; |
613 |
} |
614 |
|
615 |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
616 |
for (int i = 0; i < n; i++) |
617 |
snap_->atomData.force[i] += frc_tmp[i]; |
618 |
|
619 |
if (storageLayout_ & DataStorage::dslTorque) { |
620 |
|
621 |
int nt = snap_->atomData.torque.size(); |
622 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
623 |
|
624 |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
625 |
for (int i = 0; i < nt; i++) { |
626 |
snap_->atomData.torque[i] += trq_tmp[i]; |
627 |
trq_tmp[i] = 0.0; |
628 |
} |
629 |
|
630 |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
631 |
for (int i = 0; i < nt; i++) |
632 |
snap_->atomData.torque[i] += trq_tmp[i]; |
633 |
} |
634 |
|
635 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
636 |
|
637 |
int ns = snap_->atomData.skippedCharge.size(); |
638 |
vector<RealType> skch_tmp(ns, 0.0); |
639 |
|
640 |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
641 |
for (int i = 0; i < ns; i++) { |
642 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
643 |
skch_tmp[i] = 0.0; |
644 |
} |
645 |
|
646 |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
647 |
for (int i = 0; i < ns; i++) |
648 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
649 |
} |
650 |
|
651 |
nLocal_ = snap_->getNumberOfAtoms(); |
652 |
|
653 |
vector<potVec> pot_temp(nLocal_, |
654 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
655 |
|
656 |
// scatter/gather pot_row into the members of my column |
657 |
|
658 |
AtomCommPotRow->scatter(pot_row, pot_temp); |
659 |
|
660 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
661 |
pairwisePot += pot_temp[ii]; |
662 |
|
663 |
fill(pot_temp.begin(), pot_temp.end(), |
664 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
665 |
|
666 |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
667 |
|
668 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
669 |
pairwisePot += pot_temp[ii]; |
670 |
#endif |
671 |
|
672 |
} |
673 |
|
674 |
int ForceMatrixDecomposition::getNAtomsInRow() { |
675 |
#ifdef IS_MPI |
676 |
return nAtomsInRow_; |
677 |
#else |
678 |
return nLocal_; |
679 |
#endif |
680 |
} |
681 |
|
682 |
/** |
683 |
* returns the list of atoms belonging to this group. |
684 |
*/ |
685 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
686 |
#ifdef IS_MPI |
687 |
return groupListRow_[cg1]; |
688 |
#else |
689 |
return groupList_[cg1]; |
690 |
#endif |
691 |
} |
692 |
|
693 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
694 |
#ifdef IS_MPI |
695 |
return groupListCol_[cg2]; |
696 |
#else |
697 |
return groupList_[cg2]; |
698 |
#endif |
699 |
} |
700 |
|
701 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
702 |
Vector3d d; |
703 |
|
704 |
#ifdef IS_MPI |
705 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
706 |
#else |
707 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
708 |
#endif |
709 |
|
710 |
snap_->wrapVector(d); |
711 |
return d; |
712 |
} |
713 |
|
714 |
|
715 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
716 |
|
717 |
Vector3d d; |
718 |
|
719 |
#ifdef IS_MPI |
720 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
721 |
#else |
722 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
723 |
#endif |
724 |
|
725 |
snap_->wrapVector(d); |
726 |
return d; |
727 |
} |
728 |
|
729 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
730 |
Vector3d d; |
731 |
|
732 |
#ifdef IS_MPI |
733 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
734 |
#else |
735 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
736 |
#endif |
737 |
|
738 |
snap_->wrapVector(d); |
739 |
return d; |
740 |
} |
741 |
|
742 |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
743 |
#ifdef IS_MPI |
744 |
return massFactorsRow[atom1]; |
745 |
#else |
746 |
return massFactors[atom1]; |
747 |
#endif |
748 |
} |
749 |
|
750 |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
751 |
#ifdef IS_MPI |
752 |
return massFactorsCol[atom2]; |
753 |
#else |
754 |
return massFactors[atom2]; |
755 |
#endif |
756 |
|
757 |
} |
758 |
|
759 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
760 |
Vector3d d; |
761 |
|
762 |
#ifdef IS_MPI |
763 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
764 |
#else |
765 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
766 |
#endif |
767 |
|
768 |
snap_->wrapVector(d); |
769 |
return d; |
770 |
} |
771 |
|
772 |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
773 |
return excludesForAtom[atom1]; |
774 |
} |
775 |
|
776 |
/** |
777 |
* We need to exclude some overcounted interactions that result from |
778 |
* the parallel decomposition. |
779 |
*/ |
780 |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
781 |
int unique_id_1, unique_id_2; |
782 |
|
783 |
#ifdef IS_MPI |
784 |
// in MPI, we have to look up the unique IDs for each atom |
785 |
unique_id_1 = AtomRowToGlobal[atom1]; |
786 |
unique_id_2 = AtomColToGlobal[atom2]; |
787 |
|
788 |
// this situation should only arise in MPI simulations |
789 |
if (unique_id_1 == unique_id_2) return true; |
790 |
|
791 |
// this prevents us from doing the pair on multiple processors |
792 |
if (unique_id_1 < unique_id_2) { |
793 |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
794 |
} else { |
795 |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
796 |
} |
797 |
#endif |
798 |
return false; |
799 |
} |
800 |
|
801 |
/** |
802 |
* We need to handle the interactions for atoms who are involved in |
803 |
* the same rigid body as well as some short range interactions |
804 |
* (bonds, bends, torsions) differently from other interactions. |
805 |
* We'll still visit the pairwise routines, but with a flag that |
806 |
* tells those routines to exclude the pair from direct long range |
807 |
* interactions. Some indirect interactions (notably reaction |
808 |
* field) must still be handled for these pairs. |
809 |
*/ |
810 |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
811 |
int unique_id_2; |
812 |
|
813 |
#ifdef IS_MPI |
814 |
// in MPI, we have to look up the unique IDs for the row atom. |
815 |
unique_id_2 = AtomColToGlobal[atom2]; |
816 |
#else |
817 |
// in the normal loop, the atom numbers are unique |
818 |
unique_id_2 = atom2; |
819 |
#endif |
820 |
|
821 |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
822 |
i != excludesForAtom[atom1].end(); ++i) { |
823 |
if ( (*i) == unique_id_2 ) return true; |
824 |
} |
825 |
|
826 |
return false; |
827 |
} |
828 |
|
829 |
|
830 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
831 |
#ifdef IS_MPI |
832 |
atomRowData.force[atom1] += fg; |
833 |
#else |
834 |
snap_->atomData.force[atom1] += fg; |
835 |
#endif |
836 |
} |
837 |
|
838 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
839 |
#ifdef IS_MPI |
840 |
atomColData.force[atom2] += fg; |
841 |
#else |
842 |
snap_->atomData.force[atom2] += fg; |
843 |
#endif |
844 |
} |
845 |
|
846 |
// filling interaction blocks with pointers |
847 |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
848 |
int atom1, int atom2) { |
849 |
|
850 |
idat.excluded = excludeAtomPair(atom1, atom2); |
851 |
|
852 |
#ifdef IS_MPI |
853 |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
854 |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
855 |
// ff_->getAtomType(identsCol[atom2]) ); |
856 |
|
857 |
if (storageLayout_ & DataStorage::dslAmat) { |
858 |
idat.A1 = &(atomRowData.aMat[atom1]); |
859 |
idat.A2 = &(atomColData.aMat[atom2]); |
860 |
} |
861 |
|
862 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
863 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
864 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
865 |
} |
866 |
|
867 |
if (storageLayout_ & DataStorage::dslTorque) { |
868 |
idat.t1 = &(atomRowData.torque[atom1]); |
869 |
idat.t2 = &(atomColData.torque[atom2]); |
870 |
} |
871 |
|
872 |
if (storageLayout_ & DataStorage::dslDensity) { |
873 |
idat.rho1 = &(atomRowData.density[atom1]); |
874 |
idat.rho2 = &(atomColData.density[atom2]); |
875 |
} |
876 |
|
877 |
if (storageLayout_ & DataStorage::dslFunctional) { |
878 |
idat.frho1 = &(atomRowData.functional[atom1]); |
879 |
idat.frho2 = &(atomColData.functional[atom2]); |
880 |
} |
881 |
|
882 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
883 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
884 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
885 |
} |
886 |
|
887 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
888 |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
889 |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
890 |
} |
891 |
|
892 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
893 |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
894 |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
895 |
} |
896 |
|
897 |
#else |
898 |
|
899 |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
900 |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
901 |
// ff_->getAtomType(idents[atom2]) ); |
902 |
|
903 |
if (storageLayout_ & DataStorage::dslAmat) { |
904 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
905 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
906 |
} |
907 |
|
908 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
909 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
910 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
911 |
} |
912 |
|
913 |
if (storageLayout_ & DataStorage::dslTorque) { |
914 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
915 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
916 |
} |
917 |
|
918 |
if (storageLayout_ & DataStorage::dslDensity) { |
919 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
920 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
921 |
} |
922 |
|
923 |
if (storageLayout_ & DataStorage::dslFunctional) { |
924 |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
925 |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
926 |
} |
927 |
|
928 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
929 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
930 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
931 |
} |
932 |
|
933 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
934 |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
935 |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
936 |
} |
937 |
|
938 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
939 |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
940 |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
941 |
} |
942 |
#endif |
943 |
} |
944 |
|
945 |
|
946 |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
947 |
#ifdef IS_MPI |
948 |
pot_row[atom1] += 0.5 * *(idat.pot); |
949 |
pot_col[atom2] += 0.5 * *(idat.pot); |
950 |
|
951 |
atomRowData.force[atom1] += *(idat.f1); |
952 |
atomColData.force[atom2] -= *(idat.f1); |
953 |
#else |
954 |
pairwisePot += *(idat.pot); |
955 |
|
956 |
snap_->atomData.force[atom1] += *(idat.f1); |
957 |
snap_->atomData.force[atom2] -= *(idat.f1); |
958 |
#endif |
959 |
|
960 |
} |
961 |
|
962 |
/* |
963 |
* buildNeighborList |
964 |
* |
965 |
* first element of pair is row-indexed CutoffGroup |
966 |
* second element of pair is column-indexed CutoffGroup |
967 |
*/ |
968 |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
969 |
|
970 |
vector<pair<int, int> > neighborList; |
971 |
groupCutoffs cuts; |
972 |
bool doAllPairs = false; |
973 |
|
974 |
#ifdef IS_MPI |
975 |
cellListRow_.clear(); |
976 |
cellListCol_.clear(); |
977 |
#else |
978 |
cellList_.clear(); |
979 |
#endif |
980 |
|
981 |
RealType rList_ = (largestRcut_ + skinThickness_); |
982 |
RealType rl2 = rList_ * rList_; |
983 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
984 |
Mat3x3d Hmat = snap_->getHmat(); |
985 |
Vector3d Hx = Hmat.getColumn(0); |
986 |
Vector3d Hy = Hmat.getColumn(1); |
987 |
Vector3d Hz = Hmat.getColumn(2); |
988 |
|
989 |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
990 |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
991 |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
992 |
|
993 |
// handle small boxes where the cell offsets can end up repeating cells |
994 |
|
995 |
if (nCells_.x() < 3) doAllPairs = true; |
996 |
if (nCells_.y() < 3) doAllPairs = true; |
997 |
if (nCells_.z() < 3) doAllPairs = true; |
998 |
|
999 |
Mat3x3d invHmat = snap_->getInvHmat(); |
1000 |
Vector3d rs, scaled, dr; |
1001 |
Vector3i whichCell; |
1002 |
int cellIndex; |
1003 |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1004 |
|
1005 |
#ifdef IS_MPI |
1006 |
cellListRow_.resize(nCtot); |
1007 |
cellListCol_.resize(nCtot); |
1008 |
#else |
1009 |
cellList_.resize(nCtot); |
1010 |
#endif |
1011 |
|
1012 |
if (!doAllPairs) { |
1013 |
#ifdef IS_MPI |
1014 |
|
1015 |
for (int i = 0; i < nGroupsInRow_; i++) { |
1016 |
rs = cgRowData.position[i]; |
1017 |
|
1018 |
// scaled positions relative to the box vectors |
1019 |
scaled = invHmat * rs; |
1020 |
|
1021 |
// wrap the vector back into the unit box by subtracting integer box |
1022 |
// numbers |
1023 |
for (int j = 0; j < 3; j++) { |
1024 |
scaled[j] -= roundMe(scaled[j]); |
1025 |
scaled[j] += 0.5; |
1026 |
} |
1027 |
|
1028 |
// find xyz-indices of cell that cutoffGroup is in. |
1029 |
whichCell.x() = nCells_.x() * scaled.x(); |
1030 |
whichCell.y() = nCells_.y() * scaled.y(); |
1031 |
whichCell.z() = nCells_.z() * scaled.z(); |
1032 |
|
1033 |
// find single index of this cell: |
1034 |
cellIndex = Vlinear(whichCell, nCells_); |
1035 |
|
1036 |
// add this cutoff group to the list of groups in this cell; |
1037 |
cellListRow_[cellIndex].push_back(i); |
1038 |
} |
1039 |
|
1040 |
for (int i = 0; i < nGroupsInCol_; i++) { |
1041 |
rs = cgColData.position[i]; |
1042 |
|
1043 |
// scaled positions relative to the box vectors |
1044 |
scaled = invHmat * rs; |
1045 |
|
1046 |
// wrap the vector back into the unit box by subtracting integer box |
1047 |
// numbers |
1048 |
for (int j = 0; j < 3; j++) { |
1049 |
scaled[j] -= roundMe(scaled[j]); |
1050 |
scaled[j] += 0.5; |
1051 |
} |
1052 |
|
1053 |
// find xyz-indices of cell that cutoffGroup is in. |
1054 |
whichCell.x() = nCells_.x() * scaled.x(); |
1055 |
whichCell.y() = nCells_.y() * scaled.y(); |
1056 |
whichCell.z() = nCells_.z() * scaled.z(); |
1057 |
|
1058 |
// find single index of this cell: |
1059 |
cellIndex = Vlinear(whichCell, nCells_); |
1060 |
|
1061 |
// add this cutoff group to the list of groups in this cell; |
1062 |
cellListCol_[cellIndex].push_back(i); |
1063 |
} |
1064 |
#else |
1065 |
for (int i = 0; i < nGroups_; i++) { |
1066 |
rs = snap_->cgData.position[i]; |
1067 |
|
1068 |
// scaled positions relative to the box vectors |
1069 |
scaled = invHmat * rs; |
1070 |
|
1071 |
// wrap the vector back into the unit box by subtracting integer box |
1072 |
// numbers |
1073 |
for (int j = 0; j < 3; j++) { |
1074 |
scaled[j] -= roundMe(scaled[j]); |
1075 |
scaled[j] += 0.5; |
1076 |
} |
1077 |
|
1078 |
// find xyz-indices of cell that cutoffGroup is in. |
1079 |
whichCell.x() = nCells_.x() * scaled.x(); |
1080 |
whichCell.y() = nCells_.y() * scaled.y(); |
1081 |
whichCell.z() = nCells_.z() * scaled.z(); |
1082 |
|
1083 |
// find single index of this cell: |
1084 |
cellIndex = Vlinear(whichCell, nCells_); |
1085 |
|
1086 |
// add this cutoff group to the list of groups in this cell; |
1087 |
cellList_[cellIndex].push_back(i); |
1088 |
} |
1089 |
#endif |
1090 |
|
1091 |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1092 |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1093 |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1094 |
Vector3i m1v(m1x, m1y, m1z); |
1095 |
int m1 = Vlinear(m1v, nCells_); |
1096 |
|
1097 |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1098 |
os != cellOffsets_.end(); ++os) { |
1099 |
|
1100 |
Vector3i m2v = m1v + (*os); |
1101 |
|
1102 |
if (m2v.x() >= nCells_.x()) { |
1103 |
m2v.x() = 0; |
1104 |
} else if (m2v.x() < 0) { |
1105 |
m2v.x() = nCells_.x() - 1; |
1106 |
} |
1107 |
|
1108 |
if (m2v.y() >= nCells_.y()) { |
1109 |
m2v.y() = 0; |
1110 |
} else if (m2v.y() < 0) { |
1111 |
m2v.y() = nCells_.y() - 1; |
1112 |
} |
1113 |
|
1114 |
if (m2v.z() >= nCells_.z()) { |
1115 |
m2v.z() = 0; |
1116 |
} else if (m2v.z() < 0) { |
1117 |
m2v.z() = nCells_.z() - 1; |
1118 |
} |
1119 |
|
1120 |
int m2 = Vlinear (m2v, nCells_); |
1121 |
|
1122 |
#ifdef IS_MPI |
1123 |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1124 |
j1 != cellListRow_[m1].end(); ++j1) { |
1125 |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1126 |
j2 != cellListCol_[m2].end(); ++j2) { |
1127 |
|
1128 |
// Always do this if we're in different cells or if |
1129 |
// we're in the same cell and the global index of the |
1130 |
// j2 cutoff group is less than the j1 cutoff group |
1131 |
|
1132 |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1133 |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1134 |
snap_->wrapVector(dr); |
1135 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1136 |
if (dr.lengthSquare() < cuts.third) { |
1137 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1138 |
} |
1139 |
} |
1140 |
} |
1141 |
} |
1142 |
#else |
1143 |
|
1144 |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1145 |
j1 != cellList_[m1].end(); ++j1) { |
1146 |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1147 |
j2 != cellList_[m2].end(); ++j2) { |
1148 |
|
1149 |
// Always do this if we're in different cells or if |
1150 |
// we're in the same cell and the global index of the |
1151 |
// j2 cutoff group is less than the j1 cutoff group |
1152 |
|
1153 |
if (m2 != m1 || (*j2) < (*j1)) { |
1154 |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1155 |
snap_->wrapVector(dr); |
1156 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1157 |
if (dr.lengthSquare() < cuts.third) { |
1158 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1159 |
} |
1160 |
} |
1161 |
} |
1162 |
} |
1163 |
#endif |
1164 |
} |
1165 |
} |
1166 |
} |
1167 |
} |
1168 |
} else { |
1169 |
// branch to do all cutoff group pairs |
1170 |
#ifdef IS_MPI |
1171 |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1172 |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1173 |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1174 |
snap_->wrapVector(dr); |
1175 |
cuts = getGroupCutoffs( j1, j2 ); |
1176 |
if (dr.lengthSquare() < cuts.third) { |
1177 |
neighborList.push_back(make_pair(j1, j2)); |
1178 |
} |
1179 |
} |
1180 |
} |
1181 |
#else |
1182 |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1183 |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1184 |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1185 |
snap_->wrapVector(dr); |
1186 |
cuts = getGroupCutoffs( j1, j2 ); |
1187 |
if (dr.lengthSquare() < cuts.third) { |
1188 |
neighborList.push_back(make_pair(j1, j2)); |
1189 |
} |
1190 |
} |
1191 |
} |
1192 |
#endif |
1193 |
} |
1194 |
|
1195 |
// save the local cutoff group positions for the check that is |
1196 |
// done on each loop: |
1197 |
saved_CG_positions_.clear(); |
1198 |
for (int i = 0; i < nGroups_; i++) |
1199 |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1200 |
|
1201 |
return neighborList; |
1202 |
} |
1203 |
} //end namespace OpenMD |