1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
#include "math/SquareMatrix3.hpp" |
43 |
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
#include "brains/SnapshotManager.hpp" |
45 |
#include "brains/PairList.hpp" |
46 |
|
47 |
using namespace std; |
48 |
namespace OpenMD { |
49 |
|
50 |
/** |
51 |
* distributeInitialData is essentially a copy of the older fortran |
52 |
* SimulationSetup |
53 |
*/ |
54 |
|
55 |
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
snap_ = sman_->getCurrentSnapshot(); |
57 |
storageLayout_ = sman_->getStorageLayout(); |
58 |
ff_ = info_->getForceField(); |
59 |
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
|
61 |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
// gather the information for atomtype IDs (atids): |
63 |
idents = info_->getIdentArray(); |
64 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
|
68 |
massFactors = info_->getMassFactors(); |
69 |
|
70 |
PairList* excludes = info_->getExcludedInteractions(); |
71 |
PairList* oneTwo = info_->getOneTwoInteractions(); |
72 |
PairList* oneThree = info_->getOneThreeInteractions(); |
73 |
PairList* oneFour = info_->getOneFourInteractions(); |
74 |
|
75 |
#ifdef IS_MPI |
76 |
|
77 |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 |
|
83 |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 |
|
89 |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
91 |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
92 |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
93 |
|
94 |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
95 |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
96 |
nGroupsInRow_ = cgCommIntRow->getSize(); |
97 |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
98 |
|
99 |
// Modify the data storage objects with the correct layouts and sizes: |
100 |
atomRowData.resize(nAtomsInRow_); |
101 |
atomRowData.setStorageLayout(storageLayout_); |
102 |
atomColData.resize(nAtomsInCol_); |
103 |
atomColData.setStorageLayout(storageLayout_); |
104 |
cgRowData.resize(nGroupsInRow_); |
105 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 |
cgColData.resize(nGroupsInCol_); |
107 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
108 |
|
109 |
identsRow.resize(nAtomsInRow_); |
110 |
identsCol.resize(nAtomsInCol_); |
111 |
|
112 |
AtomCommIntRow->gather(idents, identsRow); |
113 |
AtomCommIntColumn->gather(idents, identsCol); |
114 |
|
115 |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
116 |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
117 |
|
118 |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
119 |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
120 |
|
121 |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
122 |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
123 |
|
124 |
groupListRow_.clear(); |
125 |
groupListRow_.resize(nGroupsInRow_); |
126 |
for (int i = 0; i < nGroupsInRow_; i++) { |
127 |
int gid = cgRowToGlobal[i]; |
128 |
for (int j = 0; j < nAtomsInRow_; j++) { |
129 |
int aid = AtomRowToGlobal[j]; |
130 |
if (globalGroupMembership[aid] == gid) |
131 |
groupListRow_[i].push_back(j); |
132 |
} |
133 |
} |
134 |
|
135 |
groupListCol_.clear(); |
136 |
groupListCol_.resize(nGroupsInCol_); |
137 |
for (int i = 0; i < nGroupsInCol_; i++) { |
138 |
int gid = cgColToGlobal[i]; |
139 |
for (int j = 0; j < nAtomsInCol_; j++) { |
140 |
int aid = AtomColToGlobal[j]; |
141 |
if (globalGroupMembership[aid] == gid) |
142 |
groupListCol_[i].push_back(j); |
143 |
} |
144 |
} |
145 |
|
146 |
excludesForAtom.clear(); |
147 |
excludesForAtom.resize(nAtomsInRow_); |
148 |
toposForAtom.clear(); |
149 |
toposForAtom.resize(nAtomsInRow_); |
150 |
topoDist.clear(); |
151 |
topoDist.resize(nAtomsInRow_); |
152 |
for (int i = 0; i < nAtomsInRow_; i++) { |
153 |
int iglob = AtomRowToGlobal[i]; |
154 |
|
155 |
for (int j = 0; j < nAtomsInCol_; j++) { |
156 |
int jglob = AtomColToGlobal[j]; |
157 |
|
158 |
if (excludes->hasPair(iglob, jglob)) |
159 |
excludesForAtom[i].push_back(j); |
160 |
|
161 |
if (oneTwo->hasPair(iglob, jglob)) { |
162 |
toposForAtom[i].push_back(j); |
163 |
topoDist[i].push_back(1); |
164 |
} else { |
165 |
if (oneThree->hasPair(iglob, jglob)) { |
166 |
toposForAtom[i].push_back(j); |
167 |
topoDist[i].push_back(2); |
168 |
} else { |
169 |
if (oneFour->hasPair(iglob, jglob)) { |
170 |
toposForAtom[i].push_back(j); |
171 |
topoDist[i].push_back(3); |
172 |
} |
173 |
} |
174 |
} |
175 |
} |
176 |
} |
177 |
|
178 |
#endif |
179 |
|
180 |
groupList_.clear(); |
181 |
groupList_.resize(nGroups_); |
182 |
for (int i = 0; i < nGroups_; i++) { |
183 |
int gid = cgLocalToGlobal[i]; |
184 |
for (int j = 0; j < nLocal_; j++) { |
185 |
int aid = AtomLocalToGlobal[j]; |
186 |
if (globalGroupMembership[aid] == gid) { |
187 |
groupList_[i].push_back(j); |
188 |
} |
189 |
} |
190 |
} |
191 |
|
192 |
excludesForAtom.clear(); |
193 |
excludesForAtom.resize(nLocal_); |
194 |
toposForAtom.clear(); |
195 |
toposForAtom.resize(nLocal_); |
196 |
topoDist.clear(); |
197 |
topoDist.resize(nLocal_); |
198 |
|
199 |
for (int i = 0; i < nLocal_; i++) { |
200 |
int iglob = AtomLocalToGlobal[i]; |
201 |
|
202 |
for (int j = 0; j < nLocal_; j++) { |
203 |
int jglob = AtomLocalToGlobal[j]; |
204 |
|
205 |
if (excludes->hasPair(iglob, jglob)) |
206 |
excludesForAtom[i].push_back(j); |
207 |
|
208 |
if (oneTwo->hasPair(iglob, jglob)) { |
209 |
toposForAtom[i].push_back(j); |
210 |
topoDist[i].push_back(1); |
211 |
} else { |
212 |
if (oneThree->hasPair(iglob, jglob)) { |
213 |
toposForAtom[i].push_back(j); |
214 |
topoDist[i].push_back(2); |
215 |
} else { |
216 |
if (oneFour->hasPair(iglob, jglob)) { |
217 |
toposForAtom[i].push_back(j); |
218 |
topoDist[i].push_back(3); |
219 |
} |
220 |
} |
221 |
} |
222 |
} |
223 |
} |
224 |
|
225 |
createGtypeCutoffMap(); |
226 |
|
227 |
} |
228 |
|
229 |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
230 |
|
231 |
RealType tol = 1e-6; |
232 |
RealType rc; |
233 |
int atid; |
234 |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
235 |
map<int, RealType> atypeCutoff; |
236 |
|
237 |
for (set<AtomType*>::iterator at = atypes.begin(); |
238 |
at != atypes.end(); ++at){ |
239 |
atid = (*at)->getIdent(); |
240 |
if (userChoseCutoff_) |
241 |
atypeCutoff[atid] = userCutoff_; |
242 |
else |
243 |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
244 |
} |
245 |
|
246 |
vector<RealType> gTypeCutoffs; |
247 |
// first we do a single loop over the cutoff groups to find the |
248 |
// largest cutoff for any atypes present in this group. |
249 |
#ifdef IS_MPI |
250 |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
251 |
groupRowToGtype.resize(nGroupsInRow_); |
252 |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
253 |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
254 |
for (vector<int>::iterator ia = atomListRow.begin(); |
255 |
ia != atomListRow.end(); ++ia) { |
256 |
int atom1 = (*ia); |
257 |
atid = identsRow[atom1]; |
258 |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
259 |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
260 |
} |
261 |
} |
262 |
|
263 |
bool gTypeFound = false; |
264 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
265 |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
266 |
groupRowToGtype[cg1] = gt; |
267 |
gTypeFound = true; |
268 |
} |
269 |
} |
270 |
if (!gTypeFound) { |
271 |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
272 |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
273 |
} |
274 |
|
275 |
} |
276 |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
277 |
groupColToGtype.resize(nGroupsInCol_); |
278 |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
279 |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
280 |
for (vector<int>::iterator jb = atomListCol.begin(); |
281 |
jb != atomListCol.end(); ++jb) { |
282 |
int atom2 = (*jb); |
283 |
atid = identsCol[atom2]; |
284 |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
285 |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
286 |
} |
287 |
} |
288 |
bool gTypeFound = false; |
289 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
290 |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
291 |
groupColToGtype[cg2] = gt; |
292 |
gTypeFound = true; |
293 |
} |
294 |
} |
295 |
if (!gTypeFound) { |
296 |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
297 |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
298 |
} |
299 |
} |
300 |
#else |
301 |
|
302 |
vector<RealType> groupCutoff(nGroups_, 0.0); |
303 |
groupToGtype.resize(nGroups_); |
304 |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
305 |
|
306 |
groupCutoff[cg1] = 0.0; |
307 |
vector<int> atomList = getAtomsInGroupRow(cg1); |
308 |
|
309 |
for (vector<int>::iterator ia = atomList.begin(); |
310 |
ia != atomList.end(); ++ia) { |
311 |
int atom1 = (*ia); |
312 |
atid = idents[atom1]; |
313 |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
314 |
groupCutoff[cg1] = atypeCutoff[atid]; |
315 |
} |
316 |
} |
317 |
|
318 |
bool gTypeFound = false; |
319 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
320 |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
321 |
groupToGtype[cg1] = gt; |
322 |
gTypeFound = true; |
323 |
} |
324 |
} |
325 |
if (!gTypeFound) { |
326 |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
327 |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
328 |
} |
329 |
} |
330 |
#endif |
331 |
|
332 |
// Now we find the maximum group cutoff value present in the simulation |
333 |
|
334 |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
335 |
|
336 |
#ifdef IS_MPI |
337 |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
338 |
#endif |
339 |
|
340 |
RealType tradRcut = groupMax; |
341 |
|
342 |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
343 |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
344 |
RealType thisRcut; |
345 |
switch(cutoffPolicy_) { |
346 |
case TRADITIONAL: |
347 |
thisRcut = tradRcut; |
348 |
break; |
349 |
case MIX: |
350 |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
351 |
break; |
352 |
case MAX: |
353 |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
354 |
break; |
355 |
default: |
356 |
sprintf(painCave.errMsg, |
357 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
358 |
"hit an unknown cutoff policy!\n"); |
359 |
painCave.severity = OPENMD_ERROR; |
360 |
painCave.isFatal = 1; |
361 |
simError(); |
362 |
break; |
363 |
} |
364 |
|
365 |
pair<int,int> key = make_pair(i,j); |
366 |
gTypeCutoffMap[key].first = thisRcut; |
367 |
|
368 |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
369 |
|
370 |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
371 |
|
372 |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
373 |
|
374 |
// sanity check |
375 |
|
376 |
if (userChoseCutoff_) { |
377 |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
378 |
sprintf(painCave.errMsg, |
379 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
380 |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
381 |
painCave.severity = OPENMD_ERROR; |
382 |
painCave.isFatal = 1; |
383 |
simError(); |
384 |
} |
385 |
} |
386 |
} |
387 |
} |
388 |
} |
389 |
|
390 |
|
391 |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
392 |
int i, j; |
393 |
#ifdef IS_MPI |
394 |
i = groupRowToGtype[cg1]; |
395 |
j = groupColToGtype[cg2]; |
396 |
#else |
397 |
i = groupToGtype[cg1]; |
398 |
j = groupToGtype[cg2]; |
399 |
#endif |
400 |
return gTypeCutoffMap[make_pair(i,j)]; |
401 |
} |
402 |
|
403 |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
404 |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
405 |
if (toposForAtom[atom1][j] == atom2) |
406 |
return topoDist[atom1][j]; |
407 |
} |
408 |
return 0; |
409 |
} |
410 |
|
411 |
void ForceMatrixDecomposition::zeroWorkArrays() { |
412 |
pairwisePot = 0.0; |
413 |
embeddingPot = 0.0; |
414 |
|
415 |
#ifdef IS_MPI |
416 |
if (storageLayout_ & DataStorage::dslForce) { |
417 |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
418 |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
419 |
} |
420 |
|
421 |
if (storageLayout_ & DataStorage::dslTorque) { |
422 |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
423 |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
424 |
} |
425 |
|
426 |
fill(pot_row.begin(), pot_row.end(), |
427 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
428 |
|
429 |
fill(pot_col.begin(), pot_col.end(), |
430 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
431 |
|
432 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
433 |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
434 |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
435 |
} |
436 |
|
437 |
if (storageLayout_ & DataStorage::dslDensity) { |
438 |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
439 |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
440 |
} |
441 |
|
442 |
if (storageLayout_ & DataStorage::dslFunctional) { |
443 |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
444 |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
445 |
} |
446 |
|
447 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
448 |
fill(atomRowData.functionalDerivative.begin(), |
449 |
atomRowData.functionalDerivative.end(), 0.0); |
450 |
fill(atomColData.functionalDerivative.begin(), |
451 |
atomColData.functionalDerivative.end(), 0.0); |
452 |
} |
453 |
|
454 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
455 |
fill(atomRowData.skippedCharge.begin(), |
456 |
atomRowData.skippedCharge.end(), 0.0); |
457 |
fill(atomColData.skippedCharge.begin(), |
458 |
atomColData.skippedCharge.end(), 0.0); |
459 |
} |
460 |
|
461 |
#else |
462 |
|
463 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
464 |
fill(snap_->atomData.particlePot.begin(), |
465 |
snap_->atomData.particlePot.end(), 0.0); |
466 |
} |
467 |
|
468 |
if (storageLayout_ & DataStorage::dslDensity) { |
469 |
fill(snap_->atomData.density.begin(), |
470 |
snap_->atomData.density.end(), 0.0); |
471 |
} |
472 |
if (storageLayout_ & DataStorage::dslFunctional) { |
473 |
fill(snap_->atomData.functional.begin(), |
474 |
snap_->atomData.functional.end(), 0.0); |
475 |
} |
476 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
477 |
fill(snap_->atomData.functionalDerivative.begin(), |
478 |
snap_->atomData.functionalDerivative.end(), 0.0); |
479 |
} |
480 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
481 |
fill(snap_->atomData.skippedCharge.begin(), |
482 |
snap_->atomData.skippedCharge.end(), 0.0); |
483 |
} |
484 |
#endif |
485 |
|
486 |
} |
487 |
|
488 |
|
489 |
void ForceMatrixDecomposition::distributeData() { |
490 |
snap_ = sman_->getCurrentSnapshot(); |
491 |
storageLayout_ = sman_->getStorageLayout(); |
492 |
#ifdef IS_MPI |
493 |
|
494 |
// gather up the atomic positions |
495 |
AtomCommVectorRow->gather(snap_->atomData.position, |
496 |
atomRowData.position); |
497 |
AtomCommVectorColumn->gather(snap_->atomData.position, |
498 |
atomColData.position); |
499 |
|
500 |
// gather up the cutoff group positions |
501 |
cgCommVectorRow->gather(snap_->cgData.position, |
502 |
cgRowData.position); |
503 |
cgCommVectorColumn->gather(snap_->cgData.position, |
504 |
cgColData.position); |
505 |
|
506 |
// if needed, gather the atomic rotation matrices |
507 |
if (storageLayout_ & DataStorage::dslAmat) { |
508 |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
509 |
atomRowData.aMat); |
510 |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
511 |
atomColData.aMat); |
512 |
} |
513 |
|
514 |
// if needed, gather the atomic eletrostatic frames |
515 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
516 |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
517 |
atomRowData.electroFrame); |
518 |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
519 |
atomColData.electroFrame); |
520 |
} |
521 |
#endif |
522 |
} |
523 |
|
524 |
/* collects information obtained during the pre-pair loop onto local |
525 |
* data structures. |
526 |
*/ |
527 |
void ForceMatrixDecomposition::collectIntermediateData() { |
528 |
snap_ = sman_->getCurrentSnapshot(); |
529 |
storageLayout_ = sman_->getStorageLayout(); |
530 |
#ifdef IS_MPI |
531 |
|
532 |
if (storageLayout_ & DataStorage::dslDensity) { |
533 |
|
534 |
AtomCommRealRow->scatter(atomRowData.density, |
535 |
snap_->atomData.density); |
536 |
|
537 |
int n = snap_->atomData.density.size(); |
538 |
vector<RealType> rho_tmp(n, 0.0); |
539 |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
540 |
for (int i = 0; i < n; i++) |
541 |
snap_->atomData.density[i] += rho_tmp[i]; |
542 |
} |
543 |
#endif |
544 |
} |
545 |
|
546 |
/* |
547 |
* redistributes information obtained during the pre-pair loop out to |
548 |
* row and column-indexed data structures |
549 |
*/ |
550 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
551 |
snap_ = sman_->getCurrentSnapshot(); |
552 |
storageLayout_ = sman_->getStorageLayout(); |
553 |
#ifdef IS_MPI |
554 |
if (storageLayout_ & DataStorage::dslFunctional) { |
555 |
AtomCommRealRow->gather(snap_->atomData.functional, |
556 |
atomRowData.functional); |
557 |
AtomCommRealColumn->gather(snap_->atomData.functional, |
558 |
atomColData.functional); |
559 |
} |
560 |
|
561 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
562 |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
563 |
atomRowData.functionalDerivative); |
564 |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
565 |
atomColData.functionalDerivative); |
566 |
} |
567 |
#endif |
568 |
} |
569 |
|
570 |
|
571 |
void ForceMatrixDecomposition::collectData() { |
572 |
snap_ = sman_->getCurrentSnapshot(); |
573 |
storageLayout_ = sman_->getStorageLayout(); |
574 |
#ifdef IS_MPI |
575 |
int n = snap_->atomData.force.size(); |
576 |
vector<Vector3d> frc_tmp(n, V3Zero); |
577 |
|
578 |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
579 |
for (int i = 0; i < n; i++) { |
580 |
snap_->atomData.force[i] += frc_tmp[i]; |
581 |
frc_tmp[i] = 0.0; |
582 |
} |
583 |
|
584 |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
585 |
for (int i = 0; i < n; i++) |
586 |
snap_->atomData.force[i] += frc_tmp[i]; |
587 |
|
588 |
|
589 |
if (storageLayout_ & DataStorage::dslTorque) { |
590 |
|
591 |
int nt = snap_->atomData.torque.size(); |
592 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
593 |
|
594 |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
595 |
for (int i = 0; i < nt; i++) { |
596 |
snap_->atomData.torque[i] += trq_tmp[i]; |
597 |
trq_tmp[i] = 0.0; |
598 |
} |
599 |
|
600 |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
601 |
for (int i = 0; i < nt; i++) |
602 |
snap_->atomData.torque[i] += trq_tmp[i]; |
603 |
} |
604 |
|
605 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
606 |
|
607 |
int ns = snap_->atomData.skippedCharge.size(); |
608 |
vector<RealType> skch_tmp(ns, 0.0); |
609 |
|
610 |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
611 |
for (int i = 0; i < ns; i++) { |
612 |
snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
613 |
skch_tmp[i] = 0.0; |
614 |
} |
615 |
|
616 |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
617 |
for (int i = 0; i < ns; i++) |
618 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
619 |
} |
620 |
|
621 |
nLocal_ = snap_->getNumberOfAtoms(); |
622 |
|
623 |
vector<potVec> pot_temp(nLocal_, |
624 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
625 |
|
626 |
// scatter/gather pot_row into the members of my column |
627 |
|
628 |
AtomCommPotRow->scatter(pot_row, pot_temp); |
629 |
|
630 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
631 |
pairwisePot += pot_temp[ii]; |
632 |
|
633 |
fill(pot_temp.begin(), pot_temp.end(), |
634 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
635 |
|
636 |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
637 |
|
638 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
639 |
pairwisePot += pot_temp[ii]; |
640 |
#endif |
641 |
|
642 |
} |
643 |
|
644 |
int ForceMatrixDecomposition::getNAtomsInRow() { |
645 |
#ifdef IS_MPI |
646 |
return nAtomsInRow_; |
647 |
#else |
648 |
return nLocal_; |
649 |
#endif |
650 |
} |
651 |
|
652 |
/** |
653 |
* returns the list of atoms belonging to this group. |
654 |
*/ |
655 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
656 |
#ifdef IS_MPI |
657 |
return groupListRow_[cg1]; |
658 |
#else |
659 |
return groupList_[cg1]; |
660 |
#endif |
661 |
} |
662 |
|
663 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
664 |
#ifdef IS_MPI |
665 |
return groupListCol_[cg2]; |
666 |
#else |
667 |
return groupList_[cg2]; |
668 |
#endif |
669 |
} |
670 |
|
671 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
672 |
Vector3d d; |
673 |
|
674 |
#ifdef IS_MPI |
675 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
676 |
#else |
677 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
678 |
#endif |
679 |
|
680 |
snap_->wrapVector(d); |
681 |
return d; |
682 |
} |
683 |
|
684 |
|
685 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
686 |
|
687 |
Vector3d d; |
688 |
|
689 |
#ifdef IS_MPI |
690 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
691 |
#else |
692 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
693 |
#endif |
694 |
|
695 |
snap_->wrapVector(d); |
696 |
return d; |
697 |
} |
698 |
|
699 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
700 |
Vector3d d; |
701 |
|
702 |
#ifdef IS_MPI |
703 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
704 |
#else |
705 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
706 |
#endif |
707 |
|
708 |
snap_->wrapVector(d); |
709 |
return d; |
710 |
} |
711 |
|
712 |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
713 |
#ifdef IS_MPI |
714 |
return massFactorsRow[atom1]; |
715 |
#else |
716 |
return massFactors[atom1]; |
717 |
#endif |
718 |
} |
719 |
|
720 |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
721 |
#ifdef IS_MPI |
722 |
return massFactorsCol[atom2]; |
723 |
#else |
724 |
return massFactors[atom2]; |
725 |
#endif |
726 |
|
727 |
} |
728 |
|
729 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
730 |
Vector3d d; |
731 |
|
732 |
#ifdef IS_MPI |
733 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
734 |
#else |
735 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
736 |
#endif |
737 |
|
738 |
snap_->wrapVector(d); |
739 |
return d; |
740 |
} |
741 |
|
742 |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
743 |
return excludesForAtom[atom1]; |
744 |
} |
745 |
|
746 |
/** |
747 |
* We need to exclude some overcounted interactions that result from |
748 |
* the parallel decomposition. |
749 |
*/ |
750 |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
751 |
int unique_id_1, unique_id_2; |
752 |
|
753 |
#ifdef IS_MPI |
754 |
// in MPI, we have to look up the unique IDs for each atom |
755 |
unique_id_1 = AtomRowToGlobal[atom1]; |
756 |
unique_id_2 = AtomColToGlobal[atom2]; |
757 |
|
758 |
// this situation should only arise in MPI simulations |
759 |
if (unique_id_1 == unique_id_2) return true; |
760 |
|
761 |
// this prevents us from doing the pair on multiple processors |
762 |
if (unique_id_1 < unique_id_2) { |
763 |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
764 |
} else { |
765 |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
766 |
} |
767 |
#endif |
768 |
return false; |
769 |
} |
770 |
|
771 |
/** |
772 |
* We need to handle the interactions for atoms who are involved in |
773 |
* the same rigid body as well as some short range interactions |
774 |
* (bonds, bends, torsions) differently from other interactions. |
775 |
* We'll still visit the pairwise routines, but with a flag that |
776 |
* tells those routines to exclude the pair from direct long range |
777 |
* interactions. Some indirect interactions (notably reaction |
778 |
* field) must still be handled for these pairs. |
779 |
*/ |
780 |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
781 |
int unique_id_2; |
782 |
|
783 |
#ifdef IS_MPI |
784 |
// in MPI, we have to look up the unique IDs for the row atom. |
785 |
unique_id_2 = AtomColToGlobal[atom2]; |
786 |
#else |
787 |
// in the normal loop, the atom numbers are unique |
788 |
unique_id_2 = atom2; |
789 |
#endif |
790 |
|
791 |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
792 |
i != excludesForAtom[atom1].end(); ++i) { |
793 |
if ( (*i) == unique_id_2 ) return true; |
794 |
} |
795 |
|
796 |
return false; |
797 |
} |
798 |
|
799 |
|
800 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
801 |
#ifdef IS_MPI |
802 |
atomRowData.force[atom1] += fg; |
803 |
#else |
804 |
snap_->atomData.force[atom1] += fg; |
805 |
#endif |
806 |
} |
807 |
|
808 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
809 |
#ifdef IS_MPI |
810 |
atomColData.force[atom2] += fg; |
811 |
#else |
812 |
snap_->atomData.force[atom2] += fg; |
813 |
#endif |
814 |
} |
815 |
|
816 |
// filling interaction blocks with pointers |
817 |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
818 |
int atom1, int atom2) { |
819 |
|
820 |
idat.excluded = excludeAtomPair(atom1, atom2); |
821 |
|
822 |
#ifdef IS_MPI |
823 |
|
824 |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
825 |
ff_->getAtomType(identsCol[atom2]) ); |
826 |
|
827 |
if (storageLayout_ & DataStorage::dslAmat) { |
828 |
idat.A1 = &(atomRowData.aMat[atom1]); |
829 |
idat.A2 = &(atomColData.aMat[atom2]); |
830 |
} |
831 |
|
832 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
833 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
834 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
835 |
} |
836 |
|
837 |
if (storageLayout_ & DataStorage::dslTorque) { |
838 |
idat.t1 = &(atomRowData.torque[atom1]); |
839 |
idat.t2 = &(atomColData.torque[atom2]); |
840 |
} |
841 |
|
842 |
if (storageLayout_ & DataStorage::dslDensity) { |
843 |
idat.rho1 = &(atomRowData.density[atom1]); |
844 |
idat.rho2 = &(atomColData.density[atom2]); |
845 |
} |
846 |
|
847 |
if (storageLayout_ & DataStorage::dslFunctional) { |
848 |
idat.frho1 = &(atomRowData.functional[atom1]); |
849 |
idat.frho2 = &(atomColData.functional[atom2]); |
850 |
} |
851 |
|
852 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
853 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
854 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
855 |
} |
856 |
|
857 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
858 |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
859 |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
860 |
} |
861 |
|
862 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
863 |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
864 |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
865 |
} |
866 |
|
867 |
#else |
868 |
|
869 |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
870 |
ff_->getAtomType(idents[atom2]) ); |
871 |
|
872 |
if (storageLayout_ & DataStorage::dslAmat) { |
873 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
874 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
875 |
} |
876 |
|
877 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
878 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
879 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
880 |
} |
881 |
|
882 |
if (storageLayout_ & DataStorage::dslTorque) { |
883 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
884 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
885 |
} |
886 |
|
887 |
if (storageLayout_ & DataStorage::dslDensity) { |
888 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
889 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
890 |
} |
891 |
|
892 |
if (storageLayout_ & DataStorage::dslFunctional) { |
893 |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
894 |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
895 |
} |
896 |
|
897 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
898 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
899 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
900 |
} |
901 |
|
902 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
903 |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
904 |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
905 |
} |
906 |
|
907 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
908 |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
909 |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
910 |
} |
911 |
#endif |
912 |
} |
913 |
|
914 |
|
915 |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
916 |
#ifdef IS_MPI |
917 |
pot_row[atom1] += 0.5 * *(idat.pot); |
918 |
pot_col[atom2] += 0.5 * *(idat.pot); |
919 |
|
920 |
atomRowData.force[atom1] += *(idat.f1); |
921 |
atomColData.force[atom2] -= *(idat.f1); |
922 |
#else |
923 |
pairwisePot += *(idat.pot); |
924 |
|
925 |
snap_->atomData.force[atom1] += *(idat.f1); |
926 |
snap_->atomData.force[atom2] -= *(idat.f1); |
927 |
#endif |
928 |
|
929 |
} |
930 |
|
931 |
/* |
932 |
* buildNeighborList |
933 |
* |
934 |
* first element of pair is row-indexed CutoffGroup |
935 |
* second element of pair is column-indexed CutoffGroup |
936 |
*/ |
937 |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
938 |
|
939 |
vector<pair<int, int> > neighborList; |
940 |
groupCutoffs cuts; |
941 |
bool doAllPairs = false; |
942 |
|
943 |
#ifdef IS_MPI |
944 |
cellListRow_.clear(); |
945 |
cellListCol_.clear(); |
946 |
#else |
947 |
cellList_.clear(); |
948 |
#endif |
949 |
|
950 |
RealType rList_ = (largestRcut_ + skinThickness_); |
951 |
RealType rl2 = rList_ * rList_; |
952 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
953 |
Mat3x3d Hmat = snap_->getHmat(); |
954 |
Vector3d Hx = Hmat.getColumn(0); |
955 |
Vector3d Hy = Hmat.getColumn(1); |
956 |
Vector3d Hz = Hmat.getColumn(2); |
957 |
|
958 |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
959 |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
960 |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
961 |
|
962 |
// handle small boxes where the cell offsets can end up repeating cells |
963 |
|
964 |
if (nCells_.x() < 3) doAllPairs = true; |
965 |
if (nCells_.y() < 3) doAllPairs = true; |
966 |
if (nCells_.z() < 3) doAllPairs = true; |
967 |
|
968 |
Mat3x3d invHmat = snap_->getInvHmat(); |
969 |
Vector3d rs, scaled, dr; |
970 |
Vector3i whichCell; |
971 |
int cellIndex; |
972 |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
973 |
|
974 |
#ifdef IS_MPI |
975 |
cellListRow_.resize(nCtot); |
976 |
cellListCol_.resize(nCtot); |
977 |
#else |
978 |
cellList_.resize(nCtot); |
979 |
#endif |
980 |
|
981 |
if (!doAllPairs) { |
982 |
#ifdef IS_MPI |
983 |
|
984 |
for (int i = 0; i < nGroupsInRow_; i++) { |
985 |
rs = cgRowData.position[i]; |
986 |
|
987 |
// scaled positions relative to the box vectors |
988 |
scaled = invHmat * rs; |
989 |
|
990 |
// wrap the vector back into the unit box by subtracting integer box |
991 |
// numbers |
992 |
for (int j = 0; j < 3; j++) { |
993 |
scaled[j] -= roundMe(scaled[j]); |
994 |
scaled[j] += 0.5; |
995 |
} |
996 |
|
997 |
// find xyz-indices of cell that cutoffGroup is in. |
998 |
whichCell.x() = nCells_.x() * scaled.x(); |
999 |
whichCell.y() = nCells_.y() * scaled.y(); |
1000 |
whichCell.z() = nCells_.z() * scaled.z(); |
1001 |
|
1002 |
// find single index of this cell: |
1003 |
cellIndex = Vlinear(whichCell, nCells_); |
1004 |
|
1005 |
// add this cutoff group to the list of groups in this cell; |
1006 |
cellListRow_[cellIndex].push_back(i); |
1007 |
} |
1008 |
|
1009 |
for (int i = 0; i < nGroupsInCol_; i++) { |
1010 |
rs = cgColData.position[i]; |
1011 |
|
1012 |
// scaled positions relative to the box vectors |
1013 |
scaled = invHmat * rs; |
1014 |
|
1015 |
// wrap the vector back into the unit box by subtracting integer box |
1016 |
// numbers |
1017 |
for (int j = 0; j < 3; j++) { |
1018 |
scaled[j] -= roundMe(scaled[j]); |
1019 |
scaled[j] += 0.5; |
1020 |
} |
1021 |
|
1022 |
// find xyz-indices of cell that cutoffGroup is in. |
1023 |
whichCell.x() = nCells_.x() * scaled.x(); |
1024 |
whichCell.y() = nCells_.y() * scaled.y(); |
1025 |
whichCell.z() = nCells_.z() * scaled.z(); |
1026 |
|
1027 |
// find single index of this cell: |
1028 |
cellIndex = Vlinear(whichCell, nCells_); |
1029 |
|
1030 |
// add this cutoff group to the list of groups in this cell; |
1031 |
cellListCol_[cellIndex].push_back(i); |
1032 |
} |
1033 |
#else |
1034 |
for (int i = 0; i < nGroups_; i++) { |
1035 |
rs = snap_->cgData.position[i]; |
1036 |
|
1037 |
// scaled positions relative to the box vectors |
1038 |
scaled = invHmat * rs; |
1039 |
|
1040 |
// wrap the vector back into the unit box by subtracting integer box |
1041 |
// numbers |
1042 |
for (int j = 0; j < 3; j++) { |
1043 |
scaled[j] -= roundMe(scaled[j]); |
1044 |
scaled[j] += 0.5; |
1045 |
} |
1046 |
|
1047 |
// find xyz-indices of cell that cutoffGroup is in. |
1048 |
whichCell.x() = nCells_.x() * scaled.x(); |
1049 |
whichCell.y() = nCells_.y() * scaled.y(); |
1050 |
whichCell.z() = nCells_.z() * scaled.z(); |
1051 |
|
1052 |
// find single index of this cell: |
1053 |
cellIndex = Vlinear(whichCell, nCells_); |
1054 |
|
1055 |
// add this cutoff group to the list of groups in this cell; |
1056 |
cellList_[cellIndex].push_back(i); |
1057 |
} |
1058 |
#endif |
1059 |
|
1060 |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1061 |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1062 |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1063 |
Vector3i m1v(m1x, m1y, m1z); |
1064 |
int m1 = Vlinear(m1v, nCells_); |
1065 |
|
1066 |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1067 |
os != cellOffsets_.end(); ++os) { |
1068 |
|
1069 |
Vector3i m2v = m1v + (*os); |
1070 |
|
1071 |
if (m2v.x() >= nCells_.x()) { |
1072 |
m2v.x() = 0; |
1073 |
} else if (m2v.x() < 0) { |
1074 |
m2v.x() = nCells_.x() - 1; |
1075 |
} |
1076 |
|
1077 |
if (m2v.y() >= nCells_.y()) { |
1078 |
m2v.y() = 0; |
1079 |
} else if (m2v.y() < 0) { |
1080 |
m2v.y() = nCells_.y() - 1; |
1081 |
} |
1082 |
|
1083 |
if (m2v.z() >= nCells_.z()) { |
1084 |
m2v.z() = 0; |
1085 |
} else if (m2v.z() < 0) { |
1086 |
m2v.z() = nCells_.z() - 1; |
1087 |
} |
1088 |
|
1089 |
int m2 = Vlinear (m2v, nCells_); |
1090 |
|
1091 |
#ifdef IS_MPI |
1092 |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1093 |
j1 != cellListRow_[m1].end(); ++j1) { |
1094 |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1095 |
j2 != cellListCol_[m2].end(); ++j2) { |
1096 |
|
1097 |
// Always do this if we're in different cells or if |
1098 |
// we're in the same cell and the global index of the |
1099 |
// j2 cutoff group is less than the j1 cutoff group |
1100 |
|
1101 |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1102 |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1103 |
snap_->wrapVector(dr); |
1104 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1105 |
if (dr.lengthSquare() < cuts.third) { |
1106 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1107 |
} |
1108 |
} |
1109 |
} |
1110 |
} |
1111 |
#else |
1112 |
|
1113 |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1114 |
j1 != cellList_[m1].end(); ++j1) { |
1115 |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1116 |
j2 != cellList_[m2].end(); ++j2) { |
1117 |
|
1118 |
// Always do this if we're in different cells or if |
1119 |
// we're in the same cell and the global index of the |
1120 |
// j2 cutoff group is less than the j1 cutoff group |
1121 |
|
1122 |
if (m2 != m1 || (*j2) < (*j1)) { |
1123 |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1124 |
snap_->wrapVector(dr); |
1125 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1126 |
if (dr.lengthSquare() < cuts.third) { |
1127 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1128 |
} |
1129 |
} |
1130 |
} |
1131 |
} |
1132 |
#endif |
1133 |
} |
1134 |
} |
1135 |
} |
1136 |
} |
1137 |
} else { |
1138 |
// branch to do all cutoff group pairs |
1139 |
#ifdef IS_MPI |
1140 |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1141 |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1142 |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1143 |
snap_->wrapVector(dr); |
1144 |
cuts = getGroupCutoffs( j1, j2 ); |
1145 |
if (dr.lengthSquare() < cuts.third) { |
1146 |
neighborList.push_back(make_pair(j1, j2)); |
1147 |
} |
1148 |
} |
1149 |
} |
1150 |
#else |
1151 |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1152 |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1153 |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1154 |
snap_->wrapVector(dr); |
1155 |
cuts = getGroupCutoffs( j1, j2 ); |
1156 |
if (dr.lengthSquare() < cuts.third) { |
1157 |
neighborList.push_back(make_pair(j1, j2)); |
1158 |
} |
1159 |
} |
1160 |
} |
1161 |
#endif |
1162 |
} |
1163 |
|
1164 |
// save the local cutoff group positions for the check that is |
1165 |
// done on each loop: |
1166 |
saved_CG_positions_.clear(); |
1167 |
for (int i = 0; i < nGroups_; i++) |
1168 |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1169 |
|
1170 |
return neighborList; |
1171 |
} |
1172 |
} //end namespace OpenMD |