ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1570 by gezelter, Thu May 26 21:56:04 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1896 by gezelter, Tue Jul 2 20:02:31 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <    nGroups_ = snap_->getNumberOfCutoffGroups();
99 <
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101 <    vector<int> identsLocal = info_->getIdentArray();
101 >    idents = info_->getIdentArray();
102      AtomLocalToGlobal = info_->getGlobalAtomIndices();
103      cgLocalToGlobal = info_->getGlobalGroupIndices();
104      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
66    vector<RealType> massFactorsLocal = info_->getMassFactors();
67    PairList excludes = info_->getExcludedInteractions();
68    PairList oneTwo = info_->getOneTwoInteractions();
69    PairList oneThree = info_->getOneThreeInteractions();
70    PairList oneFour = info_->getOneFourInteractions();
71    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
105  
106 +    massFactors = info_->getMassFactors();
107 +
108 +    PairList* excludes = info_->getExcludedInteractions();
109 +    PairList* oneTwo = info_->getOneTwoInteractions();
110 +    PairList* oneThree = info_->getOneThreeInteractions();
111 +    PairList* oneFour = info_->getOneFourInteractions();
112 +    
113 +    if (needVelocities_)
114 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 +                                     DataStorage::dslVelocity);
116 +    else
117 +      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 +    
119   #ifdef IS_MPI
120  
121 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
122 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
77 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
78 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    nAtomsInRow_ = AtomCommIntRow->getSize();
137 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
138 <    nGroupsInRow_ = cgCommIntRow->getSize();
139 <    nGroupsInCol_ = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147      atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
# Line 100 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163      
164 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
165 <                                      vector<RealType> (nAtomsInRow_, 0.0));
107 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
108 <                                      vector<RealType> (nAtomsInCol_, 0.0));
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166      
167 <    identsRow.reserve(nAtomsInRow_);
168 <    identsCol.reserve(nAtomsInCol_);
169 <    
113 <    AtomCommIntRow->gather(identsLocal, identsRow);
114 <    AtomCommIntColumn->gather(identsLocal, identsCol);
115 <    
116 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
117 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
118 <    
119 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
120 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 <    AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
172 <    AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 +    pot_row.resize(nAtomsInRow_);
177 +    pot_col.resize(nAtomsInCol_);
178 +
179 +    expot_row.resize(nAtomsInRow_);
180 +    expot_col.resize(nAtomsInCol_);
181 +
182 +    AtomRowToGlobal.resize(nAtomsInRow_);
183 +    AtomColToGlobal.resize(nAtomsInCol_);
184 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 +
187 +    cgRowToGlobal.resize(nGroupsInRow_);
188 +    cgColToGlobal.resize(nGroupsInCol_);
189 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 +
192 +    massFactorsRow.resize(nAtomsInRow_);
193 +    massFactorsCol.resize(nAtomsInCol_);
194 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 +
197      groupListRow_.clear();
198 <    groupListRow_.reserve(nGroupsInRow_);
198 >    groupListRow_.resize(nGroupsInRow_);
199      for (int i = 0; i < nGroupsInRow_; i++) {
200        int gid = cgRowToGlobal[i];
201        for (int j = 0; j < nAtomsInRow_; j++) {
# Line 134 | Line 206 | namespace OpenMD {
206      }
207  
208      groupListCol_.clear();
209 <    groupListCol_.reserve(nGroupsInCol_);
209 >    groupListCol_.resize(nGroupsInCol_);
210      for (int i = 0; i < nGroupsInCol_; i++) {
211        int gid = cgColToGlobal[i];
212        for (int j = 0; j < nAtomsInCol_; j++) {
# Line 144 | Line 216 | namespace OpenMD {
216        }      
217      }
218  
219 <    skipsForRowAtom.clear();
220 <    skipsForRowAtom.reserve(nAtomsInRow_);
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221 >    toposForAtom.clear();
222 >    toposForAtom.resize(nAtomsInRow_);
223 >    topoDist.clear();
224 >    topoDist.resize(nAtomsInRow_);
225      for (int i = 0; i < nAtomsInRow_; i++) {
226 <      int iglob = AtomColToGlobal[i];
226 >      int iglob = AtomRowToGlobal[i];
227 >
228        for (int j = 0; j < nAtomsInCol_; j++) {
229 <        int jglob = AtomRowToGlobal[j];        
230 <        if (excludes.hasPair(iglob, jglob))
231 <          skipsForRowAtom[i].push_back(j);      
229 >        int jglob = AtomColToGlobal[j];
230 >
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233 >        
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235 >          toposForAtom[i].push_back(j);
236 >          topoDist[i].push_back(1);
237 >        } else {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239 >            toposForAtom[i].push_back(j);
240 >            topoDist[i].push_back(2);
241 >          } else {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243 >              toposForAtom[i].push_back(j);
244 >              topoDist[i].push_back(3);
245 >            }
246 >          }
247 >        }
248        }      
249      }
250  
251 <    toposForRowAtom.clear();
252 <    toposForRowAtom.reserve(nAtomsInRow_);
253 <    for (int i = 0; i < nAtomsInRow_; i++) {
254 <      int iglob = AtomColToGlobal[i];
255 <      int nTopos = 0;
256 <      for (int j = 0; j < nAtomsInCol_; j++) {
257 <        int jglob = AtomRowToGlobal[j];        
258 <        if (oneTwo.hasPair(iglob, jglob)) {
259 <          toposForRowAtom[i].push_back(j);
260 <          topoDistRow[i][nTopos] = 1;
261 <          nTopos++;
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254 >    toposForAtom.clear();
255 >    toposForAtom.resize(nLocal_);
256 >    topoDist.clear();
257 >    topoDist.resize(nLocal_);
258 >
259 >    for (int i = 0; i < nLocal_; i++) {
260 >      int iglob = AtomLocalToGlobal[i];
261 >
262 >      for (int j = 0; j < nLocal_; j++) {
263 >        int jglob = AtomLocalToGlobal[j];
264 >
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267 >        
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269 >          toposForAtom[i].push_back(j);
270 >          topoDist[i].push_back(1);
271 >        } else {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273 >            toposForAtom[i].push_back(j);
274 >            topoDist[i].push_back(2);
275 >          } else {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277 >              toposForAtom[i].push_back(j);
278 >              topoDist[i].push_back(3);
279 >            }
280 >          }
281          }
170        if (oneThree.hasPair(iglob, jglob)) {
171          toposForRowAtom[i].push_back(j);
172          topoDistRow[i][nTopos] = 2;
173          nTopos++;
174        }
175        if (oneFour.hasPair(iglob, jglob)) {
176          toposForRowAtom[i].push_back(j);
177          topoDistRow[i][nTopos] = 3;
178          nTopos++;
179        }
282        }      
283      }
182
284   #endif
285  
286 +    // allocate memory for the parallel objects
287 +    atypesLocal.resize(nLocal_);
288 +
289 +    for (int i = 0; i < nLocal_; i++)
290 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 +
292      groupList_.clear();
293 <    groupList_.reserve(nGroups_);
293 >    groupList_.resize(nGroups_);
294      for (int i = 0; i < nGroups_; i++) {
295        int gid = cgLocalToGlobal[i];
296        for (int j = 0; j < nLocal_; j++) {
297          int aid = AtomLocalToGlobal[j];
298 <        if (globalGroupMembership[aid] == gid)
298 >        if (globalGroupMembership[aid] == gid) {
299            groupList_[i].push_back(j);
300 +        }
301        }      
302      }
303  
196    skipsForLocalAtom.clear();
197    skipsForLocalAtom.reserve(nLocal_);
304  
305 <    for (int i = 0; i < nLocal_; i++) {
306 <      int iglob = AtomLocalToGlobal[i];
307 <      for (int j = 0; j < nLocal_; j++) {
308 <        int jglob = AtomLocalToGlobal[j];        
309 <        if (excludes.hasPair(iglob, jglob))
310 <          skipsForLocalAtom[i].push_back(j);      
311 <      }      
305 >    createGtypeCutoffMap();
306 >
307 >  }
308 >  
309 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 >    
311 >    GrCut.clear();
312 >    GrCutSq.clear();
313 >    GrlistSq.clear();
314 >
315 >    RealType tol = 1e-6;
316 >    largestRcut_ = 0.0;
317 >    int atid;
318 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
319 >    
320 >    map<int, RealType> atypeCutoff;
321 >      
322 >    for (set<AtomType*>::iterator at = atypes.begin();
323 >         at != atypes.end(); ++at){
324 >      atid = (*at)->getIdent();
325 >      if (userChoseCutoff_)
326 >        atypeCutoff[atid] = userCutoff_;
327 >      else
328 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
329      }
330 +    
331 +    vector<RealType> gTypeCutoffs;
332 +    // first we do a single loop over the cutoff groups to find the
333 +    // largest cutoff for any atypes present in this group.
334 + #ifdef IS_MPI
335 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
336 +    groupRowToGtype.resize(nGroupsInRow_);
337 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
338 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
339 +      for (vector<int>::iterator ia = atomListRow.begin();
340 +           ia != atomListRow.end(); ++ia) {            
341 +        int atom1 = (*ia);
342 +        atid = identsRow[atom1];
343 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
344 +          groupCutoffRow[cg1] = atypeCutoff[atid];
345 +        }
346 +      }
347  
348 <    toposForLocalAtom.clear();
349 <    toposForLocalAtom.reserve(nLocal_);
350 <    for (int i = 0; i < nLocal_; i++) {
351 <      int iglob = AtomLocalToGlobal[i];
352 <      int nTopos = 0;
353 <      for (int j = 0; j < nLocal_; j++) {
354 <        int jglob = AtomLocalToGlobal[j];        
355 <        if (oneTwo.hasPair(iglob, jglob)) {
356 <          toposForLocalAtom[i].push_back(j);
357 <          topoDistLocal[i][nTopos] = 1;
358 <          nTopos++;
348 >      bool gTypeFound = false;
349 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
350 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
351 >          groupRowToGtype[cg1] = gt;
352 >          gTypeFound = true;
353 >        }
354 >      }
355 >      if (!gTypeFound) {
356 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
357 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
358 >      }
359 >      
360 >    }
361 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
362 >    groupColToGtype.resize(nGroupsInCol_);
363 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
364 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
365 >      for (vector<int>::iterator jb = atomListCol.begin();
366 >           jb != atomListCol.end(); ++jb) {            
367 >        int atom2 = (*jb);
368 >        atid = identsCol[atom2];
369 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
370 >          groupCutoffCol[cg2] = atypeCutoff[atid];
371          }
372 <        if (oneThree.hasPair(iglob, jglob)) {
373 <          toposForLocalAtom[i].push_back(j);
374 <          topoDistLocal[i][nTopos] = 2;
375 <          nTopos++;
376 <        }
377 <        if (oneFour.hasPair(iglob, jglob)) {
378 <          toposForLocalAtom[i].push_back(j);
379 <          topoDistLocal[i][nTopos] = 3;
380 <          nTopos++;
381 <        }
372 >      }
373 >      bool gTypeFound = false;
374 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
375 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
376 >          groupColToGtype[cg2] = gt;
377 >          gTypeFound = true;
378 >        }
379 >      }
380 >      if (!gTypeFound) {
381 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
382 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
383 >      }
384 >    }
385 > #else
386 >
387 >    vector<RealType> groupCutoff(nGroups_, 0.0);
388 >    groupToGtype.resize(nGroups_);
389 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
390 >      groupCutoff[cg1] = 0.0;
391 >      vector<int> atomList = getAtomsInGroupRow(cg1);
392 >      for (vector<int>::iterator ia = atomList.begin();
393 >           ia != atomList.end(); ++ia) {            
394 >        int atom1 = (*ia);
395 >        atid = idents[atom1];
396 >        if (atypeCutoff[atid] > groupCutoff[cg1])
397 >          groupCutoff[cg1] = atypeCutoff[atid];
398 >      }
399 >      
400 >      bool gTypeFound = false;
401 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
402 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
403 >          groupToGtype[cg1] = gt;
404 >          gTypeFound = true;
405 >        }
406 >      }
407 >      if (!gTypeFound) {      
408 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
409 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
410        }      
411 +    }
412 + #endif
413 +
414 +    // Now we find the maximum group cutoff value present in the simulation
415 +
416 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
417 +                                     gTypeCutoffs.end());
418 +
419 + #ifdef IS_MPI
420 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
421 +                              MPI::MAX);
422 + #endif
423 +    
424 +    RealType tradRcut = groupMax;
425 +
426 +    GrCut.resize( gTypeCutoffs.size() );
427 +    GrCutSq.resize( gTypeCutoffs.size() );
428 +    GrlistSq.resize( gTypeCutoffs.size() );
429 +
430 +
431 +    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
432 +      GrCut[i].resize( gTypeCutoffs.size() , 0.0);
433 +      GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 );
434 +      GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 );
435 +
436 +      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
437 +        RealType thisRcut;
438 +        switch(cutoffPolicy_) {
439 +        case TRADITIONAL:
440 +          thisRcut = tradRcut;
441 +          break;
442 +        case MIX:
443 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
444 +          break;
445 +        case MAX:
446 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
447 +          break;
448 +        default:
449 +          sprintf(painCave.errMsg,
450 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
451 +                  "hit an unknown cutoff policy!\n");
452 +          painCave.severity = OPENMD_ERROR;
453 +          painCave.isFatal = 1;
454 +          simError();
455 +          break;
456 +        }
457 +
458 +        GrCut[i][j] = thisRcut;
459 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
460 +        GrCutSq[i][j] = thisRcut * thisRcut;
461 +        GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2);
462 +
463 +        // pair<int,int> key = make_pair(i,j);
464 +        // gTypeCutoffMap[key].first = thisRcut;
465 +        // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
466 +        // sanity check
467 +        
468 +        if (userChoseCutoff_) {
469 +          if (abs(GrCut[i][j] - userCutoff_) > 0.0001) {
470 +            sprintf(painCave.errMsg,
471 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
472 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
473 +            painCave.severity = OPENMD_ERROR;
474 +            painCave.isFatal = 1;
475 +            simError();            
476 +          }
477 +        }
478 +      }
479      }
480    }
481 <  
481 >
482 >  void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) {
483 >    int i, j;  
484 > #ifdef IS_MPI
485 >    i = groupRowToGtype[cg1];
486 >    j = groupColToGtype[cg2];
487 > #else
488 >    i = groupToGtype[cg1];
489 >    j = groupToGtype[cg2];
490 > #endif    
491 >    rcut = GrCut[i][j];
492 >    rcutsq = GrCutSq[i][j];
493 >    rlistsq = GrlistSq[i][j];
494 >    return;
495 >    //return gTypeCutoffMap[make_pair(i,j)];
496 >  }
497 >
498 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
499 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
500 >      if (toposForAtom[atom1][j] == atom2)
501 >        return topoDist[atom1][j];
502 >    }                                          
503 >    return 0;
504 >  }
505 >
506 >  void ForceMatrixDecomposition::zeroWorkArrays() {
507 >    pairwisePot = 0.0;
508 >    embeddingPot = 0.0;
509 >    excludedPot = 0.0;
510 >    excludedSelfPot = 0.0;
511 >
512 > #ifdef IS_MPI
513 >    if (storageLayout_ & DataStorage::dslForce) {
514 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
515 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
516 >    }
517 >
518 >    if (storageLayout_ & DataStorage::dslTorque) {
519 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
520 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
521 >    }
522 >    
523 >    fill(pot_row.begin(), pot_row.end(),
524 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
525 >
526 >    fill(pot_col.begin(), pot_col.end(),
527 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
528 >
529 >    fill(expot_row.begin(), expot_row.end(),
530 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
531 >
532 >    fill(expot_col.begin(), expot_col.end(),
533 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
534 >
535 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
536 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
537 >           0.0);
538 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
539 >           0.0);
540 >    }
541 >
542 >    if (storageLayout_ & DataStorage::dslDensity) {      
543 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
544 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
545 >    }
546 >
547 >    if (storageLayout_ & DataStorage::dslFunctional) {  
548 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
549 >           0.0);
550 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
551 >           0.0);
552 >    }
553 >
554 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
555 >      fill(atomRowData.functionalDerivative.begin(),
556 >           atomRowData.functionalDerivative.end(), 0.0);
557 >      fill(atomColData.functionalDerivative.begin(),
558 >           atomColData.functionalDerivative.end(), 0.0);
559 >    }
560 >
561 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
562 >      fill(atomRowData.skippedCharge.begin(),
563 >           atomRowData.skippedCharge.end(), 0.0);
564 >      fill(atomColData.skippedCharge.begin(),
565 >           atomColData.skippedCharge.end(), 0.0);
566 >    }
567 >
568 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
569 >      fill(atomRowData.flucQFrc.begin(),
570 >           atomRowData.flucQFrc.end(), 0.0);
571 >      fill(atomColData.flucQFrc.begin(),
572 >           atomColData.flucQFrc.end(), 0.0);
573 >    }
574 >
575 >    if (storageLayout_ & DataStorage::dslElectricField) {    
576 >      fill(atomRowData.electricField.begin(),
577 >           atomRowData.electricField.end(), V3Zero);
578 >      fill(atomColData.electricField.begin(),
579 >           atomColData.electricField.end(), V3Zero);
580 >    }
581 >
582 > #endif
583 >    // even in parallel, we need to zero out the local arrays:
584 >
585 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
586 >      fill(snap_->atomData.particlePot.begin(),
587 >           snap_->atomData.particlePot.end(), 0.0);
588 >    }
589 >    
590 >    if (storageLayout_ & DataStorage::dslDensity) {      
591 >      fill(snap_->atomData.density.begin(),
592 >           snap_->atomData.density.end(), 0.0);
593 >    }
594 >
595 >    if (storageLayout_ & DataStorage::dslFunctional) {
596 >      fill(snap_->atomData.functional.begin(),
597 >           snap_->atomData.functional.end(), 0.0);
598 >    }
599 >
600 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
601 >      fill(snap_->atomData.functionalDerivative.begin(),
602 >           snap_->atomData.functionalDerivative.end(), 0.0);
603 >    }
604 >
605 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
606 >      fill(snap_->atomData.skippedCharge.begin(),
607 >           snap_->atomData.skippedCharge.end(), 0.0);
608 >    }
609 >
610 >    if (storageLayout_ & DataStorage::dslElectricField) {      
611 >      fill(snap_->atomData.electricField.begin(),
612 >           snap_->atomData.electricField.end(), V3Zero);
613 >    }
614 >  }
615 >
616 >
617    void ForceMatrixDecomposition::distributeData()  {
618      snap_ = sman_->getCurrentSnapshot();
619      storageLayout_ = sman_->getStorageLayout();
620   #ifdef IS_MPI
621      
622      // gather up the atomic positions
623 <    AtomCommVectorRow->gather(snap_->atomData.position,
623 >    AtomPlanVectorRow->gather(snap_->atomData.position,
624                                atomRowData.position);
625 <    AtomCommVectorColumn->gather(snap_->atomData.position,
625 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
626                                   atomColData.position);
627      
628      // gather up the cutoff group positions
629 <    cgCommVectorRow->gather(snap_->cgData.position,
629 >
630 >    cgPlanVectorRow->gather(snap_->cgData.position,
631                              cgRowData.position);
632 <    cgCommVectorColumn->gather(snap_->cgData.position,
632 >
633 >    cgPlanVectorColumn->gather(snap_->cgData.position,
634                                 cgColData.position);
635 +
636 +
637 +
638 +    if (needVelocities_) {
639 +      // gather up the atomic velocities
640 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
641 +                                   atomColData.velocity);
642 +      
643 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
644 +                                 cgColData.velocity);
645 +    }
646 +
647      
648      // if needed, gather the atomic rotation matrices
649      if (storageLayout_ & DataStorage::dslAmat) {
650 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
650 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
651                                  atomRowData.aMat);
652 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
652 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
653                                     atomColData.aMat);
654      }
655 <    
656 <    // if needed, gather the atomic eletrostatic frames
657 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
658 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
659 <                                atomRowData.electroFrame);
660 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
661 <                                   atomColData.electroFrame);
655 >
656 >    // if needed, gather the atomic eletrostatic information
657 >    if (storageLayout_ & DataStorage::dslDipole) {
658 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
659 >                                atomRowData.dipole);
660 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
661 >                                   atomColData.dipole);
662      }
663 +
664 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
665 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
666 +                                atomRowData.quadrupole);
667 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
668 +                                   atomColData.quadrupole);
669 +    }
670 +        
671 +    // if needed, gather the atomic fluctuating charge values
672 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
673 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
674 +                              atomRowData.flucQPos);
675 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
676 +                                 atomColData.flucQPos);
677 +    }
678 +
679   #endif      
680    }
681    
682 +  /* collects information obtained during the pre-pair loop onto local
683 +   * data structures.
684 +   */
685    void ForceMatrixDecomposition::collectIntermediateData() {
686      snap_ = sman_->getCurrentSnapshot();
687      storageLayout_ = sman_->getStorageLayout();
# Line 273 | Line 689 | namespace OpenMD {
689      
690      if (storageLayout_ & DataStorage::dslDensity) {
691        
692 <      AtomCommRealRow->scatter(atomRowData.density,
692 >      AtomPlanRealRow->scatter(atomRowData.density,
693                                 snap_->atomData.density);
694        
695        int n = snap_->atomData.density.size();
696 <      std::vector<RealType> rho_tmp(n, 0.0);
697 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
696 >      vector<RealType> rho_tmp(n, 0.0);
697 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
698        for (int i = 0; i < n; i++)
699          snap_->atomData.density[i] += rho_tmp[i];
700      }
701 +
702 +    // this isn't necessary if we don't have polarizable atoms, but
703 +    // we'll leave it here for now.
704 +    if (storageLayout_ & DataStorage::dslElectricField) {
705 +      
706 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
707 +                                 snap_->atomData.electricField);
708 +      
709 +      int n = snap_->atomData.electricField.size();
710 +      vector<Vector3d> field_tmp(n, V3Zero);
711 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
712 +                                    field_tmp);
713 +      for (int i = 0; i < n; i++)
714 +        snap_->atomData.electricField[i] += field_tmp[i];
715 +    }
716   #endif
717    }
718 <  
718 >
719 >  /*
720 >   * redistributes information obtained during the pre-pair loop out to
721 >   * row and column-indexed data structures
722 >   */
723    void ForceMatrixDecomposition::distributeIntermediateData() {
724      snap_ = sman_->getCurrentSnapshot();
725      storageLayout_ = sman_->getStorageLayout();
726   #ifdef IS_MPI
727      if (storageLayout_ & DataStorage::dslFunctional) {
728 <      AtomCommRealRow->gather(snap_->atomData.functional,
728 >      AtomPlanRealRow->gather(snap_->atomData.functional,
729                                atomRowData.functional);
730 <      AtomCommRealColumn->gather(snap_->atomData.functional,
730 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
731                                   atomColData.functional);
732      }
733      
734      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
735 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
735 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
736                                atomRowData.functionalDerivative);
737 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
737 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
738                                   atomColData.functionalDerivative);
739      }
740   #endif
# Line 313 | Line 748 | namespace OpenMD {
748      int n = snap_->atomData.force.size();
749      vector<Vector3d> frc_tmp(n, V3Zero);
750      
751 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
751 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
752      for (int i = 0; i < n; i++) {
753        snap_->atomData.force[i] += frc_tmp[i];
754        frc_tmp[i] = 0.0;
755      }
756      
757 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
758 <    for (int i = 0; i < n; i++)
757 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
758 >    for (int i = 0; i < n; i++) {
759        snap_->atomData.force[i] += frc_tmp[i];
760 <    
761 <    
760 >    }
761 >        
762      if (storageLayout_ & DataStorage::dslTorque) {
763  
764 <      int nt = snap_->atomData.force.size();
764 >      int nt = snap_->atomData.torque.size();
765        vector<Vector3d> trq_tmp(nt, V3Zero);
766  
767 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
768 <      for (int i = 0; i < n; i++) {
767 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
768 >      for (int i = 0; i < nt; i++) {
769          snap_->atomData.torque[i] += trq_tmp[i];
770          trq_tmp[i] = 0.0;
771        }
772        
773 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
774 <      for (int i = 0; i < n; i++)
773 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
774 >      for (int i = 0; i < nt; i++)
775          snap_->atomData.torque[i] += trq_tmp[i];
776      }
777 +
778 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
779 +
780 +      int ns = snap_->atomData.skippedCharge.size();
781 +      vector<RealType> skch_tmp(ns, 0.0);
782 +
783 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
784 +      for (int i = 0; i < ns; i++) {
785 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
786 +        skch_tmp[i] = 0.0;
787 +      }
788 +      
789 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
790 +      for (int i = 0; i < ns; i++)
791 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
792 +            
793 +    }
794      
795 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
796 +
797 +      int nq = snap_->atomData.flucQFrc.size();
798 +      vector<RealType> fqfrc_tmp(nq, 0.0);
799 +
800 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
801 +      for (int i = 0; i < nq; i++) {
802 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
803 +        fqfrc_tmp[i] = 0.0;
804 +      }
805 +      
806 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
807 +      for (int i = 0; i < nq; i++)
808 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
809 +            
810 +    }
811 +
812 +    if (storageLayout_ & DataStorage::dslElectricField) {
813 +
814 +      int nef = snap_->atomData.electricField.size();
815 +      vector<Vector3d> efield_tmp(nef, V3Zero);
816 +
817 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
818 +      for (int i = 0; i < nef; i++) {
819 +        snap_->atomData.electricField[i] += efield_tmp[i];
820 +        efield_tmp[i] = 0.0;
821 +      }
822 +      
823 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
824 +      for (int i = 0; i < nef; i++)
825 +        snap_->atomData.electricField[i] += efield_tmp[i];
826 +    }
827 +
828 +
829      nLocal_ = snap_->getNumberOfAtoms();
830  
831 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
832 <                                       vector<RealType> (nLocal_, 0.0));
833 <    
834 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
835 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
836 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
837 <        pot_local[i] += pot_temp[i][ii];
831 >    vector<potVec> pot_temp(nLocal_,
832 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
833 >    vector<potVec> expot_temp(nLocal_,
834 >                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
835 >
836 >    // scatter/gather pot_row into the members of my column
837 >          
838 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
839 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
840 >
841 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
842 >      pairwisePot += pot_temp[ii];
843 >
844 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
845 >      excludedPot += expot_temp[ii];
846 >        
847 >    if (storageLayout_ & DataStorage::dslParticlePot) {
848 >      // This is the pairwise contribution to the particle pot.  The
849 >      // embedding contribution is added in each of the low level
850 >      // non-bonded routines.  In single processor, this is done in
851 >      // unpackInteractionData, not in collectData.
852 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
853 >        for (int i = 0; i < nLocal_; i++) {
854 >          // factor of two is because the total potential terms are divided
855 >          // by 2 in parallel due to row/ column scatter      
856 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
857 >        }
858 >      }
859 >    }
860 >
861 >    fill(pot_temp.begin(), pot_temp.end(),
862 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
863 >    fill(expot_temp.begin(), expot_temp.end(),
864 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
865 >      
866 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
867 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
868 >    
869 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
870 >      pairwisePot += pot_temp[ii];    
871 >
872 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
873 >      excludedPot += expot_temp[ii];    
874 >
875 >    if (storageLayout_ & DataStorage::dslParticlePot) {
876 >      // This is the pairwise contribution to the particle pot.  The
877 >      // embedding contribution is added in each of the low level
878 >      // non-bonded routines.  In single processor, this is done in
879 >      // unpackInteractionData, not in collectData.
880 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
881 >        for (int i = 0; i < nLocal_; i++) {
882 >          // factor of two is because the total potential terms are divided
883 >          // by 2 in parallel due to row/ column scatter      
884 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
885 >        }
886        }
887      }
888 +    
889 +    if (storageLayout_ & DataStorage::dslParticlePot) {
890 +      int npp = snap_->atomData.particlePot.size();
891 +      vector<RealType> ppot_temp(npp, 0.0);
892 +
893 +      // This is the direct or embedding contribution to the particle
894 +      // pot.
895 +      
896 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
897 +      for (int i = 0; i < npp; i++) {
898 +        snap_->atomData.particlePot[i] += ppot_temp[i];
899 +      }
900 +
901 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
902 +      
903 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
904 +      for (int i = 0; i < npp; i++) {
905 +        snap_->atomData.particlePot[i] += ppot_temp[i];
906 +      }
907 +    }
908 +
909 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
910 +      RealType ploc1 = pairwisePot[ii];
911 +      RealType ploc2 = 0.0;
912 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
913 +      pairwisePot[ii] = ploc2;
914 +    }
915 +
916 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
917 +      RealType ploc1 = excludedPot[ii];
918 +      RealType ploc2 = 0.0;
919 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
920 +      excludedPot[ii] = ploc2;
921 +    }
922 +
923 +    // Here be dragons.
924 +    MPI::Intracomm col = colComm.getComm();
925 +
926 +    col.Allreduce(MPI::IN_PLACE,
927 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
928 +                  MPI::REALTYPE, MPI::SUM);
929 +
930 +
931   #endif
932 +
933    }
934  
935 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
935 >  /**
936 >   * Collects information obtained during the post-pair (and embedding
937 >   * functional) loops onto local data structures.
938 >   */
939 >  void ForceMatrixDecomposition::collectSelfData() {
940 >    snap_ = sman_->getCurrentSnapshot();
941 >    storageLayout_ = sman_->getStorageLayout();
942 >
943   #ifdef IS_MPI
944 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
945 +      RealType ploc1 = embeddingPot[ii];
946 +      RealType ploc2 = 0.0;
947 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
948 +      embeddingPot[ii] = ploc2;
949 +    }    
950 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
951 +      RealType ploc1 = excludedSelfPot[ii];
952 +      RealType ploc2 = 0.0;
953 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
954 +      excludedSelfPot[ii] = ploc2;
955 +    }    
956 + #endif
957 +    
958 +  }
959 +
960 +
961 +
962 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
963 + #ifdef IS_MPI
964      return nAtomsInRow_;
965   #else
966      return nLocal_;
# Line 365 | Line 970 | namespace OpenMD {
970    /**
971     * returns the list of atoms belonging to this group.  
972     */
973 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
973 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
974   #ifdef IS_MPI
975      return groupListRow_[cg1];
976   #else
# Line 373 | Line 978 | namespace OpenMD {
978   #endif
979    }
980  
981 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
981 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
982   #ifdef IS_MPI
983      return groupListCol_[cg2];
984   #else
# Line 390 | Line 995 | namespace OpenMD {
995      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
996   #endif
997      
998 <    snap_->wrapVector(d);
998 >    if (usePeriodicBoundaryConditions_) {
999 >      snap_->wrapVector(d);
1000 >    }
1001      return d;    
1002    }
1003  
1004 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
1005 + #ifdef IS_MPI
1006 +    return cgColData.velocity[cg2];
1007 + #else
1008 +    return snap_->cgData.velocity[cg2];
1009 + #endif
1010 +  }
1011  
1012 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
1013 + #ifdef IS_MPI
1014 +    return atomColData.velocity[atom2];
1015 + #else
1016 +    return snap_->atomData.velocity[atom2];
1017 + #endif
1018 +  }
1019 +
1020 +
1021    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1022  
1023      Vector3d d;
# Line 404 | Line 1027 | namespace OpenMD {
1027   #else
1028      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1029   #endif
1030 <
1031 <    snap_->wrapVector(d);
1030 >    if (usePeriodicBoundaryConditions_) {
1031 >      snap_->wrapVector(d);
1032 >    }
1033      return d;    
1034    }
1035    
# Line 417 | Line 1041 | namespace OpenMD {
1041   #else
1042      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1043   #endif
1044 <    
1045 <    snap_->wrapVector(d);
1044 >    if (usePeriodicBoundaryConditions_) {
1045 >      snap_->wrapVector(d);
1046 >    }
1047      return d;    
1048    }
1049  
1050 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1050 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1051   #ifdef IS_MPI
1052      return massFactorsRow[atom1];
1053   #else
1054 <    return massFactorsLocal[atom1];
1054 >    return massFactors[atom1];
1055   #endif
1056    }
1057  
1058 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1058 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1059   #ifdef IS_MPI
1060      return massFactorsCol[atom2];
1061   #else
1062 <    return massFactorsLocal[atom2];
1062 >    return massFactors[atom2];
1063   #endif
1064  
1065    }
# Line 447 | Line 1072 | namespace OpenMD {
1072   #else
1073      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1074   #endif
1075 <
1076 <    snap_->wrapVector(d);
1075 >    if (usePeriodicBoundaryConditions_) {
1076 >      snap_->wrapVector(d);
1077 >    }
1078      return d;    
1079    }
1080  
1081 <  vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
1082 < #ifdef IS_MPI
457 <    return skipsForRowAtom[atom1];
458 < #else
459 <    return skipsForLocalAtom[atom1];
460 < #endif
1081 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1082 >    return excludesForAtom[atom1];
1083    }
1084  
1085    /**
1086 <   * there are a number of reasons to skip a pair or a particle mostly
1087 <   * we do this to exclude atoms who are involved in short range
466 <   * interactions (bonds, bends, torsions), but we also need to
467 <   * exclude some overcounted interactions that result from the
468 <   * parallel decomposition.
1086 >   * We need to exclude some overcounted interactions that result from
1087 >   * the parallel decomposition.
1088     */
1089 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1089 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1090      int unique_id_1, unique_id_2;
1091 <
1091 >        
1092   #ifdef IS_MPI
1093      // in MPI, we have to look up the unique IDs for each atom
1094      unique_id_1 = AtomRowToGlobal[atom1];
1095      unique_id_2 = AtomColToGlobal[atom2];
1096 +    // group1 = cgRowToGlobal[cg1];
1097 +    // group2 = cgColToGlobal[cg2];
1098 + #else
1099 +    unique_id_1 = AtomLocalToGlobal[atom1];
1100 +    unique_id_2 = AtomLocalToGlobal[atom2];
1101 +    int group1 = cgLocalToGlobal[cg1];
1102 +    int group2 = cgLocalToGlobal[cg2];
1103 + #endif  
1104  
478    // this situation should only arise in MPI simulations
1105      if (unique_id_1 == unique_id_2) return true;
1106 <    
1106 >
1107 > #ifdef IS_MPI
1108      // this prevents us from doing the pair on multiple processors
1109      if (unique_id_1 < unique_id_2) {
1110        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1111      } else {
1112 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1112 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1113      }
1114 < #else
1115 <    // in the normal loop, the atom numbers are unique
1116 <    unique_id_1 = atom1;
1117 <    unique_id_2 = atom2;
1114 > #endif    
1115 >
1116 > #ifndef IS_MPI
1117 >    if (group1 == group2) {
1118 >      if (unique_id_1 < unique_id_2) return true;
1119 >    }
1120   #endif
1121      
1122 < #ifdef IS_MPI
494 <    for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
495 <         i != skipsForRowAtom[atom1].end(); ++i) {
496 <      if ( (*i) == unique_id_2 ) return true;
497 <    }    
498 < #else
499 <    for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
500 <         i != skipsForLocalAtom[atom1].end(); ++i) {
501 <      if ( (*i) == unique_id_2 ) return true;
502 <    }    
503 < #endif
1122 >    return false;
1123    }
1124  
1125 <  int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
1126 <    
1127 < #ifdef IS_MPI
1128 <    for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
1129 <      if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
1125 >  /**
1126 >   * We need to handle the interactions for atoms who are involved in
1127 >   * the same rigid body as well as some short range interactions
1128 >   * (bonds, bends, torsions) differently from other interactions.
1129 >   * We'll still visit the pairwise routines, but with a flag that
1130 >   * tells those routines to exclude the pair from direct long range
1131 >   * interactions.  Some indirect interactions (notably reaction
1132 >   * field) must still be handled for these pairs.
1133 >   */
1134 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1135 >
1136 >    // excludesForAtom was constructed to use row/column indices in the MPI
1137 >    // version, and to use local IDs in the non-MPI version:
1138 >    
1139 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1140 >         i != excludesForAtom[atom1].end(); ++i) {
1141 >      if ( (*i) == atom2 ) return true;
1142      }
512 #else
513    for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
514      if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
515    }
516 #endif
1143  
1144 <    // zero is default for unconnected (i.e. normal) pair interactions
519 <    return 0;
1144 >    return false;
1145    }
1146  
1147 +
1148    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1149   #ifdef IS_MPI
1150      atomRowData.force[atom1] += fg;
# Line 536 | Line 1162 | namespace OpenMD {
1162    }
1163  
1164      // filling interaction blocks with pointers
1165 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1166 <    InteractionData idat;
1165 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1166 >                                                     int atom1, int atom2) {
1167  
1168 +    idat.excluded = excludeAtomPair(atom1, atom2);
1169 +  
1170   #ifdef IS_MPI
1171 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1172 +    idat.atid1 = identsRow[atom1];
1173 +    idat.atid2 = identsCol[atom2];
1174 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1175 +    //                         ff_->getAtomType(identsCol[atom2]) );
1176 +    
1177      if (storageLayout_ & DataStorage::dslAmat) {
1178        idat.A1 = &(atomRowData.aMat[atom1]);
1179        idat.A2 = &(atomColData.aMat[atom2]);
1180      }
1181      
548    if (storageLayout_ & DataStorage::dslElectroFrame) {
549      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
550      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
551    }
552
1182      if (storageLayout_ & DataStorage::dslTorque) {
1183        idat.t1 = &(atomRowData.torque[atom1]);
1184        idat.t2 = &(atomColData.torque[atom2]);
1185      }
1186  
1187 +    if (storageLayout_ & DataStorage::dslDipole) {
1188 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1189 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1190 +    }
1191 +
1192 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1193 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1194 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1195 +    }
1196 +
1197      if (storageLayout_ & DataStorage::dslDensity) {
1198        idat.rho1 = &(atomRowData.density[atom1]);
1199        idat.rho2 = &(atomColData.density[atom2]);
1200      }
1201  
1202 +    if (storageLayout_ & DataStorage::dslFunctional) {
1203 +      idat.frho1 = &(atomRowData.functional[atom1]);
1204 +      idat.frho2 = &(atomColData.functional[atom2]);
1205 +    }
1206 +
1207      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1208        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1209        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1210      }
1211  
1212 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1213 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1214 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1215 +    }
1216 +
1217 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1218 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1219 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1220 +    }
1221 +
1222 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1223 +      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1224 +      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1225 +    }
1226 +
1227   #else
1228 +    
1229 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1230 +    idat.atid1 = idents[atom1];
1231 +    idat.atid2 = idents[atom2];
1232 +
1233      if (storageLayout_ & DataStorage::dslAmat) {
1234        idat.A1 = &(snap_->atomData.aMat[atom1]);
1235        idat.A2 = &(snap_->atomData.aMat[atom2]);
1236      }
1237  
574    if (storageLayout_ & DataStorage::dslElectroFrame) {
575      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
576      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
577    }
578
1238      if (storageLayout_ & DataStorage::dslTorque) {
1239        idat.t1 = &(snap_->atomData.torque[atom1]);
1240        idat.t2 = &(snap_->atomData.torque[atom2]);
1241      }
1242  
1243 <    if (storageLayout_ & DataStorage::dslDensity) {
1243 >    if (storageLayout_ & DataStorage::dslDipole) {
1244 >      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1245 >      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1246 >    }
1247 >
1248 >    if (storageLayout_ & DataStorage::dslQuadrupole) {
1249 >      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1250 >      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1251 >    }
1252 >
1253 >    if (storageLayout_ & DataStorage::dslDensity) {    
1254        idat.rho1 = &(snap_->atomData.density[atom1]);
1255        idat.rho2 = &(snap_->atomData.density[atom2]);
1256      }
1257  
1258 +    if (storageLayout_ & DataStorage::dslFunctional) {
1259 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1260 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1261 +    }
1262 +
1263      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1264        idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1265        idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1266      }
1267 +
1268 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1269 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1270 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1271 +    }
1272 +
1273 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1274 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1275 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1276 +    }
1277 +
1278 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1279 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1280 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1281 +    }
1282 +
1283   #endif
594    return idat;
1284    }
1285  
1286 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1287 <
599 <    InteractionData idat;
1286 >  
1287 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1288   #ifdef IS_MPI
1289 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1290 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1291 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1289 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1290 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1291 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1292 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1293 >
1294 >    atomRowData.force[atom1] += *(idat.f1);
1295 >    atomColData.force[atom2] -= *(idat.f1);
1296 >
1297 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1298 >      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1299 >      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1300      }
1301 <    if (storageLayout_ & DataStorage::dslTorque) {
1302 <      idat.t1 = &(atomRowData.torque[atom1]);
1303 <      idat.t2 = &(atomColData.torque[atom2]);
1301 >
1302 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1303 >      atomRowData.electricField[atom1] += *(idat.eField1);
1304 >      atomColData.electricField[atom2] += *(idat.eField2);
1305      }
1306 <    if (storageLayout_ & DataStorage::dslForce) {
610 <      idat.t1 = &(atomRowData.force[atom1]);
611 <      idat.t2 = &(atomColData.force[atom2]);
612 <    }
1306 >
1307   #else
1308 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
1309 <      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1310 <      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1308 >    pairwisePot += *(idat.pot);
1309 >    excludedPot += *(idat.excludedPot);
1310 >
1311 >    snap_->atomData.force[atom1] += *(idat.f1);
1312 >    snap_->atomData.force[atom2] -= *(idat.f1);
1313 >
1314 >    if (idat.doParticlePot) {
1315 >      // This is the pairwise contribution to the particle pot.  The
1316 >      // embedding contribution is added in each of the low level
1317 >      // non-bonded routines.  In parallel, this calculation is done
1318 >      // in collectData, not in unpackInteractionData.
1319 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1320 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1321      }
1322 <    if (storageLayout_ & DataStorage::dslTorque) {
1323 <      idat.t1 = &(snap_->atomData.torque[atom1]);
1324 <      idat.t2 = &(snap_->atomData.torque[atom2]);
1322 >    
1323 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1324 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1325 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1326      }
1327 <    if (storageLayout_ & DataStorage::dslForce) {
1328 <      idat.t1 = &(snap_->atomData.force[atom1]);
1329 <      idat.t2 = &(snap_->atomData.force[atom2]);
1327 >
1328 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1329 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1330 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1331      }
1332 +
1333   #endif
1334      
1335    }
1336  
630
631
632
1337    /*
1338     * buildNeighborList
1339     *
1340     * first element of pair is row-indexed CutoffGroup
1341     * second element of pair is column-indexed CutoffGroup
1342     */
1343 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1344 <      
1345 <    vector<pair<int, int> > neighborList;
1346 < #ifdef IS_MPI
1347 <    cellListRow_.clear();
644 <    cellListCol_.clear();
645 < #else
646 <    cellList_.clear();
647 < #endif
1343 >  void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) {
1344 >    
1345 >    neighborList.clear();
1346 >    groupCutoffs cuts;
1347 >    bool doAllPairs = false;
1348  
1349 <    // dangerous to not do error checking.
1350 <    RealType rCut_;
651 <
652 <    RealType rList_ = (rCut_ + skinThickness_);
653 <    RealType rl2 = rList_ * rList_;
1349 >    RealType rList_ = (largestRcut_ + skinThickness_);
1350 >    RealType rcut, rcutsq, rlistsq;
1351      Snapshot* snap_ = sman_->getCurrentSnapshot();
1352 <    Mat3x3d Hmat = snap_->getHmat();
1353 <    Vector3d Hx = Hmat.getColumn(0);
657 <    Vector3d Hy = Hmat.getColumn(1);
658 <    Vector3d Hz = Hmat.getColumn(2);
1352 >    Mat3x3d box;
1353 >    Mat3x3d invBox;
1354  
660    nCells_.x() = (int) ( Hx.length() )/ rList_;
661    nCells_.y() = (int) ( Hy.length() )/ rList_;
662    nCells_.z() = (int) ( Hz.length() )/ rList_;
663
664    Mat3x3d invHmat = snap_->getInvHmat();
1355      Vector3d rs, scaled, dr;
1356      Vector3i whichCell;
1357      int cellIndex;
1358  
1359   #ifdef IS_MPI
1360 <    for (int i = 0; i < nGroupsInRow_; i++) {
1361 <      rs = cgRowData.position[i];
1362 <      // scaled positions relative to the box vectors
1363 <      scaled = invHmat * rs;
1364 <      // wrap the vector back into the unit box by subtracting integer box
1365 <      // numbers
1366 <      for (int j = 0; j < 3; j++)
1367 <        scaled[j] -= roundMe(scaled[j]);
1368 <    
1369 <      // find xyz-indices of cell that cutoffGroup is in.
1370 <      whichCell.x() = nCells_.x() * scaled.x();
1371 <      whichCell.y() = nCells_.y() * scaled.y();
682 <      whichCell.z() = nCells_.z() * scaled.z();
683 <
684 <      // find single index of this cell:
685 <      cellIndex = Vlinear(whichCell, nCells_);
686 <      // add this cutoff group to the list of groups in this cell;
687 <      cellListRow_[cellIndex].push_back(i);
1360 >    cellListRow_.clear();
1361 >    cellListCol_.clear();
1362 > #else
1363 >    cellList_.clear();
1364 > #endif
1365 >    
1366 >    if (!usePeriodicBoundaryConditions_) {
1367 >      box = snap_->getBoundingBox();
1368 >      invBox = snap_->getInvBoundingBox();
1369 >    } else {
1370 >      box = snap_->getHmat();
1371 >      invBox = snap_->getInvHmat();
1372      }
1373 <
1374 <    for (int i = 0; i < nGroupsInCol_; i++) {
1375 <      rs = cgColData.position[i];
1376 <      // scaled positions relative to the box vectors
1377 <      scaled = invHmat * rs;
1378 <      // wrap the vector back into the unit box by subtracting integer box
1379 <      // numbers
1380 <      for (int j = 0; j < 3; j++)
1381 <        scaled[j] -= roundMe(scaled[j]);
1382 <
1383 <      // find xyz-indices of cell that cutoffGroup is in.
1384 <      whichCell.x() = nCells_.x() * scaled.x();
1385 <      whichCell.y() = nCells_.y() * scaled.y();
1386 <      whichCell.z() = nCells_.z() * scaled.z();
1387 <
1388 <      // find single index of this cell:
1389 <      cellIndex = Vlinear(whichCell, nCells_);
1390 <      // add this cutoff group to the list of groups in this cell;
1391 <      cellListCol_[cellIndex].push_back(i);
1392 <    }
1373 >    
1374 >    Vector3d boxX = box.getColumn(0);
1375 >    Vector3d boxY = box.getColumn(1);
1376 >    Vector3d boxZ = box.getColumn(2);
1377 >    
1378 >    nCells_.x() = (int) ( boxX.length() )/ rList_;
1379 >    nCells_.y() = (int) ( boxY.length() )/ rList_;
1380 >    nCells_.z() = (int) ( boxZ.length() )/ rList_;
1381 >    
1382 >    // handle small boxes where the cell offsets can end up repeating cells
1383 >    
1384 >    if (nCells_.x() < 3) doAllPairs = true;
1385 >    if (nCells_.y() < 3) doAllPairs = true;
1386 >    if (nCells_.z() < 3) doAllPairs = true;
1387 >    
1388 >    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1389 >    
1390 > #ifdef IS_MPI
1391 >    cellListRow_.resize(nCtot);
1392 >    cellListCol_.resize(nCtot);
1393   #else
1394 <    for (int i = 0; i < nGroups_; i++) {
1395 <      rs = snap_->cgData.position[i];
1396 <      // scaled positions relative to the box vectors
1397 <      scaled = invHmat * rs;
1398 <      // wrap the vector back into the unit box by subtracting integer box
1399 <      // numbers
1400 <      for (int j = 0; j < 3; j++)
1401 <        scaled[j] -= roundMe(scaled[j]);
1394 >    cellList_.resize(nCtot);
1395 > #endif
1396 >    
1397 >    if (!doAllPairs) {
1398 > #ifdef IS_MPI
1399 >      
1400 >      for (int i = 0; i < nGroupsInRow_; i++) {
1401 >        rs = cgRowData.position[i];
1402 >        
1403 >        // scaled positions relative to the box vectors
1404 >        scaled = invBox * rs;
1405 >        
1406 >        // wrap the vector back into the unit box by subtracting integer box
1407 >        // numbers
1408 >        for (int j = 0; j < 3; j++) {
1409 >          scaled[j] -= roundMe(scaled[j]);
1410 >          scaled[j] += 0.5;
1411 >          // Handle the special case when an object is exactly on the
1412 >          // boundary (a scaled coordinate of 1.0 is the same as
1413 >          // scaled coordinate of 0.0)
1414 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1415 >        }
1416 >        
1417 >        // find xyz-indices of cell that cutoffGroup is in.
1418 >        whichCell.x() = nCells_.x() * scaled.x();
1419 >        whichCell.y() = nCells_.y() * scaled.y();
1420 >        whichCell.z() = nCells_.z() * scaled.z();
1421 >        
1422 >        // find single index of this cell:
1423 >        cellIndex = Vlinear(whichCell, nCells_);
1424 >        
1425 >        // add this cutoff group to the list of groups in this cell;
1426 >        cellListRow_[cellIndex].push_back(i);
1427 >      }
1428 >      for (int i = 0; i < nGroupsInCol_; i++) {
1429 >        rs = cgColData.position[i];
1430 >        
1431 >        // scaled positions relative to the box vectors
1432 >        scaled = invBox * rs;
1433 >        
1434 >        // wrap the vector back into the unit box by subtracting integer box
1435 >        // numbers
1436 >        for (int j = 0; j < 3; j++) {
1437 >          scaled[j] -= roundMe(scaled[j]);
1438 >          scaled[j] += 0.5;
1439 >          // Handle the special case when an object is exactly on the
1440 >          // boundary (a scaled coordinate of 1.0 is the same as
1441 >          // scaled coordinate of 0.0)
1442 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1443 >        }
1444 >        
1445 >        // find xyz-indices of cell that cutoffGroup is in.
1446 >        whichCell.x() = nCells_.x() * scaled.x();
1447 >        whichCell.y() = nCells_.y() * scaled.y();
1448 >        whichCell.z() = nCells_.z() * scaled.z();
1449 >        
1450 >        // find single index of this cell:
1451 >        cellIndex = Vlinear(whichCell, nCells_);
1452 >        
1453 >        // add this cutoff group to the list of groups in this cell;
1454 >        cellListCol_[cellIndex].push_back(i);
1455 >      }
1456 >      
1457 > #else
1458 >      for (int i = 0; i < nGroups_; i++) {
1459 >        rs = snap_->cgData.position[i];
1460 >        
1461 >        // scaled positions relative to the box vectors
1462 >        scaled = invBox * rs;
1463 >        
1464 >        // wrap the vector back into the unit box by subtracting integer box
1465 >        // numbers
1466 >        for (int j = 0; j < 3; j++) {
1467 >          scaled[j] -= roundMe(scaled[j]);
1468 >          scaled[j] += 0.5;
1469 >          // Handle the special case when an object is exactly on the
1470 >          // boundary (a scaled coordinate of 1.0 is the same as
1471 >          // scaled coordinate of 0.0)
1472 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1473 >        }
1474 >        
1475 >        // find xyz-indices of cell that cutoffGroup is in.
1476 >        whichCell.x() = nCells_.x() * scaled.x();
1477 >        whichCell.y() = nCells_.y() * scaled.y();
1478 >        whichCell.z() = nCells_.z() * scaled.z();
1479 >        
1480 >        // find single index of this cell:
1481 >        cellIndex = Vlinear(whichCell, nCells_);
1482 >        
1483 >        // add this cutoff group to the list of groups in this cell;
1484 >        cellList_[cellIndex].push_back(i);
1485 >      }
1486  
719      // find xyz-indices of cell that cutoffGroup is in.
720      whichCell.x() = nCells_.x() * scaled.x();
721      whichCell.y() = nCells_.y() * scaled.y();
722      whichCell.z() = nCells_.z() * scaled.z();
723
724      // find single index of this cell:
725      cellIndex = Vlinear(whichCell, nCells_);
726      // add this cutoff group to the list of groups in this cell;
727      cellList_[cellIndex].push_back(i);
728    }
1487   #endif
1488  
1489 <
1490 <
1491 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1492 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1493 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
736 <          Vector3i m1v(m1x, m1y, m1z);
737 <          int m1 = Vlinear(m1v, nCells_);
738 <
739 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
740 <               os != cellOffsets_.end(); ++os) {
1489 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1490 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1491 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1492 >            Vector3i m1v(m1x, m1y, m1z);
1493 >            int m1 = Vlinear(m1v, nCells_);
1494              
1495 <            Vector3i m2v = m1v + (*os);
1496 <            
1497 <            if (m2v.x() >= nCells_.x()) {
1498 <              m2v.x() = 0;          
1499 <            } else if (m2v.x() < 0) {
747 <              m2v.x() = nCells_.x() - 1;
748 <            }
749 <            
750 <            if (m2v.y() >= nCells_.y()) {
751 <              m2v.y() = 0;          
752 <            } else if (m2v.y() < 0) {
753 <              m2v.y() = nCells_.y() - 1;
754 <            }
755 <            
756 <            if (m2v.z() >= nCells_.z()) {
757 <              m2v.z() = 0;          
758 <            } else if (m2v.z() < 0) {
759 <              m2v.z() = nCells_.z() - 1;
760 <            }
761 <            
762 <            int m2 = Vlinear (m2v, nCells_);
1495 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1496 >                 os != cellOffsets_.end(); ++os) {
1497 >              
1498 >              Vector3i m2v = m1v + (*os);
1499 >            
1500  
1501 < #ifdef IS_MPI
1502 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1503 <                 j1 != cellListRow_[m1].end(); ++j1) {
1504 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1505 <                   j2 != cellListCol_[m2].end(); ++j2) {
1506 <                              
1507 <                // Always do this if we're in different cells or if
1508 <                // we're in the same cell and the global index of the
1509 <                // j2 cutoff group is less than the j1 cutoff group
1501 >              if (m2v.x() >= nCells_.x()) {
1502 >                m2v.x() = 0;          
1503 >              } else if (m2v.x() < 0) {
1504 >                m2v.x() = nCells_.x() - 1;
1505 >              }
1506 >              
1507 >              if (m2v.y() >= nCells_.y()) {
1508 >                m2v.y() = 0;          
1509 >              } else if (m2v.y() < 0) {
1510 >                m2v.y() = nCells_.y() - 1;
1511 >              }
1512 >              
1513 >              if (m2v.z() >= nCells_.z()) {
1514 >                m2v.z() = 0;          
1515 >              } else if (m2v.z() < 0) {
1516 >                m2v.z() = nCells_.z() - 1;
1517 >              }
1518  
1519 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1519 >              int m2 = Vlinear (m2v, nCells_);
1520 >              
1521 > #ifdef IS_MPI
1522 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1523 >                   j1 != cellListRow_[m1].end(); ++j1) {
1524 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1525 >                     j2 != cellListCol_[m2].end(); ++j2) {
1526 >                  
1527 >                  // In parallel, we need to visit *all* pairs of row
1528 >                  // & column indicies and will divide labor in the
1529 >                  // force evaluation later.
1530                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1531 <                  snap_->wrapVector(dr);
1532 <                  if (dr.lengthSquare() < rl2) {
778 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1531 >                  if (usePeriodicBoundaryConditions_) {
1532 >                    snap_->wrapVector(dr);
1533                    }
1534 +                  getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1535 +                  if (dr.lengthSquare() < rlistsq) {
1536 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1537 +                  }                  
1538                  }
1539                }
782            }
1540   #else
1541 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1542 <                 j1 != cellList_[m1].end(); ++j1) {
1543 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1544 <                   j2 != cellList_[m2].end(); ++j2) {
1545 <                              
1546 <                // Always do this if we're in different cells or if
1547 <                // we're in the same cell and the global index of the
1548 <                // j2 cutoff group is less than the j1 cutoff group
1541 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1542 >                   j1 != cellList_[m1].end(); ++j1) {
1543 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1544 >                     j2 != cellList_[m2].end(); ++j2) {
1545 >    
1546 >                  // Always do this if we're in different cells or if
1547 >                  // we're in the same cell and the global index of
1548 >                  // the j2 cutoff group is greater than or equal to
1549 >                  // the j1 cutoff group.  Note that Rappaport's code
1550 >                  // has a "less than" conditional here, but that
1551 >                  // deals with atom-by-atom computation.  OpenMD
1552 >                  // allows atoms within a single cutoff group to
1553 >                  // interact with each other.
1554  
1555 <                if (m2 != m1 || (*j2) < (*j1)) {
1556 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1557 <                  snap_->wrapVector(dr);
1558 <                  if (dr.lengthSquare() < rl2) {
1559 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1555 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1556 >
1557 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1558 >                    if (usePeriodicBoundaryConditions_) {
1559 >                      snap_->wrapVector(dr);
1560 >                    }
1561 >                    getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1562 >                    if (dr.lengthSquare() < rlistsq) {
1563 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1564 >                    }
1565                    }
1566                  }
1567                }
801            }
1568   #endif
1569 +            }
1570            }
1571          }
1572        }
1573 +    } else {
1574 +      // branch to do all cutoff group pairs
1575 + #ifdef IS_MPI
1576 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1577 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1578 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1579 +          if (usePeriodicBoundaryConditions_) {
1580 +            snap_->wrapVector(dr);
1581 +          }
1582 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq);
1583 +          if (dr.lengthSquare() < rlistsq) {
1584 +            neighborList.push_back(make_pair(j1, j2));
1585 +          }
1586 +        }
1587 +      }      
1588 + #else
1589 +      // include all groups here.
1590 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1591 +        // include self group interactions j2 == j1
1592 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1593 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1594 +          if (usePeriodicBoundaryConditions_) {
1595 +            snap_->wrapVector(dr);
1596 +          }
1597 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq );
1598 +          if (dr.lengthSquare() < rlistsq) {
1599 +            neighborList.push_back(make_pair(j1, j2));
1600 +          }
1601 +        }    
1602 +      }
1603 + #endif
1604      }
1605 <
1605 >      
1606      // save the local cutoff group positions for the check that is
1607      // done on each loop:
1608      saved_CG_positions_.clear();
1609      for (int i = 0; i < nGroups_; i++)
1610        saved_CG_positions_.push_back(snap_->cgData.position[i]);
813
814    return neighborList;
1611    }
1612   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines