ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1586 by gezelter, Tue Jun 21 06:34:35 2011 UTC vs.
trunk/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1896 by gezelter, Tue Jul 2 20:02:31 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
# Line 47 | Line 48 | namespace OpenMD {
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
54  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96      ff_ = info_->getForceField();
97      nLocal_ = snap_->getNumberOfAtoms();
98 <
98 >  
99      nGroups_ = info_->getNLocalCutoffGroups();
100      // gather the information for atomtype IDs (atids):
101      idents = info_->getIdentArray();
# Line 67 | Line 105 | namespace OpenMD {
105  
106      massFactors = info_->getMassFactors();
107  
108 <    PairList excludes = info_->getExcludedInteractions();
109 <    PairList oneTwo = info_->getOneTwoInteractions();
110 <    PairList oneThree = info_->getOneThreeInteractions();
111 <    PairList oneFour = info_->getOneFourInteractions();
112 <
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112 >    
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119   #ifdef IS_MPI
120  
121 <    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
122 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 <    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
128 <    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups_);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    nAtomsInRow_ = AtomCommIntRow->getSize();
137 <    nAtomsInCol_ = AtomCommIntColumn->getSize();
138 <    nGroupsInRow_ = cgCommIntRow->getSize();
139 <    nGroupsInCol_ = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147      atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
# Line 104 | Line 151 | namespace OpenMD {
151      cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153      cgColData.resize(nGroupsInCol_);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
155 <        
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161      identsRow.resize(nAtomsInRow_);
162      identsCol.resize(nAtomsInCol_);
163      
164 <    AtomCommIntRow->gather(idents, identsRow);
165 <    AtomCommIntColumn->gather(idents, identsCol);
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166      
167 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
168 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
169 <    
118 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
119 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 <    AtomCommRealRow->gather(massFactors, massFactorsRow);
172 <    AtomCommRealColumn->gather(massFactors, massFactorsCol);
171 >    for (int i = 0; i < nAtomsInRow_; i++)
172 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 >    for (int i = 0; i < nAtomsInCol_; i++)
174 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 +    pot_row.resize(nAtomsInRow_);
177 +    pot_col.resize(nAtomsInCol_);
178 +
179 +    expot_row.resize(nAtomsInRow_);
180 +    expot_col.resize(nAtomsInCol_);
181 +
182 +    AtomRowToGlobal.resize(nAtomsInRow_);
183 +    AtomColToGlobal.resize(nAtomsInCol_);
184 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186 +
187 +    cgRowToGlobal.resize(nGroupsInRow_);
188 +    cgColToGlobal.resize(nGroupsInCol_);
189 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 +
192 +    massFactorsRow.resize(nAtomsInRow_);
193 +    massFactorsCol.resize(nAtomsInCol_);
194 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 +
197      groupListRow_.clear();
198      groupListRow_.resize(nGroupsInRow_);
199      for (int i = 0; i < nGroupsInRow_; i++) {
# Line 143 | Line 216 | namespace OpenMD {
216        }      
217      }
218  
219 <    skipsForAtom.clear();
220 <    skipsForAtom.resize(nAtomsInRow_);
219 >    excludesForAtom.clear();
220 >    excludesForAtom.resize(nAtomsInRow_);
221      toposForAtom.clear();
222      toposForAtom.resize(nAtomsInRow_);
223      topoDist.clear();
# Line 155 | Line 228 | namespace OpenMD {
228        for (int j = 0; j < nAtomsInCol_; j++) {
229          int jglob = AtomColToGlobal[j];
230  
231 <        if (excludes.hasPair(iglob, jglob))
232 <          skipsForAtom[i].push_back(j);      
231 >        if (excludes->hasPair(iglob, jglob))
232 >          excludesForAtom[i].push_back(j);      
233          
234 <        if (oneTwo.hasPair(iglob, jglob)) {
234 >        if (oneTwo->hasPair(iglob, jglob)) {
235            toposForAtom[i].push_back(j);
236            topoDist[i].push_back(1);
237          } else {
238 <          if (oneThree.hasPair(iglob, jglob)) {
238 >          if (oneThree->hasPair(iglob, jglob)) {
239              toposForAtom[i].push_back(j);
240              topoDist[i].push_back(2);
241            } else {
242 <            if (oneFour.hasPair(iglob, jglob)) {
242 >            if (oneFour->hasPair(iglob, jglob)) {
243                toposForAtom[i].push_back(j);
244                topoDist[i].push_back(3);
245              }
246            }
174        }
175      }      
176    }
177
178 #endif
179
180    groupList_.clear();
181    groupList_.resize(nGroups_);
182    for (int i = 0; i < nGroups_; i++) {
183      int gid = cgLocalToGlobal[i];
184      for (int j = 0; j < nLocal_; j++) {
185        int aid = AtomLocalToGlobal[j];
186        if (globalGroupMembership[aid] == gid) {
187          groupList_[i].push_back(j);
247          }
248        }      
249      }
250  
251 <    skipsForAtom.clear();
252 <    skipsForAtom.resize(nLocal_);
251 > #else
252 >    excludesForAtom.clear();
253 >    excludesForAtom.resize(nLocal_);
254      toposForAtom.clear();
255      toposForAtom.resize(nLocal_);
256      topoDist.clear();
# Line 202 | Line 262 | namespace OpenMD {
262        for (int j = 0; j < nLocal_; j++) {
263          int jglob = AtomLocalToGlobal[j];
264  
265 <        if (excludes.hasPair(iglob, jglob))
266 <          skipsForAtom[i].push_back(j);              
265 >        if (excludes->hasPair(iglob, jglob))
266 >          excludesForAtom[i].push_back(j);              
267          
268 <        if (oneTwo.hasPair(iglob, jglob)) {
268 >        if (oneTwo->hasPair(iglob, jglob)) {
269            toposForAtom[i].push_back(j);
270            topoDist[i].push_back(1);
271          } else {
272 <          if (oneThree.hasPair(iglob, jglob)) {
272 >          if (oneThree->hasPair(iglob, jglob)) {
273              toposForAtom[i].push_back(j);
274              topoDist[i].push_back(2);
275            } else {
276 <            if (oneFour.hasPair(iglob, jglob)) {
276 >            if (oneFour->hasPair(iglob, jglob)) {
277                toposForAtom[i].push_back(j);
278                topoDist[i].push_back(3);
279              }
# Line 221 | Line 281 | namespace OpenMD {
281          }
282        }      
283      }
284 <    
284 > #endif
285 >
286 >    // allocate memory for the parallel objects
287 >    atypesLocal.resize(nLocal_);
288 >
289 >    for (int i = 0; i < nLocal_; i++)
290 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
291 >
292 >    groupList_.clear();
293 >    groupList_.resize(nGroups_);
294 >    for (int i = 0; i < nGroups_; i++) {
295 >      int gid = cgLocalToGlobal[i];
296 >      for (int j = 0; j < nLocal_; j++) {
297 >        int aid = AtomLocalToGlobal[j];
298 >        if (globalGroupMembership[aid] == gid) {
299 >          groupList_[i].push_back(j);
300 >        }
301 >      }      
302 >    }
303 >
304 >
305      createGtypeCutoffMap();
306 +
307    }
308    
309    void ForceMatrixDecomposition::createGtypeCutoffMap() {
310      
311 +    GrCut.clear();
312 +    GrCutSq.clear();
313 +    GrlistSq.clear();
314 +
315      RealType tol = 1e-6;
316 <    RealType rc;
316 >    largestRcut_ = 0.0;
317      int atid;
318      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
319 <    vector<RealType> atypeCutoff;
320 <    atypeCutoff.resize( atypes.size() );
319 >    
320 >    map<int, RealType> atypeCutoff;
321        
322      for (set<AtomType*>::iterator at = atypes.begin();
323           at != atypes.end(); ++at){
324        atid = (*at)->getIdent();
325 <
241 <      if (userChoseCutoff_)
325 >      if (userChoseCutoff_)
326          atypeCutoff[atid] = userCutoff_;
327        else
328          atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
329      }
330 <
330 >    
331      vector<RealType> gTypeCutoffs;
248
332      // first we do a single loop over the cutoff groups to find the
333      // largest cutoff for any atypes present in this group.
334   #ifdef IS_MPI
# Line 303 | Line 386 | namespace OpenMD {
386  
387      vector<RealType> groupCutoff(nGroups_, 0.0);
388      groupToGtype.resize(nGroups_);
306
389      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
308
390        groupCutoff[cg1] = 0.0;
391        vector<int> atomList = getAtomsInGroupRow(cg1);
311
392        for (vector<int>::iterator ia = atomList.begin();
393             ia != atomList.end(); ++ia) {            
394          int atom1 = (*ia);
395          atid = idents[atom1];
396 <        if (atypeCutoff[atid] > groupCutoff[cg1]) {
396 >        if (atypeCutoff[atid] > groupCutoff[cg1])
397            groupCutoff[cg1] = atypeCutoff[atid];
318        }
398        }
399 <
399 >      
400        bool gTypeFound = false;
401 <      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
401 >      for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
402          if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
403            groupToGtype[cg1] = gt;
404            gTypeFound = true;
405          }
406        }
407 <      if (!gTypeFound) {
407 >      if (!gTypeFound) {      
408          gTypeCutoffs.push_back( groupCutoff[cg1] );
409          groupToGtype[cg1] = gTypeCutoffs.size() - 1;
410        }      
# Line 334 | Line 413 | namespace OpenMD {
413  
414      // Now we find the maximum group cutoff value present in the simulation
415  
416 <    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
416 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
417 >                                     gTypeCutoffs.end());
418  
419   #ifdef IS_MPI
420 <    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
420 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
421 >                              MPI::MAX);
422   #endif
423      
424      RealType tradRcut = groupMax;
425  
426 <    for (int i = 0; i < gTypeCutoffs.size();  i++) {
427 <      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
426 >    GrCut.resize( gTypeCutoffs.size() );
427 >    GrCutSq.resize( gTypeCutoffs.size() );
428 >    GrlistSq.resize( gTypeCutoffs.size() );
429 >
430 >
431 >    for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) {
432 >      GrCut[i].resize( gTypeCutoffs.size() , 0.0);
433 >      GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 );
434 >      GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 );
435 >
436 >      for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) {      
437          RealType thisRcut;
438          switch(cutoffPolicy_) {
439          case TRADITIONAL:
# Line 365 | Line 455 | namespace OpenMD {
455            break;
456          }
457  
458 <        pair<int,int> key = make_pair(i,j);
369 <        gTypeCutoffMap[key].first = thisRcut;
370 <
458 >        GrCut[i][j] = thisRcut;
459          if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
460 +        GrCutSq[i][j] = thisRcut * thisRcut;
461 +        GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2);
462  
463 <        gTypeCutoffMap[key].second = thisRcut*thisRcut;
464 <        
465 <        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
376 <
463 >        // pair<int,int> key = make_pair(i,j);
464 >        // gTypeCutoffMap[key].first = thisRcut;
465 >        // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
466          // sanity check
467          
468          if (userChoseCutoff_) {
469 <          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
469 >          if (abs(GrCut[i][j] - userCutoff_) > 0.0001) {
470              sprintf(painCave.errMsg,
471                      "ForceMatrixDecomposition::createGtypeCutoffMap "
472                      "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
# Line 390 | Line 479 | namespace OpenMD {
479      }
480    }
481  
482 <
394 <  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
482 >  void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) {
483      int i, j;  
484   #ifdef IS_MPI
485      i = groupRowToGtype[cg1];
# Line 400 | Line 488 | namespace OpenMD {
488      i = groupToGtype[cg1];
489      j = groupToGtype[cg2];
490   #endif    
491 <    return gTypeCutoffMap[make_pair(i,j)];
491 >    rcut = GrCut[i][j];
492 >    rcutsq = GrCutSq[i][j];
493 >    rlistsq = GrlistSq[i][j];
494 >    return;
495 >    //return gTypeCutoffMap[make_pair(i,j)];
496    }
497  
498    int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
499 <    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
499 >    for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
500        if (toposForAtom[atom1][j] == atom2)
501          return topoDist[atom1][j];
502 <    }
502 >    }                                          
503      return 0;
504    }
505  
506    void ForceMatrixDecomposition::zeroWorkArrays() {
507      pairwisePot = 0.0;
508      embeddingPot = 0.0;
509 +    excludedPot = 0.0;
510 +    excludedSelfPot = 0.0;
511  
512   #ifdef IS_MPI
513      if (storageLayout_ & DataStorage::dslForce) {
# Line 432 | Line 526 | namespace OpenMD {
526      fill(pot_col.begin(), pot_col.end(),
527           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
528  
529 +    fill(expot_row.begin(), expot_row.end(),
530 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
531 +
532 +    fill(expot_col.begin(), expot_col.end(),
533 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
534 +
535      if (storageLayout_ & DataStorage::dslParticlePot) {    
536 <      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
537 <      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
536 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
537 >           0.0);
538 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
539 >           0.0);
540      }
541  
542      if (storageLayout_ & DataStorage::dslDensity) {      
# Line 443 | Line 545 | namespace OpenMD {
545      }
546  
547      if (storageLayout_ & DataStorage::dslFunctional) {  
548 <      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
549 <      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
548 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
549 >           0.0);
550 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
551 >           0.0);
552      }
553  
554      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
# Line 455 | Line 559 | namespace OpenMD {
559      }
560  
561      if (storageLayout_ & DataStorage::dslSkippedCharge) {      
562 <      fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0);
563 <      fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0);
562 >      fill(atomRowData.skippedCharge.begin(),
563 >           atomRowData.skippedCharge.end(), 0.0);
564 >      fill(atomColData.skippedCharge.begin(),
565 >           atomColData.skippedCharge.end(), 0.0);
566      }
567  
568 < #else
569 <    
568 >    if (storageLayout_ & DataStorage::dslFlucQForce) {      
569 >      fill(atomRowData.flucQFrc.begin(),
570 >           atomRowData.flucQFrc.end(), 0.0);
571 >      fill(atomColData.flucQFrc.begin(),
572 >           atomColData.flucQFrc.end(), 0.0);
573 >    }
574 >
575 >    if (storageLayout_ & DataStorage::dslElectricField) {    
576 >      fill(atomRowData.electricField.begin(),
577 >           atomRowData.electricField.end(), V3Zero);
578 >      fill(atomColData.electricField.begin(),
579 >           atomColData.electricField.end(), V3Zero);
580 >    }
581 >
582 > #endif
583 >    // even in parallel, we need to zero out the local arrays:
584 >
585      if (storageLayout_ & DataStorage::dslParticlePot) {      
586        fill(snap_->atomData.particlePot.begin(),
587             snap_->atomData.particlePot.end(), 0.0);
# Line 470 | Line 591 | namespace OpenMD {
591        fill(snap_->atomData.density.begin(),
592             snap_->atomData.density.end(), 0.0);
593      }
594 +
595      if (storageLayout_ & DataStorage::dslFunctional) {
596        fill(snap_->atomData.functional.begin(),
597             snap_->atomData.functional.end(), 0.0);
598      }
599 +
600      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
601        fill(snap_->atomData.functionalDerivative.begin(),
602             snap_->atomData.functionalDerivative.end(), 0.0);
603      }
604 +
605      if (storageLayout_ & DataStorage::dslSkippedCharge) {      
606        fill(snap_->atomData.skippedCharge.begin(),
607             snap_->atomData.skippedCharge.end(), 0.0);
608      }
609 < #endif
610 <    
609 >
610 >    if (storageLayout_ & DataStorage::dslElectricField) {      
611 >      fill(snap_->atomData.electricField.begin(),
612 >           snap_->atomData.electricField.end(), V3Zero);
613 >    }
614    }
615  
616  
# Line 493 | Line 620 | namespace OpenMD {
620   #ifdef IS_MPI
621      
622      // gather up the atomic positions
623 <    AtomCommVectorRow->gather(snap_->atomData.position,
623 >    AtomPlanVectorRow->gather(snap_->atomData.position,
624                                atomRowData.position);
625 <    AtomCommVectorColumn->gather(snap_->atomData.position,
625 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
626                                   atomColData.position);
627      
628      // gather up the cutoff group positions
629 <    cgCommVectorRow->gather(snap_->cgData.position,
629 >
630 >    cgPlanVectorRow->gather(snap_->cgData.position,
631                              cgRowData.position);
632 <    cgCommVectorColumn->gather(snap_->cgData.position,
632 >
633 >    cgPlanVectorColumn->gather(snap_->cgData.position,
634                                 cgColData.position);
635 +
636 +
637 +
638 +    if (needVelocities_) {
639 +      // gather up the atomic velocities
640 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
641 +                                   atomColData.velocity);
642 +      
643 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
644 +                                 cgColData.velocity);
645 +    }
646 +
647      
648      // if needed, gather the atomic rotation matrices
649      if (storageLayout_ & DataStorage::dslAmat) {
650 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
650 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
651                                  atomRowData.aMat);
652 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
652 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
653                                     atomColData.aMat);
654      }
655 <    
656 <    // if needed, gather the atomic eletrostatic frames
657 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
658 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
659 <                                atomRowData.electroFrame);
660 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
661 <                                   atomColData.electroFrame);
655 >
656 >    // if needed, gather the atomic eletrostatic information
657 >    if (storageLayout_ & DataStorage::dslDipole) {
658 >      AtomPlanVectorRow->gather(snap_->atomData.dipole,
659 >                                atomRowData.dipole);
660 >      AtomPlanVectorColumn->gather(snap_->atomData.dipole,
661 >                                   atomColData.dipole);
662      }
663 +
664 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
665 +      AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
666 +                                atomRowData.quadrupole);
667 +      AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
668 +                                   atomColData.quadrupole);
669 +    }
670 +        
671 +    // if needed, gather the atomic fluctuating charge values
672 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
673 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
674 +                              atomRowData.flucQPos);
675 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
676 +                                 atomColData.flucQPos);
677 +    }
678 +
679   #endif      
680    }
681    
# Line 532 | Line 689 | namespace OpenMD {
689      
690      if (storageLayout_ & DataStorage::dslDensity) {
691        
692 <      AtomCommRealRow->scatter(atomRowData.density,
692 >      AtomPlanRealRow->scatter(atomRowData.density,
693                                 snap_->atomData.density);
694        
695        int n = snap_->atomData.density.size();
696        vector<RealType> rho_tmp(n, 0.0);
697 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
697 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
698        for (int i = 0; i < n; i++)
699          snap_->atomData.density[i] += rho_tmp[i];
700      }
701 +
702 +    // this isn't necessary if we don't have polarizable atoms, but
703 +    // we'll leave it here for now.
704 +    if (storageLayout_ & DataStorage::dslElectricField) {
705 +      
706 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
707 +                                 snap_->atomData.electricField);
708 +      
709 +      int n = snap_->atomData.electricField.size();
710 +      vector<Vector3d> field_tmp(n, V3Zero);
711 +      AtomPlanVectorColumn->scatter(atomColData.electricField,
712 +                                    field_tmp);
713 +      for (int i = 0; i < n; i++)
714 +        snap_->atomData.electricField[i] += field_tmp[i];
715 +    }
716   #endif
717    }
718  
# Line 553 | Line 725 | namespace OpenMD {
725      storageLayout_ = sman_->getStorageLayout();
726   #ifdef IS_MPI
727      if (storageLayout_ & DataStorage::dslFunctional) {
728 <      AtomCommRealRow->gather(snap_->atomData.functional,
728 >      AtomPlanRealRow->gather(snap_->atomData.functional,
729                                atomRowData.functional);
730 <      AtomCommRealColumn->gather(snap_->atomData.functional,
730 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
731                                   atomColData.functional);
732      }
733      
734      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
735 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
735 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
736                                atomRowData.functionalDerivative);
737 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
737 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
738                                   atomColData.functionalDerivative);
739      }
740   #endif
# Line 576 | Line 748 | namespace OpenMD {
748      int n = snap_->atomData.force.size();
749      vector<Vector3d> frc_tmp(n, V3Zero);
750      
751 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
751 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
752      for (int i = 0; i < n; i++) {
753        snap_->atomData.force[i] += frc_tmp[i];
754        frc_tmp[i] = 0.0;
755      }
756      
757 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
758 <    for (int i = 0; i < n; i++)
757 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
758 >    for (int i = 0; i < n; i++) {
759        snap_->atomData.force[i] += frc_tmp[i];
760 <    
761 <    
760 >    }
761 >        
762      if (storageLayout_ & DataStorage::dslTorque) {
763  
764 <      int nt = snap_->atomData.force.size();
764 >      int nt = snap_->atomData.torque.size();
765        vector<Vector3d> trq_tmp(nt, V3Zero);
766  
767 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
768 <      for (int i = 0; i < n; i++) {
767 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
768 >      for (int i = 0; i < nt; i++) {
769          snap_->atomData.torque[i] += trq_tmp[i];
770          trq_tmp[i] = 0.0;
771        }
772        
773 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
774 <      for (int i = 0; i < n; i++)
773 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
774 >      for (int i = 0; i < nt; i++)
775          snap_->atomData.torque[i] += trq_tmp[i];
776      }
777 +
778 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
779 +
780 +      int ns = snap_->atomData.skippedCharge.size();
781 +      vector<RealType> skch_tmp(ns, 0.0);
782 +
783 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
784 +      for (int i = 0; i < ns; i++) {
785 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
786 +        skch_tmp[i] = 0.0;
787 +      }
788 +      
789 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
790 +      for (int i = 0; i < ns; i++)
791 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
792 +            
793 +    }
794      
795 +    if (storageLayout_ & DataStorage::dslFlucQForce) {
796 +
797 +      int nq = snap_->atomData.flucQFrc.size();
798 +      vector<RealType> fqfrc_tmp(nq, 0.0);
799 +
800 +      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
801 +      for (int i = 0; i < nq; i++) {
802 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
803 +        fqfrc_tmp[i] = 0.0;
804 +      }
805 +      
806 +      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
807 +      for (int i = 0; i < nq; i++)
808 +        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
809 +            
810 +    }
811 +
812 +    if (storageLayout_ & DataStorage::dslElectricField) {
813 +
814 +      int nef = snap_->atomData.electricField.size();
815 +      vector<Vector3d> efield_tmp(nef, V3Zero);
816 +
817 +      AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
818 +      for (int i = 0; i < nef; i++) {
819 +        snap_->atomData.electricField[i] += efield_tmp[i];
820 +        efield_tmp[i] = 0.0;
821 +      }
822 +      
823 +      AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
824 +      for (int i = 0; i < nef; i++)
825 +        snap_->atomData.electricField[i] += efield_tmp[i];
826 +    }
827 +
828 +
829      nLocal_ = snap_->getNumberOfAtoms();
830  
831      vector<potVec> pot_temp(nLocal_,
832                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
833 +    vector<potVec> expot_temp(nLocal_,
834 +                              Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
835  
836      // scatter/gather pot_row into the members of my column
837            
838 <    AtomCommPotRow->scatter(pot_row, pot_temp);
838 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
839 >    AtomPlanPotRow->scatter(expot_row, expot_temp);
840  
841 <    for (int ii = 0;  ii < pot_temp.size(); ii++ )
841 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
842        pairwisePot += pot_temp[ii];
843 <    
843 >
844 >    for (int ii = 0;  ii < expot_temp.size(); ii++ )
845 >      excludedPot += expot_temp[ii];
846 >        
847 >    if (storageLayout_ & DataStorage::dslParticlePot) {
848 >      // This is the pairwise contribution to the particle pot.  The
849 >      // embedding contribution is added in each of the low level
850 >      // non-bonded routines.  In single processor, this is done in
851 >      // unpackInteractionData, not in collectData.
852 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
853 >        for (int i = 0; i < nLocal_; i++) {
854 >          // factor of two is because the total potential terms are divided
855 >          // by 2 in parallel due to row/ column scatter      
856 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
857 >        }
858 >      }
859 >    }
860 >
861      fill(pot_temp.begin(), pot_temp.end(),
862           Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
863 +    fill(expot_temp.begin(), expot_temp.end(),
864 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
865        
866 <    AtomCommPotColumn->scatter(pot_col, pot_temp);    
866 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
867 >    AtomPlanPotColumn->scatter(expot_col, expot_temp);    
868      
869      for (int ii = 0;  ii < pot_temp.size(); ii++ )
870        pairwisePot += pot_temp[ii];    
871 +
872 +    for (int ii = 0;  ii < expot_temp.size(); ii++ )
873 +      excludedPot += expot_temp[ii];    
874 +
875 +    if (storageLayout_ & DataStorage::dslParticlePot) {
876 +      // This is the pairwise contribution to the particle pot.  The
877 +      // embedding contribution is added in each of the low level
878 +      // non-bonded routines.  In single processor, this is done in
879 +      // unpackInteractionData, not in collectData.
880 +      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
881 +        for (int i = 0; i < nLocal_; i++) {
882 +          // factor of two is because the total potential terms are divided
883 +          // by 2 in parallel due to row/ column scatter      
884 +          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
885 +        }
886 +      }
887 +    }
888 +    
889 +    if (storageLayout_ & DataStorage::dslParticlePot) {
890 +      int npp = snap_->atomData.particlePot.size();
891 +      vector<RealType> ppot_temp(npp, 0.0);
892 +
893 +      // This is the direct or embedding contribution to the particle
894 +      // pot.
895 +      
896 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
897 +      for (int i = 0; i < npp; i++) {
898 +        snap_->atomData.particlePot[i] += ppot_temp[i];
899 +      }
900 +
901 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
902 +      
903 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
904 +      for (int i = 0; i < npp; i++) {
905 +        snap_->atomData.particlePot[i] += ppot_temp[i];
906 +      }
907 +    }
908 +
909 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
910 +      RealType ploc1 = pairwisePot[ii];
911 +      RealType ploc2 = 0.0;
912 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
913 +      pairwisePot[ii] = ploc2;
914 +    }
915 +
916 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
917 +      RealType ploc1 = excludedPot[ii];
918 +      RealType ploc2 = 0.0;
919 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
920 +      excludedPot[ii] = ploc2;
921 +    }
922 +
923 +    // Here be dragons.
924 +    MPI::Intracomm col = colComm.getComm();
925 +
926 +    col.Allreduce(MPI::IN_PLACE,
927 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
928 +                  MPI::REALTYPE, MPI::SUM);
929 +
930 +
931   #endif
932  
933    }
934  
935 <  int ForceMatrixDecomposition::getNAtomsInRow() {  
935 >  /**
936 >   * Collects information obtained during the post-pair (and embedding
937 >   * functional) loops onto local data structures.
938 >   */
939 >  void ForceMatrixDecomposition::collectSelfData() {
940 >    snap_ = sman_->getCurrentSnapshot();
941 >    storageLayout_ = sman_->getStorageLayout();
942 >
943   #ifdef IS_MPI
944 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
945 +      RealType ploc1 = embeddingPot[ii];
946 +      RealType ploc2 = 0.0;
947 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
948 +      embeddingPot[ii] = ploc2;
949 +    }    
950 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
951 +      RealType ploc1 = excludedSelfPot[ii];
952 +      RealType ploc2 = 0.0;
953 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
954 +      excludedSelfPot[ii] = ploc2;
955 +    }    
956 + #endif
957 +    
958 +  }
959 +
960 +
961 +
962 +  int& ForceMatrixDecomposition::getNAtomsInRow() {  
963 + #ifdef IS_MPI
964      return nAtomsInRow_;
965   #else
966      return nLocal_;
# Line 637 | Line 970 | namespace OpenMD {
970    /**
971     * returns the list of atoms belonging to this group.  
972     */
973 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
973 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
974   #ifdef IS_MPI
975      return groupListRow_[cg1];
976   #else
# Line 645 | Line 978 | namespace OpenMD {
978   #endif
979    }
980  
981 <  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
981 >  vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
982   #ifdef IS_MPI
983      return groupListCol_[cg2];
984   #else
# Line 662 | Line 995 | namespace OpenMD {
995      d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
996   #endif
997      
998 <    snap_->wrapVector(d);
998 >    if (usePeriodicBoundaryConditions_) {
999 >      snap_->wrapVector(d);
1000 >    }
1001      return d;    
1002 +  }
1003 +
1004 +  Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
1005 + #ifdef IS_MPI
1006 +    return cgColData.velocity[cg2];
1007 + #else
1008 +    return snap_->cgData.velocity[cg2];
1009 + #endif
1010 +  }
1011 +
1012 +  Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
1013 + #ifdef IS_MPI
1014 +    return atomColData.velocity[atom2];
1015 + #else
1016 +    return snap_->atomData.velocity[atom2];
1017 + #endif
1018    }
1019  
1020  
# Line 676 | Line 1027 | namespace OpenMD {
1027   #else
1028      d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1029   #endif
1030 <
1031 <    snap_->wrapVector(d);
1030 >    if (usePeriodicBoundaryConditions_) {
1031 >      snap_->wrapVector(d);
1032 >    }
1033      return d;    
1034    }
1035    
# Line 689 | Line 1041 | namespace OpenMD {
1041   #else
1042      d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1043   #endif
1044 <    
1045 <    snap_->wrapVector(d);
1044 >    if (usePeriodicBoundaryConditions_) {
1045 >      snap_->wrapVector(d);
1046 >    }
1047      return d;    
1048    }
1049  
1050 <  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1050 >  RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1051   #ifdef IS_MPI
1052      return massFactorsRow[atom1];
1053   #else
# Line 702 | Line 1055 | namespace OpenMD {
1055   #endif
1056    }
1057  
1058 <  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1058 >  RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1059   #ifdef IS_MPI
1060      return massFactorsCol[atom2];
1061   #else
# Line 719 | Line 1072 | namespace OpenMD {
1072   #else
1073      d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1074   #endif
1075 <
1076 <    snap_->wrapVector(d);
1075 >    if (usePeriodicBoundaryConditions_) {
1076 >      snap_->wrapVector(d);
1077 >    }
1078      return d;    
1079    }
1080  
1081 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
1082 <    return skipsForAtom[atom1];
1081 >  vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1082 >    return excludesForAtom[atom1];
1083    }
1084  
1085    /**
1086 <   * There are a number of reasons to skip a pair or a
733 <   * particle. Mostly we do this to exclude atoms who are involved in
734 <   * short range interactions (bonds, bends, torsions), but we also
735 <   * need to exclude some overcounted interactions that result from
1086 >   * We need to exclude some overcounted interactions that result from
1087     * the parallel decomposition.
1088     */
1089 <  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
1089 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1090      int unique_id_1, unique_id_2;
1091 <
1091 >        
1092   #ifdef IS_MPI
1093      // in MPI, we have to look up the unique IDs for each atom
1094      unique_id_1 = AtomRowToGlobal[atom1];
1095      unique_id_2 = AtomColToGlobal[atom2];
1096 +    // group1 = cgRowToGlobal[cg1];
1097 +    // group2 = cgColToGlobal[cg2];
1098 + #else
1099 +    unique_id_1 = AtomLocalToGlobal[atom1];
1100 +    unique_id_2 = AtomLocalToGlobal[atom2];
1101 +    int group1 = cgLocalToGlobal[cg1];
1102 +    int group2 = cgLocalToGlobal[cg2];
1103 + #endif  
1104  
746    // this situation should only arise in MPI simulations
1105      if (unique_id_1 == unique_id_2) return true;
1106 <    
1106 >
1107 > #ifdef IS_MPI
1108      // this prevents us from doing the pair on multiple processors
1109      if (unique_id_1 < unique_id_2) {
1110        if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1111      } else {
1112 <      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1112 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1113      }
1114 < #else
1115 <    // in the normal loop, the atom numbers are unique
1116 <    unique_id_1 = atom1;
1117 <    unique_id_2 = atom2;
1114 > #endif    
1115 >
1116 > #ifndef IS_MPI
1117 >    if (group1 == group2) {
1118 >      if (unique_id_1 < unique_id_2) return true;
1119 >    }
1120   #endif
1121      
1122 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
1123 <         i != skipsForAtom[atom1].end(); ++i) {
1124 <      if ( (*i) == unique_id_2 ) return true;
1122 >    return false;
1123 >  }
1124 >
1125 >  /**
1126 >   * We need to handle the interactions for atoms who are involved in
1127 >   * the same rigid body as well as some short range interactions
1128 >   * (bonds, bends, torsions) differently from other interactions.
1129 >   * We'll still visit the pairwise routines, but with a flag that
1130 >   * tells those routines to exclude the pair from direct long range
1131 >   * interactions.  Some indirect interactions (notably reaction
1132 >   * field) must still be handled for these pairs.
1133 >   */
1134 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1135 >
1136 >    // excludesForAtom was constructed to use row/column indices in the MPI
1137 >    // version, and to use local IDs in the non-MPI version:
1138 >    
1139 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1140 >         i != excludesForAtom[atom1].end(); ++i) {
1141 >      if ( (*i) == atom2 ) return true;
1142      }
1143  
1144      return false;
# Line 785 | Line 1163 | namespace OpenMD {
1163  
1164      // filling interaction blocks with pointers
1165    void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1166 <                                                     int atom1, int atom2) {    
1166 >                                                     int atom1, int atom2) {
1167 >
1168 >    idat.excluded = excludeAtomPair(atom1, atom2);
1169 >  
1170   #ifdef IS_MPI
1171 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1172 +    idat.atid1 = identsRow[atom1];
1173 +    idat.atid2 = identsCol[atom2];
1174 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1175 +    //                         ff_->getAtomType(identsCol[atom2]) );
1176      
791    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
792                             ff_->getAtomType(identsCol[atom2]) );
793    
1177      if (storageLayout_ & DataStorage::dslAmat) {
1178        idat.A1 = &(atomRowData.aMat[atom1]);
1179        idat.A2 = &(atomColData.aMat[atom2]);
1180      }
1181      
799    if (storageLayout_ & DataStorage::dslElectroFrame) {
800      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
801      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
802    }
803
1182      if (storageLayout_ & DataStorage::dslTorque) {
1183        idat.t1 = &(atomRowData.torque[atom1]);
1184        idat.t2 = &(atomColData.torque[atom2]);
1185      }
1186  
1187 +    if (storageLayout_ & DataStorage::dslDipole) {
1188 +      idat.dipole1 = &(atomRowData.dipole[atom1]);
1189 +      idat.dipole2 = &(atomColData.dipole[atom2]);
1190 +    }
1191 +
1192 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1193 +      idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1194 +      idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1195 +    }
1196 +
1197      if (storageLayout_ & DataStorage::dslDensity) {
1198        idat.rho1 = &(atomRowData.density[atom1]);
1199        idat.rho2 = &(atomColData.density[atom2]);
# Line 826 | Line 1214 | namespace OpenMD {
1214        idat.particlePot2 = &(atomColData.particlePot[atom2]);
1215      }
1216  
1217 < #else
1217 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1218 >      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1219 >      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1220 >    }
1221  
1222 <    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1223 <                             ff_->getAtomType(idents[atom2]) );
1222 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1223 >      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1224 >      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1225 >    }
1226  
1227 + #else
1228 +    
1229 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1230 +    idat.atid1 = idents[atom1];
1231 +    idat.atid2 = idents[atom2];
1232 +
1233      if (storageLayout_ & DataStorage::dslAmat) {
1234        idat.A1 = &(snap_->atomData.aMat[atom1]);
1235        idat.A2 = &(snap_->atomData.aMat[atom2]);
1236      }
1237  
839    if (storageLayout_ & DataStorage::dslElectroFrame) {
840      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
841      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
842    }
843
1238      if (storageLayout_ & DataStorage::dslTorque) {
1239        idat.t1 = &(snap_->atomData.torque[atom1]);
1240        idat.t2 = &(snap_->atomData.torque[atom2]);
1241      }
1242  
1243 +    if (storageLayout_ & DataStorage::dslDipole) {
1244 +      idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1245 +      idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1246 +    }
1247 +
1248 +    if (storageLayout_ & DataStorage::dslQuadrupole) {
1249 +      idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1250 +      idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1251 +    }
1252 +
1253      if (storageLayout_ & DataStorage::dslDensity) {    
1254        idat.rho1 = &(snap_->atomData.density[atom1]);
1255        idat.rho2 = &(snap_->atomData.density[atom2]);
# Line 866 | Line 1270 | namespace OpenMD {
1270        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1271      }
1272  
1273 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1274 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1275 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1276 +    }
1277 +
1278 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1279 +      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1280 +      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1281 +    }
1282 +
1283   #endif
1284    }
1285  
1286    
1287    void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1288   #ifdef IS_MPI
1289 <    pot_row[atom1] += 0.5 *  *(idat.pot);
1290 <    pot_col[atom2] += 0.5 *  *(idat.pot);
1289 >    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1290 >    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1291 >    expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot);
1292 >    expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot);
1293  
1294      atomRowData.force[atom1] += *(idat.f1);
1295      atomColData.force[atom2] -= *(idat.f1);
1296 +
1297 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1298 +      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1299 +      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1300 +    }
1301 +
1302 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1303 +      atomRowData.electricField[atom1] += *(idat.eField1);
1304 +      atomColData.electricField[atom2] += *(idat.eField2);
1305 +    }
1306 +
1307   #else
1308      pairwisePot += *(idat.pot);
1309 +    excludedPot += *(idat.excludedPot);
1310  
1311      snap_->atomData.force[atom1] += *(idat.f1);
1312      snap_->atomData.force[atom2] -= *(idat.f1);
885 #endif
886    
887  }
1313  
1314 <
1315 <  void ForceMatrixDecomposition::fillSkipData(InteractionData &idat,
1316 <                                              int atom1, int atom2) {
1317 < #ifdef IS_MPI
1318 <    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1319 <                             ff_->getAtomType(identsCol[atom2]) );
1320 <
896 <    if (storageLayout_ & DataStorage::dslElectroFrame) {
897 <      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
898 <      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1314 >    if (idat.doParticlePot) {
1315 >      // This is the pairwise contribution to the particle pot.  The
1316 >      // embedding contribution is added in each of the low level
1317 >      // non-bonded routines.  In parallel, this calculation is done
1318 >      // in collectData, not in unpackInteractionData.
1319 >      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1320 >      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1321      }
1322 <
1323 <    if (storageLayout_ & DataStorage::dslTorque) {
1324 <      idat.t1 = &(atomRowData.torque[atom1]);
1325 <      idat.t2 = &(atomColData.torque[atom2]);
1322 >    
1323 >    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1324 >      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1325 >      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1326      }
1327  
1328 <    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1329 <      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1330 <      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1328 >    if (storageLayout_ & DataStorage::dslElectricField) {              
1329 >      snap_->atomData.electricField[atom1] += *(idat.eField1);
1330 >      snap_->atomData.electricField[atom2] += *(idat.eField2);
1331      }
910 #else
911    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
912                             ff_->getAtomType(idents[atom2]) );
1332  
914    if (storageLayout_ & DataStorage::dslElectroFrame) {
915      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
916      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
917    }
918
919    if (storageLayout_ & DataStorage::dslTorque) {
920      idat.t1 = &(snap_->atomData.torque[atom1]);
921      idat.t2 = &(snap_->atomData.torque[atom2]);
922    }
923
924    if (storageLayout_ & DataStorage::dslSkippedCharge) {
925      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
926      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
927    }
928 #endif    
929  }
930
931
932  void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) {    
933 #ifdef IS_MPI
934    pot_row[atom1] += 0.5 *  *(idat.pot);
935    pot_col[atom2] += 0.5 *  *(idat.pot);
936 #else
937    pairwisePot += *(idat.pot);  
1333   #endif
1334 <
1334 >    
1335    }
1336  
942
1337    /*
1338     * buildNeighborList
1339     *
1340     * first element of pair is row-indexed CutoffGroup
1341     * second element of pair is column-indexed CutoffGroup
1342     */
1343 <  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1344 <      
1345 <    vector<pair<int, int> > neighborList;
1343 >  void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) {
1344 >    
1345 >    neighborList.clear();
1346      groupCutoffs cuts;
1347 < #ifdef IS_MPI
954 <    cellListRow_.clear();
955 <    cellListCol_.clear();
956 < #else
957 <    cellList_.clear();
958 < #endif
1347 >    bool doAllPairs = false;
1348  
1349      RealType rList_ = (largestRcut_ + skinThickness_);
1350 <    RealType rl2 = rList_ * rList_;
1350 >    RealType rcut, rcutsq, rlistsq;
1351      Snapshot* snap_ = sman_->getCurrentSnapshot();
1352 <    Mat3x3d Hmat = snap_->getHmat();
1353 <    Vector3d Hx = Hmat.getColumn(0);
965 <    Vector3d Hy = Hmat.getColumn(1);
966 <    Vector3d Hz = Hmat.getColumn(2);
1352 >    Mat3x3d box;
1353 >    Mat3x3d invBox;
1354  
968    nCells_.x() = (int) ( Hx.length() )/ rList_;
969    nCells_.y() = (int) ( Hy.length() )/ rList_;
970    nCells_.z() = (int) ( Hz.length() )/ rList_;
971
972    Mat3x3d invHmat = snap_->getInvHmat();
1355      Vector3d rs, scaled, dr;
1356      Vector3i whichCell;
1357      int cellIndex;
976    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1358  
1359   #ifdef IS_MPI
1360 +    cellListRow_.clear();
1361 +    cellListCol_.clear();
1362 + #else
1363 +    cellList_.clear();
1364 + #endif
1365 +    
1366 +    if (!usePeriodicBoundaryConditions_) {
1367 +      box = snap_->getBoundingBox();
1368 +      invBox = snap_->getInvBoundingBox();
1369 +    } else {
1370 +      box = snap_->getHmat();
1371 +      invBox = snap_->getInvHmat();
1372 +    }
1373 +    
1374 +    Vector3d boxX = box.getColumn(0);
1375 +    Vector3d boxY = box.getColumn(1);
1376 +    Vector3d boxZ = box.getColumn(2);
1377 +    
1378 +    nCells_.x() = (int) ( boxX.length() )/ rList_;
1379 +    nCells_.y() = (int) ( boxY.length() )/ rList_;
1380 +    nCells_.z() = (int) ( boxZ.length() )/ rList_;
1381 +    
1382 +    // handle small boxes where the cell offsets can end up repeating cells
1383 +    
1384 +    if (nCells_.x() < 3) doAllPairs = true;
1385 +    if (nCells_.y() < 3) doAllPairs = true;
1386 +    if (nCells_.z() < 3) doAllPairs = true;
1387 +    
1388 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1389 +    
1390 + #ifdef IS_MPI
1391      cellListRow_.resize(nCtot);
1392      cellListCol_.resize(nCtot);
1393   #else
1394      cellList_.resize(nCtot);
1395   #endif
1396 <
1396 >    
1397 >    if (!doAllPairs) {
1398   #ifdef IS_MPI
1399 <    for (int i = 0; i < nGroupsInRow_; i++) {
1400 <      rs = cgRowData.position[i];
1401 <
1402 <      // scaled positions relative to the box vectors
1403 <      scaled = invHmat * rs;
1404 <
1405 <      // wrap the vector back into the unit box by subtracting integer box
1406 <      // numbers
1407 <      for (int j = 0; j < 3; j++) {
1408 <        scaled[j] -= roundMe(scaled[j]);
1409 <        scaled[j] += 0.5;
1399 >      
1400 >      for (int i = 0; i < nGroupsInRow_; i++) {
1401 >        rs = cgRowData.position[i];
1402 >        
1403 >        // scaled positions relative to the box vectors
1404 >        scaled = invBox * rs;
1405 >        
1406 >        // wrap the vector back into the unit box by subtracting integer box
1407 >        // numbers
1408 >        for (int j = 0; j < 3; j++) {
1409 >          scaled[j] -= roundMe(scaled[j]);
1410 >          scaled[j] += 0.5;
1411 >          // Handle the special case when an object is exactly on the
1412 >          // boundary (a scaled coordinate of 1.0 is the same as
1413 >          // scaled coordinate of 0.0)
1414 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1415 >        }
1416 >        
1417 >        // find xyz-indices of cell that cutoffGroup is in.
1418 >        whichCell.x() = nCells_.x() * scaled.x();
1419 >        whichCell.y() = nCells_.y() * scaled.y();
1420 >        whichCell.z() = nCells_.z() * scaled.z();
1421 >        
1422 >        // find single index of this cell:
1423 >        cellIndex = Vlinear(whichCell, nCells_);
1424 >        
1425 >        // add this cutoff group to the list of groups in this cell;
1426 >        cellListRow_[cellIndex].push_back(i);
1427        }
1428 <    
1429 <      // find xyz-indices of cell that cutoffGroup is in.
1430 <      whichCell.x() = nCells_.x() * scaled.x();
1431 <      whichCell.y() = nCells_.y() * scaled.y();
1432 <      whichCell.z() = nCells_.z() * scaled.z();
1433 <
1434 <      // find single index of this cell:
1435 <      cellIndex = Vlinear(whichCell, nCells_);
1436 <
1437 <      // add this cutoff group to the list of groups in this cell;
1438 <      cellListRow_[cellIndex].push_back(i);
1439 <    }
1440 <
1441 <    for (int i = 0; i < nGroupsInCol_; i++) {
1442 <      rs = cgColData.position[i];
1443 <
1444 <      // scaled positions relative to the box vectors
1445 <      scaled = invHmat * rs;
1446 <
1447 <      // wrap the vector back into the unit box by subtracting integer box
1448 <      // numbers
1449 <      for (int j = 0; j < 3; j++) {
1450 <        scaled[j] -= roundMe(scaled[j]);
1451 <        scaled[j] += 0.5;
1428 >      for (int i = 0; i < nGroupsInCol_; i++) {
1429 >        rs = cgColData.position[i];
1430 >        
1431 >        // scaled positions relative to the box vectors
1432 >        scaled = invBox * rs;
1433 >        
1434 >        // wrap the vector back into the unit box by subtracting integer box
1435 >        // numbers
1436 >        for (int j = 0; j < 3; j++) {
1437 >          scaled[j] -= roundMe(scaled[j]);
1438 >          scaled[j] += 0.5;
1439 >          // Handle the special case when an object is exactly on the
1440 >          // boundary (a scaled coordinate of 1.0 is the same as
1441 >          // scaled coordinate of 0.0)
1442 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1443 >        }
1444 >        
1445 >        // find xyz-indices of cell that cutoffGroup is in.
1446 >        whichCell.x() = nCells_.x() * scaled.x();
1447 >        whichCell.y() = nCells_.y() * scaled.y();
1448 >        whichCell.z() = nCells_.z() * scaled.z();
1449 >        
1450 >        // find single index of this cell:
1451 >        cellIndex = Vlinear(whichCell, nCells_);
1452 >        
1453 >        // add this cutoff group to the list of groups in this cell;
1454 >        cellListCol_[cellIndex].push_back(i);
1455        }
1456 <
1024 <      // find xyz-indices of cell that cutoffGroup is in.
1025 <      whichCell.x() = nCells_.x() * scaled.x();
1026 <      whichCell.y() = nCells_.y() * scaled.y();
1027 <      whichCell.z() = nCells_.z() * scaled.z();
1028 <
1029 <      // find single index of this cell:
1030 <      cellIndex = Vlinear(whichCell, nCells_);
1031 <
1032 <      // add this cutoff group to the list of groups in this cell;
1033 <      cellListCol_[cellIndex].push_back(i);
1034 <    }
1456 >      
1457   #else
1458 <    for (int i = 0; i < nGroups_; i++) {
1459 <      rs = snap_->cgData.position[i];
1460 <
1461 <      // scaled positions relative to the box vectors
1462 <      scaled = invHmat * rs;
1463 <
1464 <      // wrap the vector back into the unit box by subtracting integer box
1465 <      // numbers
1466 <      for (int j = 0; j < 3; j++) {
1467 <        scaled[j] -= roundMe(scaled[j]);
1468 <        scaled[j] += 0.5;
1458 >      for (int i = 0; i < nGroups_; i++) {
1459 >        rs = snap_->cgData.position[i];
1460 >        
1461 >        // scaled positions relative to the box vectors
1462 >        scaled = invBox * rs;
1463 >        
1464 >        // wrap the vector back into the unit box by subtracting integer box
1465 >        // numbers
1466 >        for (int j = 0; j < 3; j++) {
1467 >          scaled[j] -= roundMe(scaled[j]);
1468 >          scaled[j] += 0.5;
1469 >          // Handle the special case when an object is exactly on the
1470 >          // boundary (a scaled coordinate of 1.0 is the same as
1471 >          // scaled coordinate of 0.0)
1472 >          if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1473 >        }
1474 >        
1475 >        // find xyz-indices of cell that cutoffGroup is in.
1476 >        whichCell.x() = nCells_.x() * scaled.x();
1477 >        whichCell.y() = nCells_.y() * scaled.y();
1478 >        whichCell.z() = nCells_.z() * scaled.z();
1479 >        
1480 >        // find single index of this cell:
1481 >        cellIndex = Vlinear(whichCell, nCells_);
1482 >        
1483 >        // add this cutoff group to the list of groups in this cell;
1484 >        cellList_[cellIndex].push_back(i);
1485        }
1486  
1049      // find xyz-indices of cell that cutoffGroup is in.
1050      whichCell.x() = nCells_.x() * scaled.x();
1051      whichCell.y() = nCells_.y() * scaled.y();
1052      whichCell.z() = nCells_.z() * scaled.z();
1053
1054      // find single index of this cell:
1055      cellIndex = Vlinear(whichCell, nCells_);      
1056
1057      // add this cutoff group to the list of groups in this cell;
1058      cellList_[cellIndex].push_back(i);
1059    }
1487   #endif
1488  
1489 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1490 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1491 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1492 <          Vector3i m1v(m1x, m1y, m1z);
1493 <          int m1 = Vlinear(m1v, nCells_);
1067 <
1068 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1069 <               os != cellOffsets_.end(); ++os) {
1489 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1490 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1491 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1492 >            Vector3i m1v(m1x, m1y, m1z);
1493 >            int m1 = Vlinear(m1v, nCells_);
1494              
1495 <            Vector3i m2v = m1v + (*os);
1496 <            
1497 <            if (m2v.x() >= nCells_.x()) {
1498 <              m2v.x() = 0;          
1499 <            } else if (m2v.x() < 0) {
1076 <              m2v.x() = nCells_.x() - 1;
1077 <            }
1078 <            
1079 <            if (m2v.y() >= nCells_.y()) {
1080 <              m2v.y() = 0;          
1081 <            } else if (m2v.y() < 0) {
1082 <              m2v.y() = nCells_.y() - 1;
1083 <            }
1084 <            
1085 <            if (m2v.z() >= nCells_.z()) {
1086 <              m2v.z() = 0;          
1087 <            } else if (m2v.z() < 0) {
1088 <              m2v.z() = nCells_.z() - 1;
1089 <            }
1090 <            
1091 <            int m2 = Vlinear (m2v, nCells_);
1495 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1496 >                 os != cellOffsets_.end(); ++os) {
1497 >              
1498 >              Vector3i m2v = m1v + (*os);
1499 >            
1500  
1501 < #ifdef IS_MPI
1502 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1503 <                 j1 != cellListRow_[m1].end(); ++j1) {
1504 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1505 <                   j2 != cellListCol_[m2].end(); ++j2) {
1506 <                              
1507 <                // Always do this if we're in different cells or if
1508 <                // we're in the same cell and the global index of the
1509 <                // j2 cutoff group is less than the j1 cutoff group
1501 >              if (m2v.x() >= nCells_.x()) {
1502 >                m2v.x() = 0;          
1503 >              } else if (m2v.x() < 0) {
1504 >                m2v.x() = nCells_.x() - 1;
1505 >              }
1506 >              
1507 >              if (m2v.y() >= nCells_.y()) {
1508 >                m2v.y() = 0;          
1509 >              } else if (m2v.y() < 0) {
1510 >                m2v.y() = nCells_.y() - 1;
1511 >              }
1512 >              
1513 >              if (m2v.z() >= nCells_.z()) {
1514 >                m2v.z() = 0;          
1515 >              } else if (m2v.z() < 0) {
1516 >                m2v.z() = nCells_.z() - 1;
1517 >              }
1518  
1519 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1519 >              int m2 = Vlinear (m2v, nCells_);
1520 >              
1521 > #ifdef IS_MPI
1522 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1523 >                   j1 != cellListRow_[m1].end(); ++j1) {
1524 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1525 >                     j2 != cellListCol_[m2].end(); ++j2) {
1526 >                  
1527 >                  // In parallel, we need to visit *all* pairs of row
1528 >                  // & column indicies and will divide labor in the
1529 >                  // force evaluation later.
1530                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1531 <                  snap_->wrapVector(dr);
1532 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1107 <                  if (dr.lengthSquare() < cuts.third) {
1108 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1531 >                  if (usePeriodicBoundaryConditions_) {
1532 >                    snap_->wrapVector(dr);
1533                    }
1534 +                  getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1535 +                  if (dr.lengthSquare() < rlistsq) {
1536 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1537 +                  }                  
1538                  }
1539                }
1112            }
1540   #else
1541 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1542 +                   j1 != cellList_[m1].end(); ++j1) {
1543 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1544 +                     j2 != cellList_[m2].end(); ++j2) {
1545 +    
1546 +                  // Always do this if we're in different cells or if
1547 +                  // we're in the same cell and the global index of
1548 +                  // the j2 cutoff group is greater than or equal to
1549 +                  // the j1 cutoff group.  Note that Rappaport's code
1550 +                  // has a "less than" conditional here, but that
1551 +                  // deals with atom-by-atom computation.  OpenMD
1552 +                  // allows atoms within a single cutoff group to
1553 +                  // interact with each other.
1554  
1555 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1116 <                 j1 != cellList_[m1].end(); ++j1) {
1117 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1118 <                   j2 != cellList_[m2].end(); ++j2) {
1555 >                  if (m2 != m1 || (*j2) >= (*j1) ) {
1556  
1557 <                // Always do this if we're in different cells or if
1558 <                // we're in the same cell and the global index of the
1559 <                // j2 cutoff group is less than the j1 cutoff group
1560 <
1561 <                if (m2 != m1 || (*j2) < (*j1)) {
1562 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1563 <                  snap_->wrapVector(dr);
1564 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1128 <                  if (dr.lengthSquare() < cuts.third) {
1129 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1557 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1558 >                    if (usePeriodicBoundaryConditions_) {
1559 >                      snap_->wrapVector(dr);
1560 >                    }
1561 >                    getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq );
1562 >                    if (dr.lengthSquare() < rlistsq) {
1563 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1564 >                    }
1565                    }
1566                  }
1567                }
1133            }
1568   #endif
1569 +            }
1570            }
1571          }
1572        }
1573 +    } else {
1574 +      // branch to do all cutoff group pairs
1575 + #ifdef IS_MPI
1576 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1577 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1578 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1579 +          if (usePeriodicBoundaryConditions_) {
1580 +            snap_->wrapVector(dr);
1581 +          }
1582 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq);
1583 +          if (dr.lengthSquare() < rlistsq) {
1584 +            neighborList.push_back(make_pair(j1, j2));
1585 +          }
1586 +        }
1587 +      }      
1588 + #else
1589 +      // include all groups here.
1590 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1591 +        // include self group interactions j2 == j1
1592 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1593 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1594 +          if (usePeriodicBoundaryConditions_) {
1595 +            snap_->wrapVector(dr);
1596 +          }
1597 +          getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq );
1598 +          if (dr.lengthSquare() < rlistsq) {
1599 +            neighborList.push_back(make_pair(j1, j2));
1600 +          }
1601 +        }    
1602 +      }
1603 + #endif
1604      }
1605 <    
1605 >      
1606      // save the local cutoff group positions for the check that is
1607      // done on each loop:
1608      saved_CG_positions_.clear();
1609      for (int i = 0; i < nGroups_; i++)
1610        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1145  
1146    return neighborList;
1611    }
1612   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines