35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
48 |
|
using namespace std; |
49 |
|
namespace OpenMD { |
50 |
|
|
51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
+ |
|
53 |
+ |
// In a parallel computation, row and colum scans must visit all |
54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
+ |
// are used when the processor can see all pairs) |
56 |
+ |
#ifdef IS_MPI |
57 |
+ |
cellOffsets_.clear(); |
58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
+ |
#endif |
86 |
+ |
} |
87 |
+ |
|
88 |
+ |
|
89 |
|
/** |
90 |
|
* distributeInitialData is essentially a copy of the older fortran |
91 |
|
* SimulationSetup |
92 |
|
*/ |
54 |
– |
|
93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
|
snap_ = sman_->getCurrentSnapshot(); |
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
99 |
< |
|
98 |
> |
|
99 |
> |
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
< |
identsLocal = info_->getIdentArray(); |
101 |
> |
idents = info_->getIdentArray(); |
102 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
103 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
104 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
– |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 |
– |
PairList excludes = info_->getExcludedInteractions(); |
69 |
– |
PairList oneTwo = info_->getOneTwoInteractions(); |
70 |
– |
PairList oneThree = info_->getOneThreeInteractions(); |
71 |
– |
PairList oneFour = info_->getOneFourInteractions(); |
105 |
|
|
106 |
+ |
massFactors = info_->getMassFactors(); |
107 |
+ |
|
108 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
109 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
+ |
|
113 |
+ |
if (needVelocities_) |
114 |
+ |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
+ |
DataStorage::dslVelocity); |
116 |
+ |
else |
117 |
+ |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
+ |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
77 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
78 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
79 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
121 |
> |
MPI::Intracomm row = rowComm.getComm(); |
122 |
> |
MPI::Intracomm col = colComm.getComm(); |
123 |
|
|
124 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
128 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
124 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 |
|
|
130 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 |
|
|
136 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
139 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 |
|
|
141 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 |
+ |
|
146 |
|
// Modify the data storage objects with the correct layouts and sizes: |
147 |
|
atomRowData.resize(nAtomsInRow_); |
148 |
|
atomRowData.setStorageLayout(storageLayout_); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
156 |
< |
identsRow.reserve(nAtomsInRow_); |
157 |
< |
identsCol.reserve(nAtomsInCol_); |
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
> |
identsRow.resize(nAtomsInRow_); |
162 |
> |
identsCol.resize(nAtomsInCol_); |
163 |
|
|
164 |
< |
AtomCommIntRow->gather(identsLocal, identsRow); |
165 |
< |
AtomCommIntColumn->gather(identsLocal, identsCol); |
164 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
165 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
166 |
|
|
167 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
168 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
169 |
< |
|
116 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
117 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
167 |
> |
// allocate memory for the parallel objects |
168 |
> |
atypesRow.resize(nAtomsInRow_); |
169 |
> |
atypesCol.resize(nAtomsInCol_); |
170 |
|
|
171 |
< |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
172 |
< |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
171 |
> |
for (int i = 0; i < nAtomsInRow_; i++) |
172 |
> |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 |
> |
for (int i = 0; i < nAtomsInCol_; i++) |
174 |
> |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 |
|
|
176 |
+ |
pot_row.resize(nAtomsInRow_); |
177 |
+ |
pot_col.resize(nAtomsInCol_); |
178 |
+ |
|
179 |
+ |
expot_row.resize(nAtomsInRow_); |
180 |
+ |
expot_col.resize(nAtomsInCol_); |
181 |
+ |
|
182 |
+ |
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
+ |
AtomColToGlobal.resize(nAtomsInCol_); |
184 |
+ |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 |
+ |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 |
+ |
|
187 |
+ |
cgRowToGlobal.resize(nGroupsInRow_); |
188 |
+ |
cgColToGlobal.resize(nGroupsInCol_); |
189 |
+ |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 |
+ |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 |
+ |
|
192 |
+ |
massFactorsRow.resize(nAtomsInRow_); |
193 |
+ |
massFactorsCol.resize(nAtomsInCol_); |
194 |
+ |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 |
+ |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 |
+ |
|
197 |
|
groupListRow_.clear(); |
198 |
< |
groupListRow_.reserve(nGroupsInRow_); |
198 |
> |
groupListRow_.resize(nGroupsInRow_); |
199 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
200 |
|
int gid = cgRowToGlobal[i]; |
201 |
|
for (int j = 0; j < nAtomsInRow_; j++) { |
206 |
|
} |
207 |
|
|
208 |
|
groupListCol_.clear(); |
209 |
< |
groupListCol_.reserve(nGroupsInCol_); |
209 |
> |
groupListCol_.resize(nGroupsInCol_); |
210 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
211 |
|
int gid = cgColToGlobal[i]; |
212 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
216 |
|
} |
217 |
|
} |
218 |
|
|
219 |
< |
skipsForRowAtom.clear(); |
220 |
< |
skipsForRowAtom.reserve(nAtomsInRow_); |
219 |
> |
excludesForAtom.clear(); |
220 |
> |
excludesForAtom.resize(nAtomsInRow_); |
221 |
> |
toposForAtom.clear(); |
222 |
> |
toposForAtom.resize(nAtomsInRow_); |
223 |
> |
topoDist.clear(); |
224 |
> |
topoDist.resize(nAtomsInRow_); |
225 |
|
for (int i = 0; i < nAtomsInRow_; i++) { |
226 |
|
int iglob = AtomRowToGlobal[i]; |
227 |
+ |
|
228 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
229 |
< |
int jglob = AtomColToGlobal[j]; |
230 |
< |
if (excludes.hasPair(iglob, jglob)) |
231 |
< |
skipsForRowAtom[i].push_back(j); |
229 |
> |
int jglob = AtomColToGlobal[j]; |
230 |
> |
|
231 |
> |
if (excludes->hasPair(iglob, jglob)) |
232 |
> |
excludesForAtom[i].push_back(j); |
233 |
> |
|
234 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
235 |
> |
toposForAtom[i].push_back(j); |
236 |
> |
topoDist[i].push_back(1); |
237 |
> |
} else { |
238 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
239 |
> |
toposForAtom[i].push_back(j); |
240 |
> |
topoDist[i].push_back(2); |
241 |
> |
} else { |
242 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
243 |
> |
toposForAtom[i].push_back(j); |
244 |
> |
topoDist[i].push_back(3); |
245 |
> |
} |
246 |
> |
} |
247 |
> |
} |
248 |
|
} |
249 |
|
} |
250 |
|
|
251 |
< |
toposForRowAtom.clear(); |
252 |
< |
toposForRowAtom.reserve(nAtomsInRow_); |
253 |
< |
for (int i = 0; i < nAtomsInRow_; i++) { |
254 |
< |
int iglob = AtomRowToGlobal[i]; |
255 |
< |
int nTopos = 0; |
256 |
< |
for (int j = 0; j < nAtomsInCol_; j++) { |
257 |
< |
int jglob = AtomColToGlobal[j]; |
258 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
259 |
< |
toposForRowAtom[i].push_back(j); |
260 |
< |
topoDistRow[i][nTopos] = 1; |
261 |
< |
nTopos++; |
251 |
> |
#else |
252 |
> |
excludesForAtom.clear(); |
253 |
> |
excludesForAtom.resize(nLocal_); |
254 |
> |
toposForAtom.clear(); |
255 |
> |
toposForAtom.resize(nLocal_); |
256 |
> |
topoDist.clear(); |
257 |
> |
topoDist.resize(nLocal_); |
258 |
> |
|
259 |
> |
for (int i = 0; i < nLocal_; i++) { |
260 |
> |
int iglob = AtomLocalToGlobal[i]; |
261 |
> |
|
262 |
> |
for (int j = 0; j < nLocal_; j++) { |
263 |
> |
int jglob = AtomLocalToGlobal[j]; |
264 |
> |
|
265 |
> |
if (excludes->hasPair(iglob, jglob)) |
266 |
> |
excludesForAtom[i].push_back(j); |
267 |
> |
|
268 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
269 |
> |
toposForAtom[i].push_back(j); |
270 |
> |
topoDist[i].push_back(1); |
271 |
> |
} else { |
272 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
273 |
> |
toposForAtom[i].push_back(j); |
274 |
> |
topoDist[i].push_back(2); |
275 |
> |
} else { |
276 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
277 |
> |
toposForAtom[i].push_back(j); |
278 |
> |
topoDist[i].push_back(3); |
279 |
> |
} |
280 |
> |
} |
281 |
|
} |
167 |
– |
if (oneThree.hasPair(iglob, jglob)) { |
168 |
– |
toposForRowAtom[i].push_back(j); |
169 |
– |
topoDistRow[i][nTopos] = 2; |
170 |
– |
nTopos++; |
171 |
– |
} |
172 |
– |
if (oneFour.hasPair(iglob, jglob)) { |
173 |
– |
toposForRowAtom[i].push_back(j); |
174 |
– |
topoDistRow[i][nTopos] = 3; |
175 |
– |
nTopos++; |
176 |
– |
} |
282 |
|
} |
283 |
|
} |
179 |
– |
|
284 |
|
#endif |
285 |
|
|
286 |
+ |
// allocate memory for the parallel objects |
287 |
+ |
atypesLocal.resize(nLocal_); |
288 |
+ |
|
289 |
+ |
for (int i = 0; i < nLocal_; i++) |
290 |
+ |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 |
+ |
|
292 |
|
groupList_.clear(); |
293 |
< |
groupList_.reserve(nGroups_); |
293 |
> |
groupList_.resize(nGroups_); |
294 |
|
for (int i = 0; i < nGroups_; i++) { |
295 |
|
int gid = cgLocalToGlobal[i]; |
296 |
|
for (int j = 0; j < nLocal_; j++) { |
297 |
|
int aid = AtomLocalToGlobal[j]; |
298 |
< |
if (globalGroupMembership[aid] == gid) |
298 |
> |
if (globalGroupMembership[aid] == gid) { |
299 |
|
groupList_[i].push_back(j); |
300 |
+ |
} |
301 |
|
} |
302 |
|
} |
303 |
|
|
193 |
– |
skipsForLocalAtom.clear(); |
194 |
– |
skipsForLocalAtom.reserve(nLocal_); |
304 |
|
|
305 |
< |
for (int i = 0; i < nLocal_; i++) { |
197 |
< |
int iglob = AtomLocalToGlobal[i]; |
198 |
< |
for (int j = 0; j < nLocal_; j++) { |
199 |
< |
int jglob = AtomLocalToGlobal[j]; |
200 |
< |
if (excludes.hasPair(iglob, jglob)) |
201 |
< |
skipsForLocalAtom[i].push_back(j); |
202 |
< |
} |
203 |
< |
} |
305 |
> |
createGtypeCutoffMap(); |
306 |
|
|
205 |
– |
toposForLocalAtom.clear(); |
206 |
– |
toposForLocalAtom.reserve(nLocal_); |
207 |
– |
for (int i = 0; i < nLocal_; i++) { |
208 |
– |
int iglob = AtomLocalToGlobal[i]; |
209 |
– |
int nTopos = 0; |
210 |
– |
for (int j = 0; j < nLocal_; j++) { |
211 |
– |
int jglob = AtomLocalToGlobal[j]; |
212 |
– |
if (oneTwo.hasPair(iglob, jglob)) { |
213 |
– |
toposForLocalAtom[i].push_back(j); |
214 |
– |
topoDistLocal[i][nTopos] = 1; |
215 |
– |
nTopos++; |
216 |
– |
} |
217 |
– |
if (oneThree.hasPair(iglob, jglob)) { |
218 |
– |
toposForLocalAtom[i].push_back(j); |
219 |
– |
topoDistLocal[i][nTopos] = 2; |
220 |
– |
nTopos++; |
221 |
– |
} |
222 |
– |
if (oneFour.hasPair(iglob, jglob)) { |
223 |
– |
toposForLocalAtom[i].push_back(j); |
224 |
– |
topoDistLocal[i][nTopos] = 3; |
225 |
– |
nTopos++; |
226 |
– |
} |
227 |
– |
} |
228 |
– |
} |
229 |
– |
|
307 |
|
} |
308 |
|
|
309 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
310 |
+ |
|
311 |
+ |
GrCut.clear(); |
312 |
+ |
GrCutSq.clear(); |
313 |
+ |
GrlistSq.clear(); |
314 |
|
|
315 |
|
RealType tol = 1e-6; |
316 |
< |
RealType rc; |
316 |
> |
largestRcut_ = 0.0; |
317 |
|
int atid; |
318 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
319 |
< |
vector<RealType> atypeCutoff; |
320 |
< |
atypeCutoff.reserve( atypes.size() ); |
321 |
< |
|
322 |
< |
for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){ |
323 |
< |
rc = interactionMan_->getSuggestedCutoffRadius(*at); |
319 |
> |
|
320 |
> |
map<int, RealType> atypeCutoff; |
321 |
> |
|
322 |
> |
for (set<AtomType*>::iterator at = atypes.begin(); |
323 |
> |
at != atypes.end(); ++at){ |
324 |
|
atid = (*at)->getIdent(); |
325 |
< |
atypeCutoff[atid] = rc; |
325 |
> |
if (userChoseCutoff_) |
326 |
> |
atypeCutoff[atid] = userCutoff_; |
327 |
> |
else |
328 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
329 |
|
} |
330 |
< |
|
330 |
> |
|
331 |
|
vector<RealType> gTypeCutoffs; |
248 |
– |
|
332 |
|
// first we do a single loop over the cutoff groups to find the |
333 |
|
// largest cutoff for any atypes present in this group. |
334 |
|
#ifdef IS_MPI |
335 |
|
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
336 |
+ |
groupRowToGtype.resize(nGroupsInRow_); |
337 |
|
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
338 |
|
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
339 |
|
for (vector<int>::iterator ia = atomListRow.begin(); |
359 |
|
|
360 |
|
} |
361 |
|
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
362 |
+ |
groupColToGtype.resize(nGroupsInCol_); |
363 |
|
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
364 |
|
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
365 |
|
for (vector<int>::iterator jb = atomListCol.begin(); |
383 |
|
} |
384 |
|
} |
385 |
|
#else |
386 |
+ |
|
387 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
388 |
+ |
groupToGtype.resize(nGroups_); |
389 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
390 |
|
groupCutoff[cg1] = 0.0; |
391 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
392 |
|
for (vector<int>::iterator ia = atomList.begin(); |
393 |
|
ia != atomList.end(); ++ia) { |
394 |
|
int atom1 = (*ia); |
395 |
< |
atid = identsLocal[atom1]; |
396 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
395 |
> |
atid = idents[atom1]; |
396 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
397 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
311 |
– |
} |
398 |
|
} |
399 |
< |
|
399 |
> |
|
400 |
|
bool gTypeFound = false; |
401 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
401 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
402 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
403 |
|
groupToGtype[cg1] = gt; |
404 |
|
gTypeFound = true; |
405 |
|
} |
406 |
|
} |
407 |
< |
if (!gTypeFound) { |
407 |
> |
if (!gTypeFound) { |
408 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
409 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
410 |
|
} |
413 |
|
|
414 |
|
// Now we find the maximum group cutoff value present in the simulation |
415 |
|
|
416 |
< |
vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
417 |
< |
RealType groupMax = *groupMaxLoc; |
416 |
> |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
417 |
> |
gTypeCutoffs.end()); |
418 |
|
|
419 |
|
#ifdef IS_MPI |
420 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
420 |
> |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
421 |
> |
MPI::MAX); |
422 |
|
#endif |
423 |
|
|
424 |
|
RealType tradRcut = groupMax; |
425 |
|
|
426 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
427 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
428 |
< |
|
426 |
> |
GrCut.resize( gTypeCutoffs.size() ); |
427 |
> |
GrCutSq.resize( gTypeCutoffs.size() ); |
428 |
> |
GrlistSq.resize( gTypeCutoffs.size() ); |
429 |
> |
|
430 |
> |
|
431 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
432 |
> |
GrCut[i].resize( gTypeCutoffs.size() , 0.0); |
433 |
> |
GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
434 |
> |
GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
435 |
> |
|
436 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
437 |
|
RealType thisRcut; |
438 |
|
switch(cutoffPolicy_) { |
439 |
|
case TRADITIONAL: |
440 |
|
thisRcut = tradRcut; |
441 |
+ |
break; |
442 |
|
case MIX: |
443 |
|
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
444 |
+ |
break; |
445 |
|
case MAX: |
446 |
|
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
447 |
+ |
break; |
448 |
|
default: |
449 |
|
sprintf(painCave.errMsg, |
450 |
|
"ForceMatrixDecomposition::createGtypeCutoffMap " |
451 |
|
"hit an unknown cutoff policy!\n"); |
452 |
|
painCave.severity = OPENMD_ERROR; |
453 |
|
painCave.isFatal = 1; |
454 |
< |
simError(); |
454 |
> |
simError(); |
455 |
> |
break; |
456 |
|
} |
457 |
|
|
458 |
< |
pair<int,int> key = make_pair(i,j); |
360 |
< |
gTypeCutoffMap[key].first = thisRcut; |
361 |
< |
|
458 |
> |
GrCut[i][j] = thisRcut; |
459 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
460 |
+ |
GrCutSq[i][j] = thisRcut * thisRcut; |
461 |
+ |
GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); |
462 |
|
|
463 |
< |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
464 |
< |
|
465 |
< |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
367 |
< |
|
463 |
> |
// pair<int,int> key = make_pair(i,j); |
464 |
> |
// gTypeCutoffMap[key].first = thisRcut; |
465 |
> |
// gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
466 |
|
// sanity check |
467 |
|
|
468 |
|
if (userChoseCutoff_) { |
469 |
< |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
469 |
> |
if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { |
470 |
|
sprintf(painCave.errMsg, |
471 |
|
"ForceMatrixDecomposition::createGtypeCutoffMap " |
472 |
< |
"user-specified rCut does not match computed group Cutoff\n"); |
472 |
> |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
473 |
|
painCave.severity = OPENMD_ERROR; |
474 |
|
painCave.isFatal = 1; |
475 |
|
simError(); |
479 |
|
} |
480 |
|
} |
481 |
|
|
482 |
< |
|
483 |
< |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
386 |
< |
int i, j; |
387 |
< |
|
482 |
> |
void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { |
483 |
> |
int i, j; |
484 |
|
#ifdef IS_MPI |
485 |
|
i = groupRowToGtype[cg1]; |
486 |
|
j = groupColToGtype[cg2]; |
487 |
|
#else |
488 |
|
i = groupToGtype[cg1]; |
489 |
|
j = groupToGtype[cg2]; |
490 |
< |
#endif |
491 |
< |
|
492 |
< |
return gTypeCutoffMap[make_pair(i,j)]; |
490 |
> |
#endif |
491 |
> |
rcut = GrCut[i][j]; |
492 |
> |
rcutsq = GrCutSq[i][j]; |
493 |
> |
rlistsq = GrlistSq[i][j]; |
494 |
> |
return; |
495 |
> |
//return gTypeCutoffMap[make_pair(i,j)]; |
496 |
|
} |
497 |
|
|
498 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
499 |
+ |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
500 |
+ |
if (toposForAtom[atom1][j] == atom2) |
501 |
+ |
return topoDist[atom1][j]; |
502 |
+ |
} |
503 |
+ |
return 0; |
504 |
+ |
} |
505 |
|
|
506 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
507 |
+ |
pairwisePot = 0.0; |
508 |
+ |
embeddingPot = 0.0; |
509 |
+ |
excludedPot = 0.0; |
510 |
+ |
excludedSelfPot = 0.0; |
511 |
|
|
402 |
– |
for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
403 |
– |
longRangePot_[j] = 0.0; |
404 |
– |
} |
405 |
– |
|
512 |
|
#ifdef IS_MPI |
513 |
|
if (storageLayout_ & DataStorage::dslForce) { |
514 |
|
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
524 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
525 |
|
|
526 |
|
fill(pot_col.begin(), pot_col.end(), |
527 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
528 |
+ |
|
529 |
+ |
fill(expot_row.begin(), expot_row.end(), |
530 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
422 |
– |
|
423 |
– |
pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
531 |
|
|
532 |
+ |
fill(expot_col.begin(), expot_col.end(), |
533 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
534 |
+ |
|
535 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
536 |
< |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
537 |
< |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
536 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
537 |
> |
0.0); |
538 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
539 |
> |
0.0); |
540 |
|
} |
541 |
|
|
542 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
545 |
|
} |
546 |
|
|
547 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
548 |
< |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
549 |
< |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
548 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
549 |
> |
0.0); |
550 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
551 |
> |
0.0); |
552 |
|
} |
553 |
|
|
554 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
558 |
|
atomColData.functionalDerivative.end(), 0.0); |
559 |
|
} |
560 |
|
|
561 |
< |
#else |
562 |
< |
|
561 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
562 |
> |
fill(atomRowData.skippedCharge.begin(), |
563 |
> |
atomRowData.skippedCharge.end(), 0.0); |
564 |
> |
fill(atomColData.skippedCharge.begin(), |
565 |
> |
atomColData.skippedCharge.end(), 0.0); |
566 |
> |
} |
567 |
> |
|
568 |
> |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
569 |
> |
fill(atomRowData.flucQFrc.begin(), |
570 |
> |
atomRowData.flucQFrc.end(), 0.0); |
571 |
> |
fill(atomColData.flucQFrc.begin(), |
572 |
> |
atomColData.flucQFrc.end(), 0.0); |
573 |
> |
} |
574 |
> |
|
575 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
576 |
> |
fill(atomRowData.electricField.begin(), |
577 |
> |
atomRowData.electricField.end(), V3Zero); |
578 |
> |
fill(atomColData.electricField.begin(), |
579 |
> |
atomColData.electricField.end(), V3Zero); |
580 |
> |
} |
581 |
> |
|
582 |
> |
#endif |
583 |
> |
// even in parallel, we need to zero out the local arrays: |
584 |
> |
|
585 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
586 |
|
fill(snap_->atomData.particlePot.begin(), |
587 |
|
snap_->atomData.particlePot.end(), 0.0); |
591 |
|
fill(snap_->atomData.density.begin(), |
592 |
|
snap_->atomData.density.end(), 0.0); |
593 |
|
} |
594 |
+ |
|
595 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
596 |
|
fill(snap_->atomData.functional.begin(), |
597 |
|
snap_->atomData.functional.end(), 0.0); |
598 |
|
} |
599 |
+ |
|
600 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
601 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
602 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
603 |
|
} |
604 |
< |
#endif |
605 |
< |
|
604 |
> |
|
605 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
606 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
607 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
608 |
> |
} |
609 |
> |
|
610 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
611 |
> |
fill(snap_->atomData.electricField.begin(), |
612 |
> |
snap_->atomData.electricField.end(), V3Zero); |
613 |
> |
} |
614 |
|
} |
615 |
|
|
616 |
|
|
620 |
|
#ifdef IS_MPI |
621 |
|
|
622 |
|
// gather up the atomic positions |
623 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
623 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
624 |
|
atomRowData.position); |
625 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
625 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
626 |
|
atomColData.position); |
627 |
|
|
628 |
|
// gather up the cutoff group positions |
629 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
629 |
> |
|
630 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
631 |
|
cgRowData.position); |
632 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
632 |
> |
|
633 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
634 |
|
cgColData.position); |
635 |
+ |
|
636 |
+ |
|
637 |
+ |
|
638 |
+ |
if (needVelocities_) { |
639 |
+ |
// gather up the atomic velocities |
640 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
641 |
+ |
atomColData.velocity); |
642 |
+ |
|
643 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
644 |
+ |
cgColData.velocity); |
645 |
+ |
} |
646 |
+ |
|
647 |
|
|
648 |
|
// if needed, gather the atomic rotation matrices |
649 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
650 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
650 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
651 |
|
atomRowData.aMat); |
652 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
652 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
653 |
|
atomColData.aMat); |
654 |
|
} |
655 |
< |
|
656 |
< |
// if needed, gather the atomic eletrostatic frames |
657 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
658 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
659 |
< |
atomRowData.electroFrame); |
660 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
661 |
< |
atomColData.electroFrame); |
655 |
> |
|
656 |
> |
// if needed, gather the atomic eletrostatic information |
657 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
658 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
659 |
> |
atomRowData.dipole); |
660 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
661 |
> |
atomColData.dipole); |
662 |
|
} |
663 |
+ |
|
664 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
665 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
666 |
+ |
atomRowData.quadrupole); |
667 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
668 |
+ |
atomColData.quadrupole); |
669 |
+ |
} |
670 |
+ |
|
671 |
+ |
// if needed, gather the atomic fluctuating charge values |
672 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
673 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
674 |
+ |
atomRowData.flucQPos); |
675 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
676 |
+ |
atomColData.flucQPos); |
677 |
+ |
} |
678 |
+ |
|
679 |
|
#endif |
680 |
|
} |
681 |
|
|
689 |
|
|
690 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
691 |
|
|
692 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
692 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
693 |
|
snap_->atomData.density); |
694 |
|
|
695 |
|
int n = snap_->atomData.density.size(); |
696 |
|
vector<RealType> rho_tmp(n, 0.0); |
697 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
697 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
698 |
|
for (int i = 0; i < n; i++) |
699 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
700 |
|
} |
701 |
+ |
|
702 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
703 |
+ |
// we'll leave it here for now. |
704 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
705 |
+ |
|
706 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
707 |
+ |
snap_->atomData.electricField); |
708 |
+ |
|
709 |
+ |
int n = snap_->atomData.electricField.size(); |
710 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
711 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
712 |
+ |
field_tmp); |
713 |
+ |
for (int i = 0; i < n; i++) |
714 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
715 |
+ |
} |
716 |
|
#endif |
717 |
|
} |
718 |
|
|
725 |
|
storageLayout_ = sman_->getStorageLayout(); |
726 |
|
#ifdef IS_MPI |
727 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
728 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
728 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
729 |
|
atomRowData.functional); |
730 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
730 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
731 |
|
atomColData.functional); |
732 |
|
} |
733 |
|
|
734 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
735 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
735 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
736 |
|
atomRowData.functionalDerivative); |
737 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
737 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
738 |
|
atomColData.functionalDerivative); |
739 |
|
} |
740 |
|
#endif |
748 |
|
int n = snap_->atomData.force.size(); |
749 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
750 |
|
|
751 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
751 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
752 |
|
for (int i = 0; i < n; i++) { |
753 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
754 |
|
frc_tmp[i] = 0.0; |
755 |
|
} |
756 |
|
|
757 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
758 |
< |
for (int i = 0; i < n; i++) |
757 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
758 |
> |
for (int i = 0; i < n; i++) { |
759 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
760 |
< |
|
761 |
< |
|
760 |
> |
} |
761 |
> |
|
762 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
763 |
|
|
764 |
< |
int nt = snap_->atomData.force.size(); |
764 |
> |
int nt = snap_->atomData.torque.size(); |
765 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
766 |
|
|
767 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
768 |
< |
for (int i = 0; i < n; i++) { |
767 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
768 |
> |
for (int i = 0; i < nt; i++) { |
769 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
770 |
|
trq_tmp[i] = 0.0; |
771 |
|
} |
772 |
|
|
773 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
774 |
< |
for (int i = 0; i < n; i++) |
773 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
774 |
> |
for (int i = 0; i < nt; i++) |
775 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
776 |
|
} |
777 |
+ |
|
778 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
779 |
+ |
|
780 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
781 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
782 |
+ |
|
783 |
+ |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
784 |
+ |
for (int i = 0; i < ns; i++) { |
785 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
786 |
+ |
skch_tmp[i] = 0.0; |
787 |
+ |
} |
788 |
+ |
|
789 |
+ |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
790 |
+ |
for (int i = 0; i < ns; i++) |
791 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
792 |
+ |
|
793 |
+ |
} |
794 |
|
|
795 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
796 |
+ |
|
797 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
798 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
799 |
+ |
|
800 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
801 |
+ |
for (int i = 0; i < nq; i++) { |
802 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
803 |
+ |
fqfrc_tmp[i] = 0.0; |
804 |
+ |
} |
805 |
+ |
|
806 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
807 |
+ |
for (int i = 0; i < nq; i++) |
808 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
809 |
+ |
|
810 |
+ |
} |
811 |
+ |
|
812 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
813 |
+ |
|
814 |
+ |
int nef = snap_->atomData.electricField.size(); |
815 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
816 |
+ |
|
817 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
818 |
+ |
for (int i = 0; i < nef; i++) { |
819 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
820 |
+ |
efield_tmp[i] = 0.0; |
821 |
+ |
} |
822 |
+ |
|
823 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
824 |
+ |
for (int i = 0; i < nef; i++) |
825 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
826 |
+ |
} |
827 |
+ |
|
828 |
+ |
|
829 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
830 |
|
|
831 |
|
vector<potVec> pot_temp(nLocal_, |
832 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
833 |
+ |
vector<potVec> expot_temp(nLocal_, |
834 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
835 |
|
|
836 |
|
// scatter/gather pot_row into the members of my column |
837 |
|
|
838 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
838 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
839 |
> |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
840 |
|
|
841 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
842 |
< |
pot_local += pot_temp[ii]; |
843 |
< |
|
841 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
842 |
> |
pairwisePot += pot_temp[ii]; |
843 |
> |
|
844 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
845 |
> |
excludedPot += expot_temp[ii]; |
846 |
> |
|
847 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
848 |
> |
// This is the pairwise contribution to the particle pot. The |
849 |
> |
// embedding contribution is added in each of the low level |
850 |
> |
// non-bonded routines. In single processor, this is done in |
851 |
> |
// unpackInteractionData, not in collectData. |
852 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
853 |
> |
for (int i = 0; i < nLocal_; i++) { |
854 |
> |
// factor of two is because the total potential terms are divided |
855 |
> |
// by 2 in parallel due to row/ column scatter |
856 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
857 |
> |
} |
858 |
> |
} |
859 |
> |
} |
860 |
> |
|
861 |
|
fill(pot_temp.begin(), pot_temp.end(), |
862 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
863 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
864 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
865 |
|
|
866 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
866 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
867 |
> |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
868 |
|
|
869 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
870 |
< |
pot_local += pot_temp[ii]; |
870 |
> |
pairwisePot += pot_temp[ii]; |
871 |
> |
|
872 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
873 |
> |
excludedPot += expot_temp[ii]; |
874 |
> |
|
875 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
876 |
> |
// This is the pairwise contribution to the particle pot. The |
877 |
> |
// embedding contribution is added in each of the low level |
878 |
> |
// non-bonded routines. In single processor, this is done in |
879 |
> |
// unpackInteractionData, not in collectData. |
880 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
881 |
> |
for (int i = 0; i < nLocal_; i++) { |
882 |
> |
// factor of two is because the total potential terms are divided |
883 |
> |
// by 2 in parallel due to row/ column scatter |
884 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
885 |
> |
} |
886 |
> |
} |
887 |
> |
} |
888 |
|
|
889 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
890 |
+ |
int npp = snap_->atomData.particlePot.size(); |
891 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
892 |
+ |
|
893 |
+ |
// This is the direct or embedding contribution to the particle |
894 |
+ |
// pot. |
895 |
+ |
|
896 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
897 |
+ |
for (int i = 0; i < npp; i++) { |
898 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
899 |
+ |
} |
900 |
+ |
|
901 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
902 |
+ |
|
903 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
904 |
+ |
for (int i = 0; i < npp; i++) { |
905 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
906 |
+ |
} |
907 |
+ |
} |
908 |
+ |
|
909 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
910 |
+ |
RealType ploc1 = pairwisePot[ii]; |
911 |
+ |
RealType ploc2 = 0.0; |
912 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
913 |
+ |
pairwisePot[ii] = ploc2; |
914 |
+ |
} |
915 |
+ |
|
916 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
917 |
+ |
RealType ploc1 = excludedPot[ii]; |
918 |
+ |
RealType ploc2 = 0.0; |
919 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
920 |
+ |
excludedPot[ii] = ploc2; |
921 |
+ |
} |
922 |
+ |
|
923 |
+ |
// Here be dragons. |
924 |
+ |
MPI::Intracomm col = colComm.getComm(); |
925 |
+ |
|
926 |
+ |
col.Allreduce(MPI::IN_PLACE, |
927 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
928 |
+ |
MPI::REALTYPE, MPI::SUM); |
929 |
+ |
|
930 |
+ |
|
931 |
|
#endif |
932 |
+ |
|
933 |
|
} |
934 |
|
|
935 |
< |
int ForceMatrixDecomposition::getNAtomsInRow() { |
935 |
> |
/** |
936 |
> |
* Collects information obtained during the post-pair (and embedding |
937 |
> |
* functional) loops onto local data structures. |
938 |
> |
*/ |
939 |
> |
void ForceMatrixDecomposition::collectSelfData() { |
940 |
> |
snap_ = sman_->getCurrentSnapshot(); |
941 |
> |
storageLayout_ = sman_->getStorageLayout(); |
942 |
> |
|
943 |
|
#ifdef IS_MPI |
944 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
945 |
+ |
RealType ploc1 = embeddingPot[ii]; |
946 |
+ |
RealType ploc2 = 0.0; |
947 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
948 |
+ |
embeddingPot[ii] = ploc2; |
949 |
+ |
} |
950 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
951 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
952 |
+ |
RealType ploc2 = 0.0; |
953 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
954 |
+ |
excludedSelfPot[ii] = ploc2; |
955 |
+ |
} |
956 |
+ |
#endif |
957 |
+ |
|
958 |
+ |
} |
959 |
+ |
|
960 |
+ |
|
961 |
+ |
|
962 |
+ |
int& ForceMatrixDecomposition::getNAtomsInRow() { |
963 |
+ |
#ifdef IS_MPI |
964 |
|
return nAtomsInRow_; |
965 |
|
#else |
966 |
|
return nLocal_; |
970 |
|
/** |
971 |
|
* returns the list of atoms belonging to this group. |
972 |
|
*/ |
973 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
973 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
974 |
|
#ifdef IS_MPI |
975 |
|
return groupListRow_[cg1]; |
976 |
|
#else |
978 |
|
#endif |
979 |
|
} |
980 |
|
|
981 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
981 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
982 |
|
#ifdef IS_MPI |
983 |
|
return groupListCol_[cg2]; |
984 |
|
#else |
995 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
996 |
|
#endif |
997 |
|
|
998 |
< |
snap_->wrapVector(d); |
998 |
> |
if (usePeriodicBoundaryConditions_) { |
999 |
> |
snap_->wrapVector(d); |
1000 |
> |
} |
1001 |
|
return d; |
1002 |
|
} |
1003 |
|
|
1004 |
+ |
Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
1005 |
+ |
#ifdef IS_MPI |
1006 |
+ |
return cgColData.velocity[cg2]; |
1007 |
+ |
#else |
1008 |
+ |
return snap_->cgData.velocity[cg2]; |
1009 |
+ |
#endif |
1010 |
+ |
} |
1011 |
|
|
1012 |
+ |
Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
1013 |
+ |
#ifdef IS_MPI |
1014 |
+ |
return atomColData.velocity[atom2]; |
1015 |
+ |
#else |
1016 |
+ |
return snap_->atomData.velocity[atom2]; |
1017 |
+ |
#endif |
1018 |
+ |
} |
1019 |
+ |
|
1020 |
+ |
|
1021 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
1022 |
|
|
1023 |
|
Vector3d d; |
1027 |
|
#else |
1028 |
|
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
1029 |
|
#endif |
1030 |
< |
|
1031 |
< |
snap_->wrapVector(d); |
1030 |
> |
if (usePeriodicBoundaryConditions_) { |
1031 |
> |
snap_->wrapVector(d); |
1032 |
> |
} |
1033 |
|
return d; |
1034 |
|
} |
1035 |
|
|
1041 |
|
#else |
1042 |
|
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
1043 |
|
#endif |
1044 |
< |
|
1045 |
< |
snap_->wrapVector(d); |
1044 |
> |
if (usePeriodicBoundaryConditions_) { |
1045 |
> |
snap_->wrapVector(d); |
1046 |
> |
} |
1047 |
|
return d; |
1048 |
|
} |
1049 |
|
|
1050 |
< |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1050 |
> |
RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1051 |
|
#ifdef IS_MPI |
1052 |
|
return massFactorsRow[atom1]; |
1053 |
|
#else |
1054 |
< |
return massFactorsLocal[atom1]; |
1054 |
> |
return massFactors[atom1]; |
1055 |
|
#endif |
1056 |
|
} |
1057 |
|
|
1058 |
< |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1058 |
> |
RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1059 |
|
#ifdef IS_MPI |
1060 |
|
return massFactorsCol[atom2]; |
1061 |
|
#else |
1062 |
< |
return massFactorsLocal[atom2]; |
1062 |
> |
return massFactors[atom2]; |
1063 |
|
#endif |
1064 |
|
|
1065 |
|
} |
1072 |
|
#else |
1073 |
|
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
1074 |
|
#endif |
1075 |
< |
|
1076 |
< |
snap_->wrapVector(d); |
1075 |
> |
if (usePeriodicBoundaryConditions_) { |
1076 |
> |
snap_->wrapVector(d); |
1077 |
> |
} |
1078 |
|
return d; |
1079 |
|
} |
1080 |
|
|
1081 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
1082 |
< |
#ifdef IS_MPI |
710 |
< |
return skipsForRowAtom[atom1]; |
711 |
< |
#else |
712 |
< |
return skipsForLocalAtom[atom1]; |
713 |
< |
#endif |
1081 |
> |
vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1082 |
> |
return excludesForAtom[atom1]; |
1083 |
|
} |
1084 |
|
|
1085 |
|
/** |
1086 |
< |
* There are a number of reasons to skip a pair or a |
718 |
< |
* particle. Mostly we do this to exclude atoms who are involved in |
719 |
< |
* short range interactions (bonds, bends, torsions), but we also |
720 |
< |
* need to exclude some overcounted interactions that result from |
1086 |
> |
* We need to exclude some overcounted interactions that result from |
1087 |
|
* the parallel decomposition. |
1088 |
|
*/ |
1089 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1089 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1090 |
|
int unique_id_1, unique_id_2; |
1091 |
< |
|
1091 |
> |
|
1092 |
|
#ifdef IS_MPI |
1093 |
|
// in MPI, we have to look up the unique IDs for each atom |
1094 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1095 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1096 |
+ |
// group1 = cgRowToGlobal[cg1]; |
1097 |
+ |
// group2 = cgColToGlobal[cg2]; |
1098 |
+ |
#else |
1099 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
1100 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
1101 |
+ |
int group1 = cgLocalToGlobal[cg1]; |
1102 |
+ |
int group2 = cgLocalToGlobal[cg2]; |
1103 |
+ |
#endif |
1104 |
|
|
731 |
– |
// this situation should only arise in MPI simulations |
1105 |
|
if (unique_id_1 == unique_id_2) return true; |
1106 |
< |
|
1106 |
> |
|
1107 |
> |
#ifdef IS_MPI |
1108 |
|
// this prevents us from doing the pair on multiple processors |
1109 |
|
if (unique_id_1 < unique_id_2) { |
1110 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1111 |
|
} else { |
1112 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1112 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1113 |
|
} |
1114 |
< |
#else |
1115 |
< |
// in the normal loop, the atom numbers are unique |
1116 |
< |
unique_id_1 = atom1; |
1117 |
< |
unique_id_2 = atom2; |
1114 |
> |
#endif |
1115 |
> |
|
1116 |
> |
#ifndef IS_MPI |
1117 |
> |
if (group1 == group2) { |
1118 |
> |
if (unique_id_1 < unique_id_2) return true; |
1119 |
> |
} |
1120 |
|
#endif |
1121 |
|
|
1122 |
< |
#ifdef IS_MPI |
747 |
< |
for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
748 |
< |
i != skipsForRowAtom[atom1].end(); ++i) { |
749 |
< |
if ( (*i) == unique_id_2 ) return true; |
750 |
< |
} |
751 |
< |
#else |
752 |
< |
for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
753 |
< |
i != skipsForLocalAtom[atom1].end(); ++i) { |
754 |
< |
if ( (*i) == unique_id_2 ) return true; |
755 |
< |
} |
756 |
< |
#endif |
1122 |
> |
return false; |
1123 |
|
} |
1124 |
|
|
1125 |
< |
int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
1125 |
> |
/** |
1126 |
> |
* We need to handle the interactions for atoms who are involved in |
1127 |
> |
* the same rigid body as well as some short range interactions |
1128 |
> |
* (bonds, bends, torsions) differently from other interactions. |
1129 |
> |
* We'll still visit the pairwise routines, but with a flag that |
1130 |
> |
* tells those routines to exclude the pair from direct long range |
1131 |
> |
* interactions. Some indirect interactions (notably reaction |
1132 |
> |
* field) must still be handled for these pairs. |
1133 |
> |
*/ |
1134 |
> |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1135 |
> |
|
1136 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
1137 |
> |
// version, and to use local IDs in the non-MPI version: |
1138 |
|
|
1139 |
< |
#ifdef IS_MPI |
1140 |
< |
for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
1141 |
< |
if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
1139 |
> |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1140 |
> |
i != excludesForAtom[atom1].end(); ++i) { |
1141 |
> |
if ( (*i) == atom2 ) return true; |
1142 |
|
} |
765 |
– |
#else |
766 |
– |
for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
767 |
– |
if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
768 |
– |
} |
769 |
– |
#endif |
1143 |
|
|
1144 |
< |
// zero is default for unconnected (i.e. normal) pair interactions |
772 |
< |
return 0; |
1144 |
> |
return false; |
1145 |
|
} |
1146 |
|
|
1147 |
+ |
|
1148 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
1149 |
|
#ifdef IS_MPI |
1150 |
|
atomRowData.force[atom1] += fg; |
1162 |
|
} |
1163 |
|
|
1164 |
|
// filling interaction blocks with pointers |
1165 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
1166 |
< |
InteractionData idat; |
1165 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1166 |
> |
int atom1, int atom2) { |
1167 |
|
|
1168 |
+ |
idat.excluded = excludeAtomPair(atom1, atom2); |
1169 |
+ |
|
1170 |
|
#ifdef IS_MPI |
1171 |
+ |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1172 |
+ |
idat.atid1 = identsRow[atom1]; |
1173 |
+ |
idat.atid2 = identsCol[atom2]; |
1174 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1175 |
+ |
// ff_->getAtomType(identsCol[atom2]) ); |
1176 |
|
|
797 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
798 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
799 |
– |
|
800 |
– |
|
1177 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1178 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
1179 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
1180 |
|
} |
1181 |
|
|
806 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
807 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
808 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
809 |
– |
} |
810 |
– |
|
1182 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1183 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
1184 |
|
idat.t2 = &(atomColData.torque[atom2]); |
1185 |
+ |
} |
1186 |
+ |
|
1187 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
1188 |
+ |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
1189 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
1190 |
|
} |
1191 |
|
|
1192 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1193 |
+ |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1194 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1195 |
+ |
} |
1196 |
+ |
|
1197 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
1198 |
|
idat.rho1 = &(atomRowData.density[atom1]); |
1199 |
|
idat.rho2 = &(atomColData.density[atom2]); |
1214 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1215 |
|
} |
1216 |
|
|
1217 |
< |
#else |
1217 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1218 |
> |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1219 |
> |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1220 |
> |
} |
1221 |
|
|
1222 |
< |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
1223 |
< |
ff_->getAtomType(identsLocal[atom2]) ); |
1222 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1223 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1224 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1225 |
> |
} |
1226 |
|
|
1227 |
+ |
#else |
1228 |
+ |
|
1229 |
+ |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1230 |
+ |
idat.atid1 = idents[atom1]; |
1231 |
+ |
idat.atid2 = idents[atom2]; |
1232 |
+ |
|
1233 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1234 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1235 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1236 |
|
} |
1237 |
|
|
846 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
847 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
848 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
849 |
– |
} |
850 |
– |
|
1238 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
1239 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
1240 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
1241 |
|
} |
1242 |
|
|
1243 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
1243 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
1244 |
> |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1245 |
> |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1246 |
> |
} |
1247 |
> |
|
1248 |
> |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1249 |
> |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1250 |
> |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1251 |
> |
} |
1252 |
> |
|
1253 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
1254 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
1255 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
1256 |
|
} |
1270 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1271 |
|
} |
1272 |
|
|
1273 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1274 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1275 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1276 |
+ |
} |
1277 |
+ |
|
1278 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1279 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1280 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1281 |
+ |
} |
1282 |
+ |
|
1283 |
|
#endif |
877 |
– |
return idat; |
1284 |
|
} |
1285 |
|
|
1286 |
|
|
1287 |
< |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
1287 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1288 |
|
#ifdef IS_MPI |
1289 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1290 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1289 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1290 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1291 |
> |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1292 |
> |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1293 |
|
|
1294 |
|
atomRowData.force[atom1] += *(idat.f1); |
1295 |
|
atomColData.force[atom2] -= *(idat.f1); |
888 |
– |
#else |
889 |
– |
longRangePot_ += *(idat.pot); |
890 |
– |
|
891 |
– |
snap_->atomData.force[atom1] += *(idat.f1); |
892 |
– |
snap_->atomData.force[atom2] -= *(idat.f1); |
893 |
– |
#endif |
1296 |
|
|
1297 |
< |
} |
1297 |
> |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1298 |
> |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1299 |
> |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1300 |
> |
} |
1301 |
|
|
1302 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1303 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1304 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1305 |
+ |
} |
1306 |
|
|
1307 |
< |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
1307 |
> |
#else |
1308 |
> |
pairwisePot += *(idat.pot); |
1309 |
> |
excludedPot += *(idat.excludedPot); |
1310 |
|
|
1311 |
< |
InteractionData idat; |
1312 |
< |
#ifdef IS_MPI |
902 |
< |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
903 |
< |
ff_->getAtomType(identsCol[atom2]) ); |
1311 |
> |
snap_->atomData.force[atom1] += *(idat.f1); |
1312 |
> |
snap_->atomData.force[atom2] -= *(idat.f1); |
1313 |
|
|
1314 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1315 |
< |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1316 |
< |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1314 |
> |
if (idat.doParticlePot) { |
1315 |
> |
// This is the pairwise contribution to the particle pot. The |
1316 |
> |
// embedding contribution is added in each of the low level |
1317 |
> |
// non-bonded routines. In parallel, this calculation is done |
1318 |
> |
// in collectData, not in unpackInteractionData. |
1319 |
> |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1320 |
> |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1321 |
|
} |
1322 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
1323 |
< |
idat.t1 = &(atomRowData.torque[atom1]); |
1324 |
< |
idat.t2 = &(atomColData.torque[atom2]); |
1322 |
> |
|
1323 |
> |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1324 |
> |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1325 |
> |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1326 |
|
} |
913 |
– |
#else |
914 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
915 |
– |
ff_->getAtomType(identsLocal[atom2]) ); |
1327 |
|
|
1328 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1329 |
< |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1330 |
< |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1328 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
1329 |
> |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1330 |
> |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1331 |
|
} |
1332 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
1333 |
< |
idat.t1 = &(snap_->atomData.torque[atom1]); |
1334 |
< |
idat.t2 = &(snap_->atomData.torque[atom2]); |
924 |
< |
} |
925 |
< |
#endif |
1332 |
> |
|
1333 |
> |
#endif |
1334 |
> |
|
1335 |
|
} |
1336 |
|
|
1337 |
|
/* |
1340 |
|
* first element of pair is row-indexed CutoffGroup |
1341 |
|
* second element of pair is column-indexed CutoffGroup |
1342 |
|
*/ |
1343 |
< |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1344 |
< |
|
1345 |
< |
vector<pair<int, int> > neighborList; |
1343 |
> |
void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1344 |
> |
|
1345 |
> |
neighborList.clear(); |
1346 |
|
groupCutoffs cuts; |
1347 |
< |
#ifdef IS_MPI |
939 |
< |
cellListRow_.clear(); |
940 |
< |
cellListCol_.clear(); |
941 |
< |
#else |
942 |
< |
cellList_.clear(); |
943 |
< |
#endif |
1347 |
> |
bool doAllPairs = false; |
1348 |
|
|
1349 |
|
RealType rList_ = (largestRcut_ + skinThickness_); |
1350 |
< |
RealType rl2 = rList_ * rList_; |
1350 |
> |
RealType rcut, rcutsq, rlistsq; |
1351 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1352 |
< |
Mat3x3d Hmat = snap_->getHmat(); |
1353 |
< |
Vector3d Hx = Hmat.getColumn(0); |
950 |
< |
Vector3d Hy = Hmat.getColumn(1); |
951 |
< |
Vector3d Hz = Hmat.getColumn(2); |
1352 |
> |
Mat3x3d box; |
1353 |
> |
Mat3x3d invBox; |
1354 |
|
|
953 |
– |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
954 |
– |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
955 |
– |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
956 |
– |
|
957 |
– |
Mat3x3d invHmat = snap_->getInvHmat(); |
1355 |
|
Vector3d rs, scaled, dr; |
1356 |
|
Vector3i whichCell; |
1357 |
|
int cellIndex; |
1358 |
|
|
1359 |
|
#ifdef IS_MPI |
1360 |
< |
for (int i = 0; i < nGroupsInRow_; i++) { |
1361 |
< |
rs = cgRowData.position[i]; |
1362 |
< |
// scaled positions relative to the box vectors |
1363 |
< |
scaled = invHmat * rs; |
1364 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1365 |
< |
// numbers |
1366 |
< |
for (int j = 0; j < 3; j++) |
1367 |
< |
scaled[j] -= roundMe(scaled[j]); |
1368 |
< |
|
1369 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1370 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1371 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
975 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
976 |
< |
|
977 |
< |
// find single index of this cell: |
978 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
979 |
< |
// add this cutoff group to the list of groups in this cell; |
980 |
< |
cellListRow_[cellIndex].push_back(i); |
1360 |
> |
cellListRow_.clear(); |
1361 |
> |
cellListCol_.clear(); |
1362 |
> |
#else |
1363 |
> |
cellList_.clear(); |
1364 |
> |
#endif |
1365 |
> |
|
1366 |
> |
if (!usePeriodicBoundaryConditions_) { |
1367 |
> |
box = snap_->getBoundingBox(); |
1368 |
> |
invBox = snap_->getInvBoundingBox(); |
1369 |
> |
} else { |
1370 |
> |
box = snap_->getHmat(); |
1371 |
> |
invBox = snap_->getInvHmat(); |
1372 |
|
} |
1373 |
< |
|
1374 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
1375 |
< |
rs = cgColData.position[i]; |
1376 |
< |
// scaled positions relative to the box vectors |
1377 |
< |
scaled = invHmat * rs; |
1378 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1379 |
< |
// numbers |
1380 |
< |
for (int j = 0; j < 3; j++) |
1381 |
< |
scaled[j] -= roundMe(scaled[j]); |
1382 |
< |
|
1383 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1384 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1385 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1386 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1387 |
< |
|
1388 |
< |
// find single index of this cell: |
1389 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1390 |
< |
// add this cutoff group to the list of groups in this cell; |
1391 |
< |
cellListCol_[cellIndex].push_back(i); |
1392 |
< |
} |
1373 |
> |
|
1374 |
> |
Vector3d boxX = box.getColumn(0); |
1375 |
> |
Vector3d boxY = box.getColumn(1); |
1376 |
> |
Vector3d boxZ = box.getColumn(2); |
1377 |
> |
|
1378 |
> |
nCells_.x() = (int) ( boxX.length() )/ rList_; |
1379 |
> |
nCells_.y() = (int) ( boxY.length() )/ rList_; |
1380 |
> |
nCells_.z() = (int) ( boxZ.length() )/ rList_; |
1381 |
> |
|
1382 |
> |
// handle small boxes where the cell offsets can end up repeating cells |
1383 |
> |
|
1384 |
> |
if (nCells_.x() < 3) doAllPairs = true; |
1385 |
> |
if (nCells_.y() < 3) doAllPairs = true; |
1386 |
> |
if (nCells_.z() < 3) doAllPairs = true; |
1387 |
> |
|
1388 |
> |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1389 |
> |
|
1390 |
> |
#ifdef IS_MPI |
1391 |
> |
cellListRow_.resize(nCtot); |
1392 |
> |
cellListCol_.resize(nCtot); |
1393 |
|
#else |
1394 |
< |
for (int i = 0; i < nGroups_; i++) { |
1395 |
< |
rs = snap_->cgData.position[i]; |
1396 |
< |
// scaled positions relative to the box vectors |
1397 |
< |
scaled = invHmat * rs; |
1398 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1399 |
< |
// numbers |
1400 |
< |
for (int j = 0; j < 3; j++) |
1401 |
< |
scaled[j] -= roundMe(scaled[j]); |
1394 |
> |
cellList_.resize(nCtot); |
1395 |
> |
#endif |
1396 |
> |
|
1397 |
> |
if (!doAllPairs) { |
1398 |
> |
#ifdef IS_MPI |
1399 |
> |
|
1400 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
1401 |
> |
rs = cgRowData.position[i]; |
1402 |
> |
|
1403 |
> |
// scaled positions relative to the box vectors |
1404 |
> |
scaled = invBox * rs; |
1405 |
> |
|
1406 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1407 |
> |
// numbers |
1408 |
> |
for (int j = 0; j < 3; j++) { |
1409 |
> |
scaled[j] -= roundMe(scaled[j]); |
1410 |
> |
scaled[j] += 0.5; |
1411 |
> |
// Handle the special case when an object is exactly on the |
1412 |
> |
// boundary (a scaled coordinate of 1.0 is the same as |
1413 |
> |
// scaled coordinate of 0.0) |
1414 |
> |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1415 |
> |
} |
1416 |
> |
|
1417 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1418 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1419 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1420 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1421 |
> |
|
1422 |
> |
// find single index of this cell: |
1423 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1424 |
> |
|
1425 |
> |
// add this cutoff group to the list of groups in this cell; |
1426 |
> |
cellListRow_[cellIndex].push_back(i); |
1427 |
> |
} |
1428 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1429 |
> |
rs = cgColData.position[i]; |
1430 |
> |
|
1431 |
> |
// scaled positions relative to the box vectors |
1432 |
> |
scaled = invBox * rs; |
1433 |
> |
|
1434 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1435 |
> |
// numbers |
1436 |
> |
for (int j = 0; j < 3; j++) { |
1437 |
> |
scaled[j] -= roundMe(scaled[j]); |
1438 |
> |
scaled[j] += 0.5; |
1439 |
> |
// Handle the special case when an object is exactly on the |
1440 |
> |
// boundary (a scaled coordinate of 1.0 is the same as |
1441 |
> |
// scaled coordinate of 0.0) |
1442 |
> |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1443 |
> |
} |
1444 |
> |
|
1445 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1446 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1447 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1448 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1449 |
> |
|
1450 |
> |
// find single index of this cell: |
1451 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1452 |
> |
|
1453 |
> |
// add this cutoff group to the list of groups in this cell; |
1454 |
> |
cellListCol_[cellIndex].push_back(i); |
1455 |
> |
} |
1456 |
> |
|
1457 |
> |
#else |
1458 |
> |
for (int i = 0; i < nGroups_; i++) { |
1459 |
> |
rs = snap_->cgData.position[i]; |
1460 |
> |
|
1461 |
> |
// scaled positions relative to the box vectors |
1462 |
> |
scaled = invBox * rs; |
1463 |
> |
|
1464 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1465 |
> |
// numbers |
1466 |
> |
for (int j = 0; j < 3; j++) { |
1467 |
> |
scaled[j] -= roundMe(scaled[j]); |
1468 |
> |
scaled[j] += 0.5; |
1469 |
> |
// Handle the special case when an object is exactly on the |
1470 |
> |
// boundary (a scaled coordinate of 1.0 is the same as |
1471 |
> |
// scaled coordinate of 0.0) |
1472 |
> |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1473 |
> |
} |
1474 |
> |
|
1475 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1476 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1477 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1478 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1479 |
> |
|
1480 |
> |
// find single index of this cell: |
1481 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1482 |
> |
|
1483 |
> |
// add this cutoff group to the list of groups in this cell; |
1484 |
> |
cellList_[cellIndex].push_back(i); |
1485 |
> |
} |
1486 |
|
|
1012 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1013 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1014 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1015 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1016 |
– |
|
1017 |
– |
// find single index of this cell: |
1018 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1019 |
– |
// add this cutoff group to the list of groups in this cell; |
1020 |
– |
cellList_[cellIndex].push_back(i); |
1021 |
– |
} |
1487 |
|
#endif |
1488 |
|
|
1489 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1490 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1491 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1492 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1493 |
< |
int m1 = Vlinear(m1v, nCells_); |
1029 |
< |
|
1030 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1031 |
< |
os != cellOffsets_.end(); ++os) { |
1489 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1490 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1491 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1492 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1493 |
> |
int m1 = Vlinear(m1v, nCells_); |
1494 |
|
|
1495 |
< |
Vector3i m2v = m1v + (*os); |
1496 |
< |
|
1497 |
< |
if (m2v.x() >= nCells_.x()) { |
1498 |
< |
m2v.x() = 0; |
1499 |
< |
} else if (m2v.x() < 0) { |
1038 |
< |
m2v.x() = nCells_.x() - 1; |
1039 |
< |
} |
1040 |
< |
|
1041 |
< |
if (m2v.y() >= nCells_.y()) { |
1042 |
< |
m2v.y() = 0; |
1043 |
< |
} else if (m2v.y() < 0) { |
1044 |
< |
m2v.y() = nCells_.y() - 1; |
1045 |
< |
} |
1046 |
< |
|
1047 |
< |
if (m2v.z() >= nCells_.z()) { |
1048 |
< |
m2v.z() = 0; |
1049 |
< |
} else if (m2v.z() < 0) { |
1050 |
< |
m2v.z() = nCells_.z() - 1; |
1051 |
< |
} |
1052 |
< |
|
1053 |
< |
int m2 = Vlinear (m2v, nCells_); |
1495 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1496 |
> |
os != cellOffsets_.end(); ++os) { |
1497 |
> |
|
1498 |
> |
Vector3i m2v = m1v + (*os); |
1499 |
> |
|
1500 |
|
|
1501 |
< |
#ifdef IS_MPI |
1502 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1503 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1504 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1505 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1506 |
< |
|
1507 |
< |
// Always do this if we're in different cells or if |
1508 |
< |
// we're in the same cell and the global index of the |
1509 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1501 |
> |
if (m2v.x() >= nCells_.x()) { |
1502 |
> |
m2v.x() = 0; |
1503 |
> |
} else if (m2v.x() < 0) { |
1504 |
> |
m2v.x() = nCells_.x() - 1; |
1505 |
> |
} |
1506 |
> |
|
1507 |
> |
if (m2v.y() >= nCells_.y()) { |
1508 |
> |
m2v.y() = 0; |
1509 |
> |
} else if (m2v.y() < 0) { |
1510 |
> |
m2v.y() = nCells_.y() - 1; |
1511 |
> |
} |
1512 |
> |
|
1513 |
> |
if (m2v.z() >= nCells_.z()) { |
1514 |
> |
m2v.z() = 0; |
1515 |
> |
} else if (m2v.z() < 0) { |
1516 |
> |
m2v.z() = nCells_.z() - 1; |
1517 |
> |
} |
1518 |
|
|
1519 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1519 |
> |
int m2 = Vlinear (m2v, nCells_); |
1520 |
> |
|
1521 |
> |
#ifdef IS_MPI |
1522 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1523 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1524 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1525 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1526 |
> |
|
1527 |
> |
// In parallel, we need to visit *all* pairs of row |
1528 |
> |
// & column indicies and will divide labor in the |
1529 |
> |
// force evaluation later. |
1530 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1531 |
< |
snap_->wrapVector(dr); |
1532 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1069 |
< |
if (dr.lengthSquare() < cuts.third) { |
1070 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1531 |
> |
if (usePeriodicBoundaryConditions_) { |
1532 |
> |
snap_->wrapVector(dr); |
1533 |
|
} |
1534 |
+ |
getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1535 |
+ |
if (dr.lengthSquare() < rlistsq) { |
1536 |
+ |
neighborList.push_back(make_pair((*j1), (*j2))); |
1537 |
+ |
} |
1538 |
|
} |
1539 |
|
} |
1074 |
– |
} |
1540 |
|
#else |
1541 |
< |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1542 |
< |
j1 != cellList_[m1].end(); ++j1) { |
1543 |
< |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1544 |
< |
j2 != cellList_[m2].end(); ++j2) { |
1545 |
< |
|
1546 |
< |
// Always do this if we're in different cells or if |
1547 |
< |
// we're in the same cell and the global index of the |
1548 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1541 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1542 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1543 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1544 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1545 |
> |
|
1546 |
> |
// Always do this if we're in different cells or if |
1547 |
> |
// we're in the same cell and the global index of |
1548 |
> |
// the j2 cutoff group is greater than or equal to |
1549 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1550 |
> |
// has a "less than" conditional here, but that |
1551 |
> |
// deals with atom-by-atom computation. OpenMD |
1552 |
> |
// allows atoms within a single cutoff group to |
1553 |
> |
// interact with each other. |
1554 |
|
|
1555 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1556 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1557 |
< |
snap_->wrapVector(dr); |
1558 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1559 |
< |
if (dr.lengthSquare() < cuts.third) { |
1560 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1555 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1556 |
> |
|
1557 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1558 |
> |
if (usePeriodicBoundaryConditions_) { |
1559 |
> |
snap_->wrapVector(dr); |
1560 |
> |
} |
1561 |
> |
getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1562 |
> |
if (dr.lengthSquare() < rlistsq) { |
1563 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1564 |
> |
} |
1565 |
|
} |
1566 |
|
} |
1567 |
|
} |
1094 |
– |
} |
1568 |
|
#endif |
1569 |
+ |
} |
1570 |
|
} |
1571 |
|
} |
1572 |
|
} |
1573 |
+ |
} else { |
1574 |
+ |
// branch to do all cutoff group pairs |
1575 |
+ |
#ifdef IS_MPI |
1576 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1577 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1578 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1579 |
+ |
if (usePeriodicBoundaryConditions_) { |
1580 |
+ |
snap_->wrapVector(dr); |
1581 |
+ |
} |
1582 |
+ |
getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); |
1583 |
+ |
if (dr.lengthSquare() < rlistsq) { |
1584 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1585 |
+ |
} |
1586 |
+ |
} |
1587 |
+ |
} |
1588 |
+ |
#else |
1589 |
+ |
// include all groups here. |
1590 |
+ |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1591 |
+ |
// include self group interactions j2 == j1 |
1592 |
+ |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1593 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1594 |
+ |
if (usePeriodicBoundaryConditions_) { |
1595 |
+ |
snap_->wrapVector(dr); |
1596 |
+ |
} |
1597 |
+ |
getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); |
1598 |
+ |
if (dr.lengthSquare() < rlistsq) { |
1599 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1600 |
+ |
} |
1601 |
+ |
} |
1602 |
+ |
} |
1603 |
+ |
#endif |
1604 |
|
} |
1605 |
< |
|
1605 |
> |
|
1606 |
|
// save the local cutoff group positions for the check that is |
1607 |
|
// done on each loop: |
1608 |
|
saved_CG_positions_.clear(); |
1609 |
|
for (int i = 0; i < nGroups_; i++) |
1610 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1106 |
– |
|
1107 |
– |
return neighborList; |
1611 |
|
} |
1612 |
|
} //end namespace OpenMD |