ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1538 by chuckv, Tue Jan 11 18:58:12 2011 UTC vs.
branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1713 by gezelter, Sat May 19 14:21:02 2012 UTC

# Line 1 | Line 1
1 < /**
2 < * @file ForceDecomposition.cpp
3 < * @author Charles Vardeman <cvardema.at.nd.edu>
4 < * @date 08/18/2010
5 < * @time 11:56am
6 < * @version 1.0
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
8 * @section LICENSE
9 * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved.
10 *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
# Line 43 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 + #include "parallel/ForceMatrixDecomposition.hpp"
43 + #include "math/SquareMatrix3.hpp"
44 + #include "nonbonded/NonBondedInteraction.hpp"
45 + #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48 + using namespace std;
49 + namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52  
53 < /*  -*- c++ -*-  */
54 < #include "config.h"
55 < #include <stdlib.h>
53 >    // In a parallel computation, row and colum scans must visit all
54 >    // surrounding cells (not just the 14 upper triangular blocks that
55 >    // are used when the processor can see all pairs)
56   #ifdef IS_MPI
57 < #include <mpi.h>
58 < #endif
57 >    cellOffsets_.clear();
58 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 >    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 >    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 >    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 >    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 >    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 >    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 >    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 >    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 >    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 >    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 >    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 >    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 >    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 >    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 > #endif    
86 >  }
87  
58 #include <iostream>
59 #include <vector>
60 #include <algorithm>
61 #include <cmath>
62 #include "parallel/ForceDecomposition.hpp"
88  
89 +  /**
90 +   * distributeInitialData is essentially a copy of the older fortran
91 +   * SimulationSetup
92 +   */
93 +  void ForceMatrixDecomposition::distributeInitialData() {
94 +    snap_ = sman_->getCurrentSnapshot();
95 +    storageLayout_ = sman_->getStorageLayout();
96 +    ff_ = info_->getForceField();
97 +    nLocal_ = snap_->getNumberOfAtoms();
98 +    
99 +    nGroups_ = info_->getNLocalCutoffGroups();
100 +    // gather the information for atomtype IDs (atids):
101 +    idents = info_->getIdentArray();
102 +    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 +    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 +    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105  
106 < using namespace std;
66 < using namespace OpenMD;
106 >    massFactors = info_->getMassFactors();
107  
108 < //__static
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112 >
113   #ifdef IS_MPI
114 < static vector<MPI:Comm> communictors;
115 < #endif
114 >
115 >    MPI::Intracomm row = rowComm.getComm();
116 >    MPI::Intracomm col = colComm.getComm();
117  
118 < //____ MPITypeTraits
119 < template<typename T>
120 < struct MPITypeTraits;
118 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
119 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123  
124 < #ifdef IS_MPI
125 < template<>
126 < struct MPITypeTraits<RealType> {
127 <  static const MPI::Datatype datatype;
128 < };
82 < const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL;
124 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129  
130 < template<>
131 < struct MPITypeTraits<int> {
132 <  static const MPI::Datatype datatype;
133 < };
88 < const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT;
89 < #endif
130 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
131 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
133 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134  
135 < /**
136 < * Constructor for ForceDecomposition Parallel Decomposition Method
137 < * Will try to construct a symmetric grid of processors. Ideally, the
138 < * number of processors will be a square ex: 4, 9, 16, 25.
95 < *
96 < */
135 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
136 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
137 >    nGroupsInRow_ = cgPlanIntRow->getSize();
138 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
139  
140 < ForceDecomposition::ForceDecomposition() {
140 >    // Modify the data storage objects with the correct layouts and sizes:
141 >    atomRowData.resize(nAtomsInRow_);
142 >    atomRowData.setStorageLayout(storageLayout_);
143 >    atomColData.resize(nAtomsInCol_);
144 >    atomColData.setStorageLayout(storageLayout_);
145 >    cgRowData.resize(nGroupsInRow_);
146 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
147 >    cgColData.resize(nGroupsInCol_);
148 >    cgColData.setStorageLayout(DataStorage::dslPosition);
149 >        
150 >    identsRow.resize(nAtomsInRow_);
151 >    identsCol.resize(nAtomsInCol_);
152 >    
153 >    AtomPlanIntRow->gather(idents, identsRow);
154 >    AtomPlanIntColumn->gather(idents, identsCol);
155 >    
156 >    // allocate memory for the parallel objects
157 >    atypesRow.resize(nAtomsInRow_);
158 >    atypesCol.resize(nAtomsInCol_);
159  
160 < #ifdef IS_MPI
161 <  int nProcs = MPI::COMM_WORLD.Get_size();
162 <  int worldRank = MPI::COMM_WORLD.Get_rank();
160 >    for (int i = 0; i < nAtomsInRow_; i++)
161 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
162 >    for (int i = 0; i < nAtomsInCol_; i++)
163 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
164 >
165 >    pot_row.resize(nAtomsInRow_);
166 >    pot_col.resize(nAtomsInCol_);
167 >
168 >    AtomRowToGlobal.resize(nAtomsInRow_);
169 >    AtomColToGlobal.resize(nAtomsInCol_);
170 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172 >
173 >    cgRowToGlobal.resize(nGroupsInRow_);
174 >    cgColToGlobal.resize(nGroupsInCol_);
175 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 >
178 >    massFactorsRow.resize(nAtomsInRow_);
179 >    massFactorsCol.resize(nAtomsInCol_);
180 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
181 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182 >
183 >    groupListRow_.clear();
184 >    groupListRow_.resize(nGroupsInRow_);
185 >    for (int i = 0; i < nGroupsInRow_; i++) {
186 >      int gid = cgRowToGlobal[i];
187 >      for (int j = 0; j < nAtomsInRow_; j++) {
188 >        int aid = AtomRowToGlobal[j];
189 >        if (globalGroupMembership[aid] == gid)
190 >          groupListRow_[i].push_back(j);
191 >      }      
192 >    }
193 >
194 >    groupListCol_.clear();
195 >    groupListCol_.resize(nGroupsInCol_);
196 >    for (int i = 0; i < nGroupsInCol_; i++) {
197 >      int gid = cgColToGlobal[i];
198 >      for (int j = 0; j < nAtomsInCol_; j++) {
199 >        int aid = AtomColToGlobal[j];
200 >        if (globalGroupMembership[aid] == gid)
201 >          groupListCol_[i].push_back(j);
202 >      }      
203 >    }
204 >
205 >    excludesForAtom.clear();
206 >    excludesForAtom.resize(nAtomsInRow_);
207 >    toposForAtom.clear();
208 >    toposForAtom.resize(nAtomsInRow_);
209 >    topoDist.clear();
210 >    topoDist.resize(nAtomsInRow_);
211 >    for (int i = 0; i < nAtomsInRow_; i++) {
212 >      int iglob = AtomRowToGlobal[i];
213 >
214 >      for (int j = 0; j < nAtomsInCol_; j++) {
215 >        int jglob = AtomColToGlobal[j];
216 >
217 >        if (excludes->hasPair(iglob, jglob))
218 >          excludesForAtom[i].push_back(j);      
219 >        
220 >        if (oneTwo->hasPair(iglob, jglob)) {
221 >          toposForAtom[i].push_back(j);
222 >          topoDist[i].push_back(1);
223 >        } else {
224 >          if (oneThree->hasPair(iglob, jglob)) {
225 >            toposForAtom[i].push_back(j);
226 >            topoDist[i].push_back(2);
227 >          } else {
228 >            if (oneFour->hasPair(iglob, jglob)) {
229 >              toposForAtom[i].push_back(j);
230 >              topoDist[i].push_back(3);
231 >            }
232 >          }
233 >        }
234 >      }      
235 >    }
236 >
237 > #else
238 >    excludesForAtom.clear();
239 >    excludesForAtom.resize(nLocal_);
240 >    toposForAtom.clear();
241 >    toposForAtom.resize(nLocal_);
242 >    topoDist.clear();
243 >    topoDist.resize(nLocal_);
244 >
245 >    for (int i = 0; i < nLocal_; i++) {
246 >      int iglob = AtomLocalToGlobal[i];
247 >
248 >      for (int j = 0; j < nLocal_; j++) {
249 >        int jglob = AtomLocalToGlobal[j];
250 >
251 >        if (excludes->hasPair(iglob, jglob))
252 >          excludesForAtom[i].push_back(j);              
253 >        
254 >        if (oneTwo->hasPair(iglob, jglob)) {
255 >          toposForAtom[i].push_back(j);
256 >          topoDist[i].push_back(1);
257 >        } else {
258 >          if (oneThree->hasPair(iglob, jglob)) {
259 >            toposForAtom[i].push_back(j);
260 >            topoDist[i].push_back(2);
261 >          } else {
262 >            if (oneFour->hasPair(iglob, jglob)) {
263 >              toposForAtom[i].push_back(j);
264 >              topoDist[i].push_back(3);
265 >            }
266 >          }
267 >        }
268 >      }      
269 >    }
270   #endif
271  
272 <  // First time through, construct column stride.
273 <  if (communicators.size() == 0)
274 <  {
275 <    int nColumnsMax = (int) round(sqrt((float) nProcs));
276 <    for (int i = 0; i < nProcs; ++i)
277 <    {
278 <      if (nProcs%i==0) nColumns=i;
272 >    // allocate memory for the parallel objects
273 >    atypesLocal.resize(nLocal_);
274 >
275 >    for (int i = 0; i < nLocal_; i++)
276 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
277 >
278 >    groupList_.clear();
279 >    groupList_.resize(nGroups_);
280 >    for (int i = 0; i < nGroups_; i++) {
281 >      int gid = cgLocalToGlobal[i];
282 >      for (int j = 0; j < nLocal_; j++) {
283 >        int aid = AtomLocalToGlobal[j];
284 >        if (globalGroupMembership[aid] == gid) {
285 >          groupList_[i].push_back(j);
286 >        }
287 >      }      
288      }
289  
114    int nRows = nProcs/nColumns;    
115    myRank_ = (int) worldRank%nColumns;
116  }
117  else
118  {
119    myRank_ = myRank/nColumns;
120  }
121  MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0);
122  
123  isColumn_ = false;
124  
125 }
290  
291 < ForceDecomposition::gather(sendbuf, receivebuf){
128 <  communicators(myIndex_).Allgatherv();
129 < }
291 >    createGtypeCutoffMap();
292  
293 +  }
294 +  
295 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
296 +    
297 +    RealType tol = 1e-6;
298 +    largestRcut_ = 0.0;
299 +    RealType rc;
300 +    int atid;
301 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302 +    
303 +    map<int, RealType> atypeCutoff;
304 +      
305 +    for (set<AtomType*>::iterator at = atypes.begin();
306 +         at != atypes.end(); ++at){
307 +      atid = (*at)->getIdent();
308 +      if (userChoseCutoff_)
309 +        atypeCutoff[atid] = userCutoff_;
310 +      else
311 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312 +    }
313 +    
314 +    vector<RealType> gTypeCutoffs;
315 +    // first we do a single loop over the cutoff groups to find the
316 +    // largest cutoff for any atypes present in this group.
317 + #ifdef IS_MPI
318 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 +    groupRowToGtype.resize(nGroupsInRow_);
320 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
322 +      for (vector<int>::iterator ia = atomListRow.begin();
323 +           ia != atomListRow.end(); ++ia) {            
324 +        int atom1 = (*ia);
325 +        atid = identsRow[atom1];
326 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
327 +          groupCutoffRow[cg1] = atypeCutoff[atid];
328 +        }
329 +      }
330  
331 +      bool gTypeFound = false;
332 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
333 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
334 +          groupRowToGtype[cg1] = gt;
335 +          gTypeFound = true;
336 +        }
337 +      }
338 +      if (!gTypeFound) {
339 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
340 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
341 +      }
342 +      
343 +    }
344 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 +    groupColToGtype.resize(nGroupsInCol_);
346 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348 +      for (vector<int>::iterator jb = atomListCol.begin();
349 +           jb != atomListCol.end(); ++jb) {            
350 +        int atom2 = (*jb);
351 +        atid = identsCol[atom2];
352 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
353 +          groupCutoffCol[cg2] = atypeCutoff[atid];
354 +        }
355 +      }
356 +      bool gTypeFound = false;
357 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
358 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
359 +          groupColToGtype[cg2] = gt;
360 +          gTypeFound = true;
361 +        }
362 +      }
363 +      if (!gTypeFound) {
364 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
365 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
366 +      }
367 +    }
368 + #else
369  
370 < ForceDecomposition::scatter(sbuffer, rbuffer){
371 <  communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM);
372 < }
370 >    vector<RealType> groupCutoff(nGroups_, 0.0);
371 >    groupToGtype.resize(nGroups_);
372 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373 >      groupCutoff[cg1] = 0.0;
374 >      vector<int> atomList = getAtomsInGroupRow(cg1);
375 >      for (vector<int>::iterator ia = atomList.begin();
376 >           ia != atomList.end(); ++ia) {            
377 >        int atom1 = (*ia);
378 >        atid = idents[atom1];
379 >        if (atypeCutoff[atid] > groupCutoff[cg1])
380 >          groupCutoff[cg1] = atypeCutoff[atid];
381 >      }
382 >      
383 >      bool gTypeFound = false;
384 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
386 >          groupToGtype[cg1] = gt;
387 >          gTypeFound = true;
388 >        }
389 >      }
390 >      if (!gTypeFound) {      
391 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
392 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393 >      }      
394 >    }
395 > #endif
396 >
397 >    // Now we find the maximum group cutoff value present in the simulation
398 >
399 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 >                                     gTypeCutoffs.end());
401 >
402 > #ifdef IS_MPI
403 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 >                              MPI::MAX);
405 > #endif
406 >    
407 >    RealType tradRcut = groupMax;
408 >
409 >    for (int i = 0; i < gTypeCutoffs.size();  i++) {
410 >      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
411 >        RealType thisRcut;
412 >        switch(cutoffPolicy_) {
413 >        case TRADITIONAL:
414 >          thisRcut = tradRcut;
415 >          break;
416 >        case MIX:
417 >          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 >          break;
419 >        case MAX:
420 >          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 >          break;
422 >        default:
423 >          sprintf(painCave.errMsg,
424 >                  "ForceMatrixDecomposition::createGtypeCutoffMap "
425 >                  "hit an unknown cutoff policy!\n");
426 >          painCave.severity = OPENMD_ERROR;
427 >          painCave.isFatal = 1;
428 >          simError();
429 >          break;
430 >        }
431 >
432 >        pair<int,int> key = make_pair(i,j);
433 >        gTypeCutoffMap[key].first = thisRcut;
434 >        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
435 >        gTypeCutoffMap[key].second = thisRcut*thisRcut;
436 >        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
437 >        // sanity check
438 >        
439 >        if (userChoseCutoff_) {
440 >          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441 >            sprintf(painCave.errMsg,
442 >                    "ForceMatrixDecomposition::createGtypeCutoffMap "
443 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444 >            painCave.severity = OPENMD_ERROR;
445 >            painCave.isFatal = 1;
446 >            simError();            
447 >          }
448 >        }
449 >      }
450 >    }
451 >  }
452 >
453 >
454 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 >    int i, j;  
456 > #ifdef IS_MPI
457 >    i = groupRowToGtype[cg1];
458 >    j = groupColToGtype[cg2];
459 > #else
460 >    i = groupToGtype[cg1];
461 >    j = groupToGtype[cg2];
462 > #endif    
463 >    return gTypeCutoffMap[make_pair(i,j)];
464 >  }
465 >
466 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467 >    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468 >      if (toposForAtom[atom1][j] == atom2)
469 >        return topoDist[atom1][j];
470 >    }
471 >    return 0;
472 >  }
473 >
474 >  void ForceMatrixDecomposition::zeroWorkArrays() {
475 >    pairwisePot = 0.0;
476 >    embeddingPot = 0.0;
477 >
478 > #ifdef IS_MPI
479 >    if (storageLayout_ & DataStorage::dslForce) {
480 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
481 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
482 >    }
483 >
484 >    if (storageLayout_ & DataStorage::dslTorque) {
485 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
486 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
487 >    }
488 >    
489 >    fill(pot_row.begin(), pot_row.end(),
490 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491 >
492 >    fill(pot_col.begin(), pot_col.end(),
493 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
494 >
495 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
496 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 >           0.0);
498 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 >           0.0);
500 >    }
501 >
502 >    if (storageLayout_ & DataStorage::dslDensity) {      
503 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
504 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
505 >    }
506 >
507 >    if (storageLayout_ & DataStorage::dslFunctional) {  
508 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 >           0.0);
510 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
511 >           0.0);
512 >    }
513 >
514 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
515 >      fill(atomRowData.functionalDerivative.begin(),
516 >           atomRowData.functionalDerivative.end(), 0.0);
517 >      fill(atomColData.functionalDerivative.begin(),
518 >           atomColData.functionalDerivative.end(), 0.0);
519 >    }
520 >
521 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
522 >      fill(atomRowData.skippedCharge.begin(),
523 >           atomRowData.skippedCharge.end(), 0.0);
524 >      fill(atomColData.skippedCharge.begin(),
525 >           atomColData.skippedCharge.end(), 0.0);
526 >    }
527 >
528 >    if (storageLayout_ & DataStorage::dslElectricField) {    
529 >      fill(atomRowData.electricField.begin(),
530 >           atomRowData.electricField.end(), V3Zero);
531 >      fill(atomColData.electricField.begin(),
532 >           atomColData.electricField.end(), V3Zero);
533 >    }
534 >    if (storageLayout_ & DataStorage::dslFlucQForce) {    
535 >      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
536 >           0.0);
537 >      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
538 >           0.0);
539 >    }
540 >
541 > #endif
542 >    // even in parallel, we need to zero out the local arrays:
543 >
544 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
545 >      fill(snap_->atomData.particlePot.begin(),
546 >           snap_->atomData.particlePot.end(), 0.0);
547 >    }
548 >    
549 >    if (storageLayout_ & DataStorage::dslDensity) {      
550 >      fill(snap_->atomData.density.begin(),
551 >           snap_->atomData.density.end(), 0.0);
552 >    }
553 >
554 >    if (storageLayout_ & DataStorage::dslFunctional) {
555 >      fill(snap_->atomData.functional.begin(),
556 >           snap_->atomData.functional.end(), 0.0);
557 >    }
558 >
559 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
560 >      fill(snap_->atomData.functionalDerivative.begin(),
561 >           snap_->atomData.functionalDerivative.end(), 0.0);
562 >    }
563 >
564 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
565 >      fill(snap_->atomData.skippedCharge.begin(),
566 >           snap_->atomData.skippedCharge.end(), 0.0);
567 >    }
568 >
569 >    if (storageLayout_ & DataStorage::dslElectricField) {      
570 >      fill(snap_->atomData.electricField.begin(),
571 >           snap_->atomData.electricField.end(), V3Zero);
572 >    }
573 >  }
574 >
575 >
576 >  void ForceMatrixDecomposition::distributeData()  {
577 >    snap_ = sman_->getCurrentSnapshot();
578 >    storageLayout_ = sman_->getStorageLayout();
579 > #ifdef IS_MPI
580 >    
581 >    // gather up the atomic positions
582 >    AtomPlanVectorRow->gather(snap_->atomData.position,
583 >                              atomRowData.position);
584 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
585 >                                 atomColData.position);
586 >    
587 >    // gather up the cutoff group positions
588 >
589 >    cgPlanVectorRow->gather(snap_->cgData.position,
590 >                            cgRowData.position);
591 >
592 >    cgPlanVectorColumn->gather(snap_->cgData.position,
593 >                               cgColData.position);
594 >
595 >    
596 >    // if needed, gather the atomic rotation matrices
597 >    if (storageLayout_ & DataStorage::dslAmat) {
598 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
599 >                                atomRowData.aMat);
600 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
601 >                                   atomColData.aMat);
602 >    }
603 >    
604 >    // if needed, gather the atomic eletrostatic frames
605 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
606 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
607 >                                atomRowData.electroFrame);
608 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
609 >                                   atomColData.electroFrame);
610 >    }
611 >
612 >    // if needed, gather the atomic fluctuating charge values
613 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {
614 >      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
615 >                              atomRowData.flucQPos);
616 >      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
617 >                                 atomColData.flucQPos);
618 >    }
619 >
620 > #endif      
621 >  }
622 >  
623 >  /* collects information obtained during the pre-pair loop onto local
624 >   * data structures.
625 >   */
626 >  void ForceMatrixDecomposition::collectIntermediateData() {
627 >    snap_ = sman_->getCurrentSnapshot();
628 >    storageLayout_ = sman_->getStorageLayout();
629 > #ifdef IS_MPI
630 >    
631 >    if (storageLayout_ & DataStorage::dslDensity) {
632 >      
633 >      AtomPlanRealRow->scatter(atomRowData.density,
634 >                               snap_->atomData.density);
635 >      
636 >      int n = snap_->atomData.density.size();
637 >      vector<RealType> rho_tmp(n, 0.0);
638 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
639 >      for (int i = 0; i < n; i++)
640 >        snap_->atomData.density[i] += rho_tmp[i];
641 >    }
642 >
643 >    if (storageLayout_ & DataStorage::dslElectricField) {
644 >      
645 >      AtomPlanVectorRow->scatter(atomRowData.electricField,
646 >                                 snap_->atomData.electricField);
647 >      
648 >      int n = snap_->atomData.electricField.size();
649 >      vector<Vector3d> field_tmp(n, V3Zero);
650 >      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
651 >      for (int i = 0; i < n; i++)
652 >        snap_->atomData.electricField[i] += field_tmp[i];
653 >    }
654 > #endif
655 >  }
656 >
657 >  /*
658 >   * redistributes information obtained during the pre-pair loop out to
659 >   * row and column-indexed data structures
660 >   */
661 >  void ForceMatrixDecomposition::distributeIntermediateData() {
662 >    snap_ = sman_->getCurrentSnapshot();
663 >    storageLayout_ = sman_->getStorageLayout();
664 > #ifdef IS_MPI
665 >    if (storageLayout_ & DataStorage::dslFunctional) {
666 >      AtomPlanRealRow->gather(snap_->atomData.functional,
667 >                              atomRowData.functional);
668 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
669 >                                 atomColData.functional);
670 >    }
671 >    
672 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
673 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
674 >                              atomRowData.functionalDerivative);
675 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
676 >                                 atomColData.functionalDerivative);
677 >    }
678 > #endif
679 >  }
680 >  
681 >  
682 >  void ForceMatrixDecomposition::collectData() {
683 >    snap_ = sman_->getCurrentSnapshot();
684 >    storageLayout_ = sman_->getStorageLayout();
685 > #ifdef IS_MPI    
686 >    int n = snap_->atomData.force.size();
687 >    vector<Vector3d> frc_tmp(n, V3Zero);
688 >    
689 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
690 >    for (int i = 0; i < n; i++) {
691 >      snap_->atomData.force[i] += frc_tmp[i];
692 >      frc_tmp[i] = 0.0;
693 >    }
694 >    
695 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
696 >    for (int i = 0; i < n; i++) {
697 >      snap_->atomData.force[i] += frc_tmp[i];
698 >    }
699 >        
700 >    if (storageLayout_ & DataStorage::dslTorque) {
701 >
702 >      int nt = snap_->atomData.torque.size();
703 >      vector<Vector3d> trq_tmp(nt, V3Zero);
704 >
705 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
706 >      for (int i = 0; i < nt; i++) {
707 >        snap_->atomData.torque[i] += trq_tmp[i];
708 >        trq_tmp[i] = 0.0;
709 >      }
710 >      
711 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
712 >      for (int i = 0; i < nt; i++)
713 >        snap_->atomData.torque[i] += trq_tmp[i];
714 >    }
715 >
716 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
717 >
718 >      int ns = snap_->atomData.skippedCharge.size();
719 >      vector<RealType> skch_tmp(ns, 0.0);
720 >
721 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
722 >      for (int i = 0; i < ns; i++) {
723 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
724 >        skch_tmp[i] = 0.0;
725 >      }
726 >      
727 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
728 >      for (int i = 0; i < ns; i++)
729 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
730 >            
731 >    }
732 >    
733 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
734 >
735 >      int nq = snap_->atomData.flucQFrc.size();
736 >      vector<RealType> fqfrc_tmp(nq, 0.0);
737 >
738 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
739 >      for (int i = 0; i < nq; i++) {
740 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
741 >        fqfrc_tmp[i] = 0.0;
742 >      }
743 >      
744 >      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
745 >      for (int i = 0; i < nq; i++)
746 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
747 >            
748 >    }
749 >
750 >    nLocal_ = snap_->getNumberOfAtoms();
751 >
752 >    vector<potVec> pot_temp(nLocal_,
753 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
754 >
755 >    // scatter/gather pot_row into the members of my column
756 >          
757 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
758 >
759 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
760 >      pairwisePot += pot_temp[ii];
761 >    
762 >    fill(pot_temp.begin(), pot_temp.end(),
763 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
764 >      
765 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
766 >    
767 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
768 >      pairwisePot += pot_temp[ii];    
769 >    
770 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
771 >      RealType ploc1 = pairwisePot[ii];
772 >      RealType ploc2 = 0.0;
773 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
774 >      pairwisePot[ii] = ploc2;
775 >    }
776 >
777 >    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
778 >      RealType ploc1 = embeddingPot[ii];
779 >      RealType ploc2 = 0.0;
780 >      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
781 >      embeddingPot[ii] = ploc2;
782 >    }
783 >
784 > #endif
785 >
786 >  }
787 >
788 >  int ForceMatrixDecomposition::getNAtomsInRow() {  
789 > #ifdef IS_MPI
790 >    return nAtomsInRow_;
791 > #else
792 >    return nLocal_;
793 > #endif
794 >  }
795 >
796 >  /**
797 >   * returns the list of atoms belonging to this group.  
798 >   */
799 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
800 > #ifdef IS_MPI
801 >    return groupListRow_[cg1];
802 > #else
803 >    return groupList_[cg1];
804 > #endif
805 >  }
806 >
807 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
808 > #ifdef IS_MPI
809 >    return groupListCol_[cg2];
810 > #else
811 >    return groupList_[cg2];
812 > #endif
813 >  }
814 >  
815 >  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
816 >    Vector3d d;
817 >    
818 > #ifdef IS_MPI
819 >    d = cgColData.position[cg2] - cgRowData.position[cg1];
820 > #else
821 >    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
822 > #endif
823 >    
824 >    snap_->wrapVector(d);
825 >    return d;    
826 >  }
827 >
828 >
829 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
830 >
831 >    Vector3d d;
832 >    
833 > #ifdef IS_MPI
834 >    d = cgRowData.position[cg1] - atomRowData.position[atom1];
835 > #else
836 >    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
837 > #endif
838 >
839 >    snap_->wrapVector(d);
840 >    return d;    
841 >  }
842 >  
843 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
844 >    Vector3d d;
845 >    
846 > #ifdef IS_MPI
847 >    d = cgColData.position[cg2] - atomColData.position[atom2];
848 > #else
849 >    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
850 > #endif
851 >    
852 >    snap_->wrapVector(d);
853 >    return d;    
854 >  }
855 >
856 >  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
857 > #ifdef IS_MPI
858 >    return massFactorsRow[atom1];
859 > #else
860 >    return massFactors[atom1];
861 > #endif
862 >  }
863 >
864 >  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
865 > #ifdef IS_MPI
866 >    return massFactorsCol[atom2];
867 > #else
868 >    return massFactors[atom2];
869 > #endif
870 >
871 >  }
872 >    
873 >  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
874 >    Vector3d d;
875 >    
876 > #ifdef IS_MPI
877 >    d = atomColData.position[atom2] - atomRowData.position[atom1];
878 > #else
879 >    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
880 > #endif
881 >
882 >    snap_->wrapVector(d);
883 >    return d;    
884 >  }
885 >
886 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
887 >    return excludesForAtom[atom1];
888 >  }
889 >
890 >  /**
891 >   * We need to exclude some overcounted interactions that result from
892 >   * the parallel decomposition.
893 >   */
894 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
895 >    int unique_id_1, unique_id_2;
896 >        
897 > #ifdef IS_MPI
898 >    // in MPI, we have to look up the unique IDs for each atom
899 >    unique_id_1 = AtomRowToGlobal[atom1];
900 >    unique_id_2 = AtomColToGlobal[atom2];
901 > #else
902 >    unique_id_1 = AtomLocalToGlobal[atom1];
903 >    unique_id_2 = AtomLocalToGlobal[atom2];
904 > #endif  
905 >
906 >    if (unique_id_1 == unique_id_2) return true;
907 >
908 > #ifdef IS_MPI
909 >    // this prevents us from doing the pair on multiple processors
910 >    if (unique_id_1 < unique_id_2) {
911 >      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
912 >    } else {
913 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
914 >    }
915 > #endif
916 >    
917 >    return false;
918 >  }
919 >
920 >  /**
921 >   * We need to handle the interactions for atoms who are involved in
922 >   * the same rigid body as well as some short range interactions
923 >   * (bonds, bends, torsions) differently from other interactions.
924 >   * We'll still visit the pairwise routines, but with a flag that
925 >   * tells those routines to exclude the pair from direct long range
926 >   * interactions.  Some indirect interactions (notably reaction
927 >   * field) must still be handled for these pairs.
928 >   */
929 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
930 >
931 >    // excludesForAtom was constructed to use row/column indices in the MPI
932 >    // version, and to use local IDs in the non-MPI version:
933 >    
934 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
935 >         i != excludesForAtom[atom1].end(); ++i) {
936 >      if ( (*i) == atom2 ) return true;
937 >    }
938 >
939 >    return false;
940 >  }
941 >
942 >
943 >  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
944 > #ifdef IS_MPI
945 >    atomRowData.force[atom1] += fg;
946 > #else
947 >    snap_->atomData.force[atom1] += fg;
948 > #endif
949 >  }
950 >
951 >  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
952 > #ifdef IS_MPI
953 >    atomColData.force[atom2] += fg;
954 > #else
955 >    snap_->atomData.force[atom2] += fg;
956 > #endif
957 >  }
958 >
959 >    // filling interaction blocks with pointers
960 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
961 >                                                     int atom1, int atom2) {
962 >
963 >    idat.excluded = excludeAtomPair(atom1, atom2);
964 >  
965 > #ifdef IS_MPI
966 >    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
967 >    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
968 >    //                         ff_->getAtomType(identsCol[atom2]) );
969 >    
970 >    if (storageLayout_ & DataStorage::dslAmat) {
971 >      idat.A1 = &(atomRowData.aMat[atom1]);
972 >      idat.A2 = &(atomColData.aMat[atom2]);
973 >    }
974 >    
975 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
976 >      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
977 >      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
978 >    }
979 >
980 >    if (storageLayout_ & DataStorage::dslTorque) {
981 >      idat.t1 = &(atomRowData.torque[atom1]);
982 >      idat.t2 = &(atomColData.torque[atom2]);
983 >    }
984 >
985 >    if (storageLayout_ & DataStorage::dslDensity) {
986 >      idat.rho1 = &(atomRowData.density[atom1]);
987 >      idat.rho2 = &(atomColData.density[atom2]);
988 >    }
989 >
990 >    if (storageLayout_ & DataStorage::dslFunctional) {
991 >      idat.frho1 = &(atomRowData.functional[atom1]);
992 >      idat.frho2 = &(atomColData.functional[atom2]);
993 >    }
994 >
995 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
996 >      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
997 >      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
998 >    }
999 >
1000 >    if (storageLayout_ & DataStorage::dslParticlePot) {
1001 >      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1002 >      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1003 >    }
1004  
1005 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1006 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1007 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1008 +    }
1009  
1010 + #else
1011 +    
1012 +
1013 +    // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
1014 +    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
1015 +    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
1016 +
1017 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1018 +    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1019 +    //                         ff_->getAtomType(idents[atom2]) );
1020 +
1021 +    if (storageLayout_ & DataStorage::dslAmat) {
1022 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
1023 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
1024 +    }
1025 +
1026 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
1027 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1028 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1029 +    }
1030 +
1031 +    if (storageLayout_ & DataStorage::dslTorque) {
1032 +      idat.t1 = &(snap_->atomData.torque[atom1]);
1033 +      idat.t2 = &(snap_->atomData.torque[atom2]);
1034 +    }
1035 +
1036 +    if (storageLayout_ & DataStorage::dslDensity) {    
1037 +      idat.rho1 = &(snap_->atomData.density[atom1]);
1038 +      idat.rho2 = &(snap_->atomData.density[atom2]);
1039 +    }
1040 +
1041 +    if (storageLayout_ & DataStorage::dslFunctional) {
1042 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
1043 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
1044 +    }
1045 +
1046 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1047 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1048 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1049 +    }
1050 +
1051 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1052 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1053 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1054 +    }
1055 +
1056 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1057 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1058 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1059 +    }
1060 + #endif
1061 +  }
1062 +
1063 +  
1064 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1065 + #ifdef IS_MPI
1066 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1067 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1068 +
1069 +    atomRowData.force[atom1] += *(idat.f1);
1070 +    atomColData.force[atom2] -= *(idat.f1);
1071 +
1072 +    // should particle pot be done here also?
1073 + #else
1074 +    pairwisePot += *(idat.pot);
1075 +
1076 +    snap_->atomData.force[atom1] += *(idat.f1);
1077 +    snap_->atomData.force[atom2] -= *(idat.f1);
1078 +
1079 +    if (idat.doParticlePot) {
1080 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1081 +      snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw);
1082 +    }
1083 +      
1084 + #endif
1085 +    
1086 +  }
1087 +
1088 +  /*
1089 +   * buildNeighborList
1090 +   *
1091 +   * first element of pair is row-indexed CutoffGroup
1092 +   * second element of pair is column-indexed CutoffGroup
1093 +   */
1094 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1095 +      
1096 +    vector<pair<int, int> > neighborList;
1097 +    groupCutoffs cuts;
1098 +    bool doAllPairs = false;
1099 +
1100 + #ifdef IS_MPI
1101 +    cellListRow_.clear();
1102 +    cellListCol_.clear();
1103 + #else
1104 +    cellList_.clear();
1105 + #endif
1106 +
1107 +    RealType rList_ = (largestRcut_ + skinThickness_);
1108 +    RealType rl2 = rList_ * rList_;
1109 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1110 +    Mat3x3d Hmat = snap_->getHmat();
1111 +    Vector3d Hx = Hmat.getColumn(0);
1112 +    Vector3d Hy = Hmat.getColumn(1);
1113 +    Vector3d Hz = Hmat.getColumn(2);
1114 +
1115 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1116 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1117 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1118 +
1119 +    // handle small boxes where the cell offsets can end up repeating cells
1120 +    
1121 +    if (nCells_.x() < 3) doAllPairs = true;
1122 +    if (nCells_.y() < 3) doAllPairs = true;
1123 +    if (nCells_.z() < 3) doAllPairs = true;
1124 +
1125 +    Mat3x3d invHmat = snap_->getInvHmat();
1126 +    Vector3d rs, scaled, dr;
1127 +    Vector3i whichCell;
1128 +    int cellIndex;
1129 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1130 +
1131 + #ifdef IS_MPI
1132 +    cellListRow_.resize(nCtot);
1133 +    cellListCol_.resize(nCtot);
1134 + #else
1135 +    cellList_.resize(nCtot);
1136 + #endif
1137 +
1138 +    if (!doAllPairs) {
1139 + #ifdef IS_MPI
1140 +
1141 +      for (int i = 0; i < nGroupsInRow_; i++) {
1142 +        rs = cgRowData.position[i];
1143 +        
1144 +        // scaled positions relative to the box vectors
1145 +        scaled = invHmat * rs;
1146 +        
1147 +        // wrap the vector back into the unit box by subtracting integer box
1148 +        // numbers
1149 +        for (int j = 0; j < 3; j++) {
1150 +          scaled[j] -= roundMe(scaled[j]);
1151 +          scaled[j] += 0.5;
1152 +        }
1153 +        
1154 +        // find xyz-indices of cell that cutoffGroup is in.
1155 +        whichCell.x() = nCells_.x() * scaled.x();
1156 +        whichCell.y() = nCells_.y() * scaled.y();
1157 +        whichCell.z() = nCells_.z() * scaled.z();
1158 +        
1159 +        // find single index of this cell:
1160 +        cellIndex = Vlinear(whichCell, nCells_);
1161 +        
1162 +        // add this cutoff group to the list of groups in this cell;
1163 +        cellListRow_[cellIndex].push_back(i);
1164 +      }
1165 +      for (int i = 0; i < nGroupsInCol_; i++) {
1166 +        rs = cgColData.position[i];
1167 +        
1168 +        // scaled positions relative to the box vectors
1169 +        scaled = invHmat * rs;
1170 +        
1171 +        // wrap the vector back into the unit box by subtracting integer box
1172 +        // numbers
1173 +        for (int j = 0; j < 3; j++) {
1174 +          scaled[j] -= roundMe(scaled[j]);
1175 +          scaled[j] += 0.5;
1176 +        }
1177 +        
1178 +        // find xyz-indices of cell that cutoffGroup is in.
1179 +        whichCell.x() = nCells_.x() * scaled.x();
1180 +        whichCell.y() = nCells_.y() * scaled.y();
1181 +        whichCell.z() = nCells_.z() * scaled.z();
1182 +        
1183 +        // find single index of this cell:
1184 +        cellIndex = Vlinear(whichCell, nCells_);
1185 +        
1186 +        // add this cutoff group to the list of groups in this cell;
1187 +        cellListCol_[cellIndex].push_back(i);
1188 +      }
1189 +    
1190 + #else
1191 +      for (int i = 0; i < nGroups_; i++) {
1192 +        rs = snap_->cgData.position[i];
1193 +        
1194 +        // scaled positions relative to the box vectors
1195 +        scaled = invHmat * rs;
1196 +        
1197 +        // wrap the vector back into the unit box by subtracting integer box
1198 +        // numbers
1199 +        for (int j = 0; j < 3; j++) {
1200 +          scaled[j] -= roundMe(scaled[j]);
1201 +          scaled[j] += 0.5;
1202 +        }
1203 +        
1204 +        // find xyz-indices of cell that cutoffGroup is in.
1205 +        whichCell.x() = nCells_.x() * scaled.x();
1206 +        whichCell.y() = nCells_.y() * scaled.y();
1207 +        whichCell.z() = nCells_.z() * scaled.z();
1208 +        
1209 +        // find single index of this cell:
1210 +        cellIndex = Vlinear(whichCell, nCells_);
1211 +        
1212 +        // add this cutoff group to the list of groups in this cell;
1213 +        cellList_[cellIndex].push_back(i);
1214 +      }
1215 +
1216 + #endif
1217 +
1218 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1219 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1220 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1221 +            Vector3i m1v(m1x, m1y, m1z);
1222 +            int m1 = Vlinear(m1v, nCells_);
1223 +            
1224 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1225 +                 os != cellOffsets_.end(); ++os) {
1226 +              
1227 +              Vector3i m2v = m1v + (*os);
1228 +            
1229 +
1230 +              if (m2v.x() >= nCells_.x()) {
1231 +                m2v.x() = 0;          
1232 +              } else if (m2v.x() < 0) {
1233 +                m2v.x() = nCells_.x() - 1;
1234 +              }
1235 +              
1236 +              if (m2v.y() >= nCells_.y()) {
1237 +                m2v.y() = 0;          
1238 +              } else if (m2v.y() < 0) {
1239 +                m2v.y() = nCells_.y() - 1;
1240 +              }
1241 +              
1242 +              if (m2v.z() >= nCells_.z()) {
1243 +                m2v.z() = 0;          
1244 +              } else if (m2v.z() < 0) {
1245 +                m2v.z() = nCells_.z() - 1;
1246 +              }
1247 +
1248 +              int m2 = Vlinear (m2v, nCells_);
1249 +              
1250 + #ifdef IS_MPI
1251 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1252 +                   j1 != cellListRow_[m1].end(); ++j1) {
1253 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1254 +                     j2 != cellListCol_[m2].end(); ++j2) {
1255 +                  
1256 +                  // In parallel, we need to visit *all* pairs of row
1257 +                  // & column indicies and will divide labor in the
1258 +                  // force evaluation later.
1259 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1260 +                  snap_->wrapVector(dr);
1261 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1262 +                  if (dr.lengthSquare() < cuts.third) {
1263 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1264 +                  }                  
1265 +                }
1266 +              }
1267 + #else
1268 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1269 +                   j1 != cellList_[m1].end(); ++j1) {
1270 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1271 +                     j2 != cellList_[m2].end(); ++j2) {
1272 +    
1273 +                  // Always do this if we're in different cells or if
1274 +                  // we're in the same cell and the global index of
1275 +                  // the j2 cutoff group is greater than or equal to
1276 +                  // the j1 cutoff group.  Note that Rappaport's code
1277 +                  // has a "less than" conditional here, but that
1278 +                  // deals with atom-by-atom computation.  OpenMD
1279 +                  // allows atoms within a single cutoff group to
1280 +                  // interact with each other.
1281 +
1282 +
1283 +
1284 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1285 +
1286 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1287 +                    snap_->wrapVector(dr);
1288 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1289 +                    if (dr.lengthSquare() < cuts.third) {
1290 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1291 +                    }
1292 +                  }
1293 +                }
1294 +              }
1295 + #endif
1296 +            }
1297 +          }
1298 +        }
1299 +      }
1300 +    } else {
1301 +      // branch to do all cutoff group pairs
1302 + #ifdef IS_MPI
1303 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1304 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1305 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1306 +          snap_->wrapVector(dr);
1307 +          cuts = getGroupCutoffs( j1, j2 );
1308 +          if (dr.lengthSquare() < cuts.third) {
1309 +            neighborList.push_back(make_pair(j1, j2));
1310 +          }
1311 +        }
1312 +      }      
1313 + #else
1314 +      // include all groups here.
1315 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1316 +        // include self group interactions j2 == j1
1317 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1318 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1319 +          snap_->wrapVector(dr);
1320 +          cuts = getGroupCutoffs( j1, j2 );
1321 +          if (dr.lengthSquare() < cuts.third) {
1322 +            neighborList.push_back(make_pair(j1, j2));
1323 +          }
1324 +        }    
1325 +      }
1326 + #endif
1327 +    }
1328 +      
1329 +    // save the local cutoff group positions for the check that is
1330 +    // done on each loop:
1331 +    saved_CG_positions_.clear();
1332 +    for (int i = 0; i < nGroups_; i++)
1333 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1334 +    
1335 +    return neighborList;
1336 +  }
1337 + } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines