55 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
|
snap_ = sman_->getCurrentSnapshot(); |
57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
+ |
ff_ = info_->getForceField(); |
59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
59 |
– |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
60 |
|
|
61 |
+ |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
|
// gather the information for atomtype IDs (atids): |
63 |
< |
vector<int> identsLocal = info_->getIdentArray(); |
63 |
> |
idents = info_->getIdentArray(); |
64 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
< |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
67 |
> |
|
68 |
> |
massFactors = info_->getMassFactors(); |
69 |
> |
|
70 |
|
PairList excludes = info_->getExcludedInteractions(); |
71 |
|
PairList oneTwo = info_->getOneTwoInteractions(); |
72 |
|
PairList oneThree = info_->getOneThreeInteractions(); |
73 |
|
PairList oneFour = info_->getOneFourInteractions(); |
71 |
– |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
74 |
|
|
75 |
|
#ifdef IS_MPI |
76 |
|
|
78 |
|
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
|
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
|
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
+ |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 |
|
|
83 |
|
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 |
|
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 |
|
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 |
|
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 |
+ |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 |
|
|
89 |
|
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 |
|
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
105 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 |
|
cgColData.resize(nGroupsInCol_); |
107 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
108 |
+ |
|
109 |
+ |
identsRow.resize(nAtomsInRow_); |
110 |
+ |
identsCol.resize(nAtomsInCol_); |
111 |
|
|
112 |
< |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
113 |
< |
vector<RealType> (nAtomsInRow_, 0.0)); |
107 |
< |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
108 |
< |
vector<RealType> (nAtomsInCol_, 0.0)); |
112 |
> |
AtomCommIntRow->gather(idents, identsRow); |
113 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
114 |
|
|
110 |
– |
identsRow.reserve(nAtomsInRow_); |
111 |
– |
identsCol.reserve(nAtomsInCol_); |
112 |
– |
|
113 |
– |
AtomCommIntRow->gather(identsLocal, identsRow); |
114 |
– |
AtomCommIntColumn->gather(identsLocal, identsCol); |
115 |
– |
|
115 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
116 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
117 |
|
|
118 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
119 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
120 |
|
|
121 |
< |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
122 |
< |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
121 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
122 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
123 |
|
|
124 |
|
groupListRow_.clear(); |
125 |
< |
groupListRow_.reserve(nGroupsInRow_); |
125 |
> |
groupListRow_.resize(nGroupsInRow_); |
126 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
127 |
|
int gid = cgRowToGlobal[i]; |
128 |
|
for (int j = 0; j < nAtomsInRow_; j++) { |
133 |
|
} |
134 |
|
|
135 |
|
groupListCol_.clear(); |
136 |
< |
groupListCol_.reserve(nGroupsInCol_); |
136 |
> |
groupListCol_.resize(nGroupsInCol_); |
137 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
138 |
|
int gid = cgColToGlobal[i]; |
139 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
143 |
|
} |
144 |
|
} |
145 |
|
|
146 |
< |
skipsForRowAtom.clear(); |
147 |
< |
skipsForRowAtom.reserve(nAtomsInRow_); |
146 |
> |
skipsForAtom.clear(); |
147 |
> |
skipsForAtom.resize(nAtomsInRow_); |
148 |
> |
toposForAtom.clear(); |
149 |
> |
toposForAtom.resize(nAtomsInRow_); |
150 |
> |
topoDist.clear(); |
151 |
> |
topoDist.resize(nAtomsInRow_); |
152 |
|
for (int i = 0; i < nAtomsInRow_; i++) { |
153 |
< |
int iglob = AtomColToGlobal[i]; |
151 |
< |
for (int j = 0; j < nAtomsInCol_; j++) { |
152 |
< |
int jglob = AtomRowToGlobal[j]; |
153 |
< |
if (excludes.hasPair(iglob, jglob)) |
154 |
< |
skipsForRowAtom[i].push_back(j); |
155 |
< |
} |
156 |
< |
} |
153 |
> |
int iglob = AtomRowToGlobal[i]; |
154 |
|
|
158 |
– |
toposForRowAtom.clear(); |
159 |
– |
toposForRowAtom.reserve(nAtomsInRow_); |
160 |
– |
for (int i = 0; i < nAtomsInRow_; i++) { |
161 |
– |
int iglob = AtomColToGlobal[i]; |
162 |
– |
int nTopos = 0; |
155 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
156 |
< |
int jglob = AtomRowToGlobal[j]; |
156 |
> |
int jglob = AtomColToGlobal[j]; |
157 |
> |
|
158 |
> |
if (excludes.hasPair(iglob, jglob)) |
159 |
> |
skipsForAtom[i].push_back(j); |
160 |
> |
|
161 |
|
if (oneTwo.hasPair(iglob, jglob)) { |
162 |
< |
toposForRowAtom[i].push_back(j); |
163 |
< |
topoDistRow[i][nTopos] = 1; |
164 |
< |
nTopos++; |
162 |
> |
toposForAtom[i].push_back(j); |
163 |
> |
topoDist[i].push_back(1); |
164 |
> |
} else { |
165 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
166 |
> |
toposForAtom[i].push_back(j); |
167 |
> |
topoDist[i].push_back(2); |
168 |
> |
} else { |
169 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
170 |
> |
toposForAtom[i].push_back(j); |
171 |
> |
topoDist[i].push_back(3); |
172 |
> |
} |
173 |
> |
} |
174 |
|
} |
170 |
– |
if (oneThree.hasPair(iglob, jglob)) { |
171 |
– |
toposForRowAtom[i].push_back(j); |
172 |
– |
topoDistRow[i][nTopos] = 2; |
173 |
– |
nTopos++; |
174 |
– |
} |
175 |
– |
if (oneFour.hasPair(iglob, jglob)) { |
176 |
– |
toposForRowAtom[i].push_back(j); |
177 |
– |
topoDistRow[i][nTopos] = 3; |
178 |
– |
nTopos++; |
179 |
– |
} |
175 |
|
} |
176 |
|
} |
177 |
|
|
178 |
|
#endif |
179 |
|
|
180 |
|
groupList_.clear(); |
181 |
< |
groupList_.reserve(nGroups_); |
181 |
> |
groupList_.resize(nGroups_); |
182 |
|
for (int i = 0; i < nGroups_; i++) { |
183 |
|
int gid = cgLocalToGlobal[i]; |
184 |
|
for (int j = 0; j < nLocal_; j++) { |
185 |
|
int aid = AtomLocalToGlobal[j]; |
186 |
< |
if (globalGroupMembership[aid] == gid) |
186 |
> |
if (globalGroupMembership[aid] == gid) { |
187 |
|
groupList_[i].push_back(j); |
188 |
+ |
} |
189 |
|
} |
190 |
|
} |
191 |
|
|
192 |
< |
skipsForLocalAtom.clear(); |
193 |
< |
skipsForLocalAtom.reserve(nLocal_); |
192 |
> |
skipsForAtom.clear(); |
193 |
> |
skipsForAtom.resize(nLocal_); |
194 |
> |
toposForAtom.clear(); |
195 |
> |
toposForAtom.resize(nLocal_); |
196 |
> |
topoDist.clear(); |
197 |
> |
topoDist.resize(nLocal_); |
198 |
|
|
199 |
|
for (int i = 0; i < nLocal_; i++) { |
200 |
|
int iglob = AtomLocalToGlobal[i]; |
201 |
+ |
|
202 |
|
for (int j = 0; j < nLocal_; j++) { |
203 |
< |
int jglob = AtomLocalToGlobal[j]; |
203 |
> |
int jglob = AtomLocalToGlobal[j]; |
204 |
> |
|
205 |
|
if (excludes.hasPair(iglob, jglob)) |
206 |
< |
skipsForLocalAtom[i].push_back(j); |
206 |
> |
skipsForAtom[i].push_back(j); |
207 |
> |
|
208 |
> |
if (oneTwo.hasPair(iglob, jglob)) { |
209 |
> |
toposForAtom[i].push_back(j); |
210 |
> |
topoDist[i].push_back(1); |
211 |
> |
} else { |
212 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
213 |
> |
toposForAtom[i].push_back(j); |
214 |
> |
topoDist[i].push_back(2); |
215 |
> |
} else { |
216 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
217 |
> |
toposForAtom[i].push_back(j); |
218 |
> |
topoDist[i].push_back(3); |
219 |
> |
} |
220 |
> |
} |
221 |
> |
} |
222 |
|
} |
223 |
|
} |
224 |
+ |
|
225 |
+ |
createGtypeCutoffMap(); |
226 |
+ |
} |
227 |
+ |
|
228 |
+ |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
229 |
+ |
|
230 |
+ |
RealType tol = 1e-6; |
231 |
+ |
RealType rc; |
232 |
+ |
int atid; |
233 |
+ |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
234 |
+ |
vector<RealType> atypeCutoff; |
235 |
+ |
atypeCutoff.resize( atypes.size() ); |
236 |
+ |
|
237 |
+ |
for (set<AtomType*>::iterator at = atypes.begin(); |
238 |
+ |
at != atypes.end(); ++at){ |
239 |
+ |
atid = (*at)->getIdent(); |
240 |
|
|
241 |
< |
toposForLocalAtom.clear(); |
242 |
< |
toposForLocalAtom.reserve(nLocal_); |
243 |
< |
for (int i = 0; i < nLocal_; i++) { |
244 |
< |
int iglob = AtomLocalToGlobal[i]; |
245 |
< |
int nTopos = 0; |
246 |
< |
for (int j = 0; j < nLocal_; j++) { |
247 |
< |
int jglob = AtomLocalToGlobal[j]; |
248 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
249 |
< |
toposForLocalAtom[i].push_back(j); |
250 |
< |
topoDistLocal[i][nTopos] = 1; |
251 |
< |
nTopos++; |
252 |
< |
} |
253 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
254 |
< |
toposForLocalAtom[i].push_back(j); |
255 |
< |
topoDistLocal[i][nTopos] = 2; |
256 |
< |
nTopos++; |
257 |
< |
} |
258 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
259 |
< |
toposForLocalAtom[i].push_back(j); |
260 |
< |
topoDistLocal[i][nTopos] = 3; |
261 |
< |
nTopos++; |
241 |
> |
if (userChoseCutoff_) |
242 |
> |
atypeCutoff[atid] = userCutoff_; |
243 |
> |
else |
244 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
245 |
> |
} |
246 |
> |
|
247 |
> |
vector<RealType> gTypeCutoffs; |
248 |
> |
|
249 |
> |
// first we do a single loop over the cutoff groups to find the |
250 |
> |
// largest cutoff for any atypes present in this group. |
251 |
> |
#ifdef IS_MPI |
252 |
> |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
253 |
> |
groupRowToGtype.resize(nGroupsInRow_); |
254 |
> |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
255 |
> |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
256 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
257 |
> |
ia != atomListRow.end(); ++ia) { |
258 |
> |
int atom1 = (*ia); |
259 |
> |
atid = identsRow[atom1]; |
260 |
> |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
261 |
> |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
262 |
|
} |
263 |
+ |
} |
264 |
+ |
|
265 |
+ |
bool gTypeFound = false; |
266 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
267 |
+ |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
268 |
+ |
groupRowToGtype[cg1] = gt; |
269 |
+ |
gTypeFound = true; |
270 |
+ |
} |
271 |
+ |
} |
272 |
+ |
if (!gTypeFound) { |
273 |
+ |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
274 |
+ |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
275 |
+ |
} |
276 |
+ |
|
277 |
+ |
} |
278 |
+ |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
279 |
+ |
groupColToGtype.resize(nGroupsInCol_); |
280 |
+ |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
281 |
+ |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
282 |
+ |
for (vector<int>::iterator jb = atomListCol.begin(); |
283 |
+ |
jb != atomListCol.end(); ++jb) { |
284 |
+ |
int atom2 = (*jb); |
285 |
+ |
atid = identsCol[atom2]; |
286 |
+ |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
287 |
+ |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
288 |
+ |
} |
289 |
+ |
} |
290 |
+ |
bool gTypeFound = false; |
291 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
292 |
+ |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
293 |
+ |
groupColToGtype[cg2] = gt; |
294 |
+ |
gTypeFound = true; |
295 |
+ |
} |
296 |
+ |
} |
297 |
+ |
if (!gTypeFound) { |
298 |
+ |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
299 |
+ |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
300 |
+ |
} |
301 |
+ |
} |
302 |
+ |
#else |
303 |
+ |
|
304 |
+ |
vector<RealType> groupCutoff(nGroups_, 0.0); |
305 |
+ |
groupToGtype.resize(nGroups_); |
306 |
+ |
|
307 |
+ |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
308 |
+ |
|
309 |
+ |
groupCutoff[cg1] = 0.0; |
310 |
+ |
vector<int> atomList = getAtomsInGroupRow(cg1); |
311 |
+ |
|
312 |
+ |
for (vector<int>::iterator ia = atomList.begin(); |
313 |
+ |
ia != atomList.end(); ++ia) { |
314 |
+ |
int atom1 = (*ia); |
315 |
+ |
atid = idents[atom1]; |
316 |
+ |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
317 |
+ |
groupCutoff[cg1] = atypeCutoff[atid]; |
318 |
+ |
} |
319 |
+ |
} |
320 |
+ |
|
321 |
+ |
bool gTypeFound = false; |
322 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
323 |
+ |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
324 |
+ |
groupToGtype[cg1] = gt; |
325 |
+ |
gTypeFound = true; |
326 |
+ |
} |
327 |
+ |
} |
328 |
+ |
if (!gTypeFound) { |
329 |
+ |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
330 |
+ |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
331 |
|
} |
332 |
|
} |
333 |
+ |
#endif |
334 |
+ |
|
335 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
336 |
+ |
|
337 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
338 |
+ |
|
339 |
+ |
#ifdef IS_MPI |
340 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
341 |
+ |
#endif |
342 |
+ |
|
343 |
+ |
RealType tradRcut = groupMax; |
344 |
+ |
|
345 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
346 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
347 |
+ |
RealType thisRcut; |
348 |
+ |
switch(cutoffPolicy_) { |
349 |
+ |
case TRADITIONAL: |
350 |
+ |
thisRcut = tradRcut; |
351 |
+ |
break; |
352 |
+ |
case MIX: |
353 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
354 |
+ |
break; |
355 |
+ |
case MAX: |
356 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
357 |
+ |
break; |
358 |
+ |
default: |
359 |
+ |
sprintf(painCave.errMsg, |
360 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
361 |
+ |
"hit an unknown cutoff policy!\n"); |
362 |
+ |
painCave.severity = OPENMD_ERROR; |
363 |
+ |
painCave.isFatal = 1; |
364 |
+ |
simError(); |
365 |
+ |
break; |
366 |
+ |
} |
367 |
+ |
|
368 |
+ |
pair<int,int> key = make_pair(i,j); |
369 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
370 |
+ |
|
371 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
372 |
+ |
|
373 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
374 |
+ |
|
375 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
376 |
+ |
|
377 |
+ |
// sanity check |
378 |
+ |
|
379 |
+ |
if (userChoseCutoff_) { |
380 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
381 |
+ |
sprintf(painCave.errMsg, |
382 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
383 |
+ |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
384 |
+ |
painCave.severity = OPENMD_ERROR; |
385 |
+ |
painCave.isFatal = 1; |
386 |
+ |
simError(); |
387 |
+ |
} |
388 |
+ |
} |
389 |
+ |
} |
390 |
+ |
} |
391 |
|
} |
392 |
< |
|
392 |
> |
|
393 |
> |
|
394 |
> |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
395 |
> |
int i, j; |
396 |
> |
#ifdef IS_MPI |
397 |
> |
i = groupRowToGtype[cg1]; |
398 |
> |
j = groupColToGtype[cg2]; |
399 |
> |
#else |
400 |
> |
i = groupToGtype[cg1]; |
401 |
> |
j = groupToGtype[cg2]; |
402 |
> |
#endif |
403 |
> |
return gTypeCutoffMap[make_pair(i,j)]; |
404 |
> |
} |
405 |
> |
|
406 |
> |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
407 |
> |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
408 |
> |
if (toposForAtom[atom1][j] == atom2) |
409 |
> |
return topoDist[atom1][j]; |
410 |
> |
} |
411 |
> |
return 0; |
412 |
> |
} |
413 |
> |
|
414 |
> |
void ForceMatrixDecomposition::zeroWorkArrays() { |
415 |
> |
pairwisePot = 0.0; |
416 |
> |
embeddingPot = 0.0; |
417 |
> |
|
418 |
> |
#ifdef IS_MPI |
419 |
> |
if (storageLayout_ & DataStorage::dslForce) { |
420 |
> |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
421 |
> |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
422 |
> |
} |
423 |
> |
|
424 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
425 |
> |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
426 |
> |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
427 |
> |
} |
428 |
> |
|
429 |
> |
fill(pot_row.begin(), pot_row.end(), |
430 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
431 |
> |
|
432 |
> |
fill(pot_col.begin(), pot_col.end(), |
433 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
434 |
> |
|
435 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
436 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
437 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
438 |
> |
} |
439 |
> |
|
440 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
441 |
> |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
442 |
> |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
443 |
> |
} |
444 |
> |
|
445 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
446 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
447 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
448 |
> |
} |
449 |
> |
|
450 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
451 |
> |
fill(atomRowData.functionalDerivative.begin(), |
452 |
> |
atomRowData.functionalDerivative.end(), 0.0); |
453 |
> |
fill(atomColData.functionalDerivative.begin(), |
454 |
> |
atomColData.functionalDerivative.end(), 0.0); |
455 |
> |
} |
456 |
> |
|
457 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
458 |
> |
fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0); |
459 |
> |
fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0); |
460 |
> |
} |
461 |
> |
|
462 |
> |
#else |
463 |
> |
|
464 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
465 |
> |
fill(snap_->atomData.particlePot.begin(), |
466 |
> |
snap_->atomData.particlePot.end(), 0.0); |
467 |
> |
} |
468 |
> |
|
469 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
470 |
> |
fill(snap_->atomData.density.begin(), |
471 |
> |
snap_->atomData.density.end(), 0.0); |
472 |
> |
} |
473 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
474 |
> |
fill(snap_->atomData.functional.begin(), |
475 |
> |
snap_->atomData.functional.end(), 0.0); |
476 |
> |
} |
477 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
478 |
> |
fill(snap_->atomData.functionalDerivative.begin(), |
479 |
> |
snap_->atomData.functionalDerivative.end(), 0.0); |
480 |
> |
} |
481 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
482 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
483 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
484 |
> |
} |
485 |
> |
#endif |
486 |
> |
|
487 |
> |
} |
488 |
> |
|
489 |
> |
|
490 |
|
void ForceMatrixDecomposition::distributeData() { |
491 |
|
snap_ = sman_->getCurrentSnapshot(); |
492 |
|
storageLayout_ = sman_->getStorageLayout(); |
522 |
|
#endif |
523 |
|
} |
524 |
|
|
525 |
+ |
/* collects information obtained during the pre-pair loop onto local |
526 |
+ |
* data structures. |
527 |
+ |
*/ |
528 |
|
void ForceMatrixDecomposition::collectIntermediateData() { |
529 |
|
snap_ = sman_->getCurrentSnapshot(); |
530 |
|
storageLayout_ = sman_->getStorageLayout(); |
536 |
|
snap_->atomData.density); |
537 |
|
|
538 |
|
int n = snap_->atomData.density.size(); |
539 |
< |
std::vector<RealType> rho_tmp(n, 0.0); |
539 |
> |
vector<RealType> rho_tmp(n, 0.0); |
540 |
|
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
541 |
|
for (int i = 0; i < n; i++) |
542 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
543 |
|
} |
544 |
|
#endif |
545 |
|
} |
546 |
< |
|
546 |
> |
|
547 |
> |
/* |
548 |
> |
* redistributes information obtained during the pre-pair loop out to |
549 |
> |
* row and column-indexed data structures |
550 |
> |
*/ |
551 |
|
void ForceMatrixDecomposition::distributeIntermediateData() { |
552 |
|
snap_ = sman_->getCurrentSnapshot(); |
553 |
|
storageLayout_ = sman_->getStorageLayout(); |
605 |
|
|
606 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
607 |
|
|
608 |
< |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
609 |
< |
vector<RealType> (nLocal_, 0.0)); |
608 |
> |
vector<potVec> pot_temp(nLocal_, |
609 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
610 |
> |
|
611 |
> |
// scatter/gather pot_row into the members of my column |
612 |
> |
|
613 |
> |
AtomCommPotRow->scatter(pot_row, pot_temp); |
614 |
> |
|
615 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
616 |
> |
pairwisePot += pot_temp[ii]; |
617 |
|
|
618 |
< |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
619 |
< |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
620 |
< |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
621 |
< |
pot_local[i] += pot_temp[i][ii]; |
622 |
< |
} |
623 |
< |
} |
618 |
> |
fill(pot_temp.begin(), pot_temp.end(), |
619 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
620 |
> |
|
621 |
> |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
622 |
> |
|
623 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
624 |
> |
pairwisePot += pot_temp[ii]; |
625 |
|
#endif |
626 |
+ |
|
627 |
|
} |
628 |
|
|
629 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
698 |
|
#ifdef IS_MPI |
699 |
|
return massFactorsRow[atom1]; |
700 |
|
#else |
701 |
< |
return massFactorsLocal[atom1]; |
701 |
> |
return massFactors[atom1]; |
702 |
|
#endif |
703 |
|
} |
704 |
|
|
706 |
|
#ifdef IS_MPI |
707 |
|
return massFactorsCol[atom2]; |
708 |
|
#else |
709 |
< |
return massFactorsLocal[atom2]; |
709 |
> |
return massFactors[atom2]; |
710 |
|
#endif |
711 |
|
|
712 |
|
} |
724 |
|
return d; |
725 |
|
} |
726 |
|
|
727 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
728 |
< |
#ifdef IS_MPI |
457 |
< |
return skipsForRowAtom[atom1]; |
458 |
< |
#else |
459 |
< |
return skipsForLocalAtom[atom1]; |
460 |
< |
#endif |
727 |
> |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
728 |
> |
return skipsForAtom[atom1]; |
729 |
|
} |
730 |
|
|
731 |
|
/** |
732 |
< |
* there are a number of reasons to skip a pair or a particle mostly |
733 |
< |
* we do this to exclude atoms who are involved in short range |
734 |
< |
* interactions (bonds, bends, torsions), but we also need to |
735 |
< |
* exclude some overcounted interactions that result from the |
736 |
< |
* parallel decomposition. |
732 |
> |
* There are a number of reasons to skip a pair or a |
733 |
> |
* particle. Mostly we do this to exclude atoms who are involved in |
734 |
> |
* short range interactions (bonds, bends, torsions), but we also |
735 |
> |
* need to exclude some overcounted interactions that result from |
736 |
> |
* the parallel decomposition. |
737 |
|
*/ |
738 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
739 |
|
int unique_id_1, unique_id_2; |
758 |
|
unique_id_2 = atom2; |
759 |
|
#endif |
760 |
|
|
761 |
< |
#ifdef IS_MPI |
762 |
< |
for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
495 |
< |
i != skipsForRowAtom[atom1].end(); ++i) { |
761 |
> |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
762 |
> |
i != skipsForAtom[atom1].end(); ++i) { |
763 |
|
if ( (*i) == unique_id_2 ) return true; |
497 |
– |
} |
498 |
– |
#else |
499 |
– |
for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
500 |
– |
i != skipsForLocalAtom[atom1].end(); ++i) { |
501 |
– |
if ( (*i) == unique_id_2 ) return true; |
502 |
– |
} |
503 |
– |
#endif |
504 |
– |
} |
505 |
– |
|
506 |
– |
int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
507 |
– |
|
508 |
– |
#ifdef IS_MPI |
509 |
– |
for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
510 |
– |
if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
764 |
|
} |
512 |
– |
#else |
513 |
– |
for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
514 |
– |
if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
515 |
– |
} |
516 |
– |
#endif |
765 |
|
|
766 |
< |
// zero is default for unconnected (i.e. normal) pair interactions |
519 |
< |
return 0; |
766 |
> |
return false; |
767 |
|
} |
768 |
|
|
769 |
+ |
|
770 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
771 |
|
#ifdef IS_MPI |
772 |
|
atomRowData.force[atom1] += fg; |
784 |
|
} |
785 |
|
|
786 |
|
// filling interaction blocks with pointers |
787 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
788 |
< |
InteractionData idat; |
541 |
< |
|
787 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
788 |
> |
int atom1, int atom2) { |
789 |
|
#ifdef IS_MPI |
790 |
+ |
|
791 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
792 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
793 |
+ |
|
794 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
795 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
796 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
811 |
|
idat.rho2 = &(atomColData.density[atom2]); |
812 |
|
} |
813 |
|
|
814 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
815 |
+ |
idat.frho1 = &(atomRowData.functional[atom1]); |
816 |
+ |
idat.frho2 = &(atomColData.functional[atom2]); |
817 |
+ |
} |
818 |
+ |
|
819 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
820 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
821 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
822 |
|
} |
823 |
|
|
824 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
825 |
+ |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
826 |
+ |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
827 |
+ |
} |
828 |
+ |
|
829 |
|
#else |
830 |
+ |
|
831 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
832 |
+ |
ff_->getAtomType(idents[atom2]) ); |
833 |
+ |
|
834 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
835 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
836 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
846 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
847 |
|
} |
848 |
|
|
849 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
849 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
850 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
851 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
852 |
|
} |
853 |
|
|
854 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
855 |
+ |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
856 |
+ |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
857 |
+ |
} |
858 |
+ |
|
859 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
860 |
|
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
861 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
862 |
|
} |
863 |
+ |
|
864 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
865 |
+ |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
866 |
+ |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
867 |
+ |
} |
868 |
+ |
|
869 |
|
#endif |
594 |
– |
return idat; |
870 |
|
} |
871 |
|
|
872 |
< |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
872 |
> |
|
873 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
874 |
> |
#ifdef IS_MPI |
875 |
> |
pot_row[atom1] += 0.5 * *(idat.pot); |
876 |
> |
pot_col[atom2] += 0.5 * *(idat.pot); |
877 |
|
|
878 |
< |
InteractionData idat; |
878 |
> |
atomRowData.force[atom1] += *(idat.f1); |
879 |
> |
atomColData.force[atom2] -= *(idat.f1); |
880 |
> |
#else |
881 |
> |
pairwisePot += *(idat.pot); |
882 |
> |
|
883 |
> |
snap_->atomData.force[atom1] += *(idat.f1); |
884 |
> |
snap_->atomData.force[atom2] -= *(idat.f1); |
885 |
> |
#endif |
886 |
> |
|
887 |
> |
} |
888 |
> |
|
889 |
> |
|
890 |
> |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
891 |
> |
int atom1, int atom2) { |
892 |
|
#ifdef IS_MPI |
893 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
894 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
895 |
+ |
|
896 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
897 |
|
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
898 |
|
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
899 |
|
} |
900 |
+ |
|
901 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
902 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
903 |
|
idat.t2 = &(atomColData.torque[atom2]); |
904 |
|
} |
905 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
906 |
< |
idat.t1 = &(atomRowData.force[atom1]); |
907 |
< |
idat.t2 = &(atomColData.force[atom2]); |
905 |
> |
|
906 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
907 |
> |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
908 |
> |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
909 |
|
} |
910 |
|
#else |
911 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
912 |
+ |
ff_->getAtomType(idents[atom2]) ); |
913 |
+ |
|
914 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
915 |
|
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
916 |
|
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
917 |
|
} |
918 |
+ |
|
919 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
920 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
921 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
922 |
|
} |
923 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
924 |
< |
idat.t1 = &(snap_->atomData.force[atom1]); |
925 |
< |
idat.t2 = &(snap_->atomData.force[atom2]); |
923 |
> |
|
924 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
925 |
> |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
926 |
> |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
927 |
|
} |
928 |
< |
#endif |
627 |
< |
|
928 |
> |
#endif |
929 |
|
} |
930 |
|
|
931 |
|
|
932 |
+ |
void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
933 |
+ |
#ifdef IS_MPI |
934 |
+ |
pot_row[atom1] += 0.5 * *(idat.pot); |
935 |
+ |
pot_col[atom2] += 0.5 * *(idat.pot); |
936 |
+ |
#else |
937 |
+ |
pairwisePot += *(idat.pot); |
938 |
+ |
#endif |
939 |
|
|
940 |
+ |
} |
941 |
|
|
942 |
+ |
|
943 |
|
/* |
944 |
|
* buildNeighborList |
945 |
|
* |
949 |
|
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
950 |
|
|
951 |
|
vector<pair<int, int> > neighborList; |
952 |
+ |
groupCutoffs cuts; |
953 |
|
#ifdef IS_MPI |
954 |
|
cellListRow_.clear(); |
955 |
|
cellListCol_.clear(); |
957 |
|
cellList_.clear(); |
958 |
|
#endif |
959 |
|
|
960 |
< |
// dangerous to not do error checking. |
650 |
< |
RealType rCut_; |
651 |
< |
|
652 |
< |
RealType rList_ = (rCut_ + skinThickness_); |
960 |
> |
RealType rList_ = (largestRcut_ + skinThickness_); |
961 |
|
RealType rl2 = rList_ * rList_; |
962 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
963 |
|
Mat3x3d Hmat = snap_->getHmat(); |
973 |
|
Vector3d rs, scaled, dr; |
974 |
|
Vector3i whichCell; |
975 |
|
int cellIndex; |
976 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
977 |
|
|
978 |
|
#ifdef IS_MPI |
979 |
+ |
cellListRow_.resize(nCtot); |
980 |
+ |
cellListCol_.resize(nCtot); |
981 |
+ |
#else |
982 |
+ |
cellList_.resize(nCtot); |
983 |
+ |
#endif |
984 |
+ |
|
985 |
+ |
#ifdef IS_MPI |
986 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
987 |
|
rs = cgRowData.position[i]; |
988 |
+ |
|
989 |
|
// scaled positions relative to the box vectors |
990 |
|
scaled = invHmat * rs; |
991 |
+ |
|
992 |
|
// wrap the vector back into the unit box by subtracting integer box |
993 |
|
// numbers |
994 |
< |
for (int j = 0; j < 3; j++) |
994 |
> |
for (int j = 0; j < 3; j++) { |
995 |
|
scaled[j] -= roundMe(scaled[j]); |
996 |
+ |
scaled[j] += 0.5; |
997 |
+ |
} |
998 |
|
|
999 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1000 |
|
whichCell.x() = nCells_.x() * scaled.x(); |
1003 |
|
|
1004 |
|
// find single index of this cell: |
1005 |
|
cellIndex = Vlinear(whichCell, nCells_); |
1006 |
+ |
|
1007 |
|
// add this cutoff group to the list of groups in this cell; |
1008 |
|
cellListRow_[cellIndex].push_back(i); |
1009 |
|
} |
1010 |
|
|
1011 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
1012 |
|
rs = cgColData.position[i]; |
1013 |
+ |
|
1014 |
|
// scaled positions relative to the box vectors |
1015 |
|
scaled = invHmat * rs; |
1016 |
+ |
|
1017 |
|
// wrap the vector back into the unit box by subtracting integer box |
1018 |
|
// numbers |
1019 |
< |
for (int j = 0; j < 3; j++) |
1019 |
> |
for (int j = 0; j < 3; j++) { |
1020 |
|
scaled[j] -= roundMe(scaled[j]); |
1021 |
+ |
scaled[j] += 0.5; |
1022 |
+ |
} |
1023 |
|
|
1024 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1025 |
|
whichCell.x() = nCells_.x() * scaled.x(); |
1028 |
|
|
1029 |
|
// find single index of this cell: |
1030 |
|
cellIndex = Vlinear(whichCell, nCells_); |
1031 |
+ |
|
1032 |
|
// add this cutoff group to the list of groups in this cell; |
1033 |
|
cellListCol_[cellIndex].push_back(i); |
1034 |
|
} |
1035 |
|
#else |
1036 |
|
for (int i = 0; i < nGroups_; i++) { |
1037 |
|
rs = snap_->cgData.position[i]; |
1038 |
+ |
|
1039 |
|
// scaled positions relative to the box vectors |
1040 |
|
scaled = invHmat * rs; |
1041 |
+ |
|
1042 |
|
// wrap the vector back into the unit box by subtracting integer box |
1043 |
|
// numbers |
1044 |
< |
for (int j = 0; j < 3; j++) |
1044 |
> |
for (int j = 0; j < 3; j++) { |
1045 |
|
scaled[j] -= roundMe(scaled[j]); |
1046 |
+ |
scaled[j] += 0.5; |
1047 |
+ |
} |
1048 |
|
|
1049 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1050 |
|
whichCell.x() = nCells_.x() * scaled.x(); |
1052 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
1053 |
|
|
1054 |
|
// find single index of this cell: |
1055 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1055 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1056 |
> |
|
1057 |
|
// add this cutoff group to the list of groups in this cell; |
1058 |
|
cellList_[cellIndex].push_back(i); |
1059 |
|
} |
1060 |
|
#endif |
1061 |
|
|
731 |
– |
|
732 |
– |
|
1062 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1063 |
|
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1064 |
|
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1103 |
|
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1104 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1105 |
|
snap_->wrapVector(dr); |
1106 |
< |
if (dr.lengthSquare() < rl2) { |
1106 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1107 |
> |
if (dr.lengthSquare() < cuts.third) { |
1108 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1109 |
|
} |
1110 |
|
} |
1111 |
|
} |
1112 |
|
} |
1113 |
|
#else |
1114 |
+ |
|
1115 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1116 |
|
j1 != cellList_[m1].end(); ++j1) { |
1117 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1118 |
|
j2 != cellList_[m2].end(); ++j2) { |
1119 |
< |
|
1119 |
> |
|
1120 |
|
// Always do this if we're in different cells or if |
1121 |
|
// we're in the same cell and the global index of the |
1122 |
|
// j2 cutoff group is less than the j1 cutoff group |
1124 |
|
if (m2 != m1 || (*j2) < (*j1)) { |
1125 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1126 |
|
snap_->wrapVector(dr); |
1127 |
< |
if (dr.lengthSquare() < rl2) { |
1127 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1128 |
> |
if (dr.lengthSquare() < cuts.third) { |
1129 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1130 |
|
} |
1131 |
|
} |
1136 |
|
} |
1137 |
|
} |
1138 |
|
} |
1139 |
< |
|
1139 |
> |
|
1140 |
|
// save the local cutoff group positions for the check that is |
1141 |
|
// done on each loop: |
1142 |
|
saved_CG_positions_.clear(); |
1143 |
|
for (int i = 0; i < nGroups_; i++) |
1144 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1145 |
< |
|
1145 |
> |
|
1146 |
|
return neighborList; |
1147 |
|
} |
1148 |
|
} //end namespace OpenMD |