ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1554 by gezelter, Sat Apr 30 02:54:02 2011 UTC vs.
Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include "parallel/ForceMatrixDecomposition.hpp"
43   #include "math/SquareMatrix3.hpp"
44   #include "nonbonded/NonBondedInteraction.hpp"
45   #include "brains/SnapshotManager.hpp"
46 + #include "brains/PairList.hpp"
47  
48   using namespace std;
49   namespace OpenMD {
50  
51 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52 +
53 +    // In a parallel computation, row and colum scans must visit all
54 +    // surrounding cells (not just the 14 upper triangular blocks that
55 +    // are used when the processor can see all pairs)
56 + #ifdef IS_MPI
57 +    cellOffsets_.clear();
58 +    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 +    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 +    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                          
61 +    cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 +    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 +    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 +    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 +    cellOffsets_.push_back( Vector3i( 0, 1,-1) );      
66 +    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 +    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 +    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 +    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 +    cellOffsets_.push_back( Vector3i(-1, 0, 0) );      
71 +    cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 +    cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 +    cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 +    cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 +    cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 +    cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 +    cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 +    cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 +    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 +    cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 +    cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 +    cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 +    cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 +    cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 + #endif    
86 +  }
87 +
88 +
89    /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
53  
93    void ForceMatrixDecomposition::distributeInitialData() {
94      snap_ = sman_->getCurrentSnapshot();
95      storageLayout_ = sman_->getStorageLayout();
96 < #ifdef IS_MPI    
97 <    int nLocal = snap_->getNumberOfAtoms();
98 <    int nGroups = snap_->getNumberOfCutoffGroups();
96 >    ff_ = info_->getForceField();
97 >    nLocal_ = snap_->getNumberOfAtoms();
98 >  
99 >    nGroups_ = info_->getNLocalCutoffGroups();
100 >    // gather the information for atomtype IDs (atids):
101 >    idents = info_->getIdentArray();
102 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
104 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105 >
106 >    massFactors = info_->getMassFactors();
107 >
108 >    PairList* excludes = info_->getExcludedInteractions();
109 >    PairList* oneTwo = info_->getOneTwoInteractions();
110 >    PairList* oneThree = info_->getOneThreeInteractions();
111 >    PairList* oneFour = info_->getOneFourInteractions();
112      
113 <    AtomCommIntRow = new Communicator<Row,int>(nLocal);
114 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
115 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
116 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
113 >    if (needVelocities_)
114 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 >                                     DataStorage::dslVelocity);
116 >    else
117 >      snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118 >    
119 > #ifdef IS_MPI
120 >
121 >    MPI::Intracomm row = rowComm.getComm();
122 >    MPI::Intracomm col = colComm.getComm();
123  
124 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal);
125 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
126 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
127 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
124 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129  
130 <    cgCommIntRow = new Communicator<Row,int>(nGroups);
131 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
132 <    cgCommIntColumn = new Communicator<Column,int>(nGroups);
133 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
130 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135  
136 <    int nAtomsInRow = AtomCommIntRow->getSize();
137 <    int nAtomsInCol = AtomCommIntColumn->getSize();
138 <    int nGroupsInRow = cgCommIntRow->getSize();
139 <    int nGroupsInCol = cgCommIntColumn->getSize();
136 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
137 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140  
141 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
142 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 +    nGroupsInRow_ = cgPlanIntRow->getSize();
144 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
145 +
146      // Modify the data storage objects with the correct layouts and sizes:
147 <    atomRowData.resize(nAtomsInRow);
147 >    atomRowData.resize(nAtomsInRow_);
148      atomRowData.setStorageLayout(storageLayout_);
149 <    atomColData.resize(nAtomsInCol);
149 >    atomColData.resize(nAtomsInCol_);
150      atomColData.setStorageLayout(storageLayout_);
151 <    cgRowData.resize(nGroupsInRow);
151 >    cgRowData.resize(nGroupsInRow_);
152      cgRowData.setStorageLayout(DataStorage::dslPosition);
153 <    cgColData.resize(nGroupsInCol);
154 <    cgColData.setStorageLayout(DataStorage::dslPosition);
153 >    cgColData.resize(nGroupsInCol_);
154 >    if (needVelocities_)
155 >      // we only need column velocities if we need them.
156 >      cgColData.setStorageLayout(DataStorage::dslPosition |
157 >                                 DataStorage::dslVelocity);
158 >    else    
159 >      cgColData.setStorageLayout(DataStorage::dslPosition);
160 >      
161 >    identsRow.resize(nAtomsInRow_);
162 >    identsCol.resize(nAtomsInCol_);
163      
164 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
165 <                                      vector<RealType> (nAtomsInRow, 0.0));
166 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
167 <                                      vector<RealType> (nAtomsInCol, 0.0));
164 >    AtomPlanIntRow->gather(idents, identsRow);
165 >    AtomPlanIntColumn->gather(idents, identsCol);
166 >    
167 >    // allocate memory for the parallel objects
168 >    atypesRow.resize(nAtomsInRow_);
169 >    atypesCol.resize(nAtomsInCol_);
170  
171 +    for (int i = 0; i < nAtomsInRow_; i++)
172 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 +    for (int i = 0; i < nAtomsInCol_; i++)
174 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
175  
176 <    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
176 >    pot_row.resize(nAtomsInRow_);
177 >    pot_col.resize(nAtomsInCol_);
178 >
179 >    AtomRowToGlobal.resize(nAtomsInRow_);
180 >    AtomColToGlobal.resize(nAtomsInCol_);
181 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
182 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
183 >
184 >    cgRowToGlobal.resize(nGroupsInRow_);
185 >    cgColToGlobal.resize(nGroupsInCol_);
186 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
187 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
188 >
189 >    massFactorsRow.resize(nAtomsInRow_);
190 >    massFactorsCol.resize(nAtomsInCol_);
191 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
192 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
193 >
194 >    groupListRow_.clear();
195 >    groupListRow_.resize(nGroupsInRow_);
196 >    for (int i = 0; i < nGroupsInRow_; i++) {
197 >      int gid = cgRowToGlobal[i];
198 >      for (int j = 0; j < nAtomsInRow_; j++) {
199 >        int aid = AtomRowToGlobal[j];
200 >        if (globalGroupMembership[aid] == gid)
201 >          groupListRow_[i].push_back(j);
202 >      }      
203 >    }
204 >
205 >    groupListCol_.clear();
206 >    groupListCol_.resize(nGroupsInCol_);
207 >    for (int i = 0; i < nGroupsInCol_; i++) {
208 >      int gid = cgColToGlobal[i];
209 >      for (int j = 0; j < nAtomsInCol_; j++) {
210 >        int aid = AtomColToGlobal[j];
211 >        if (globalGroupMembership[aid] == gid)
212 >          groupListCol_[i].push_back(j);
213 >      }      
214 >    }
215 >
216 >    excludesForAtom.clear();
217 >    excludesForAtom.resize(nAtomsInRow_);
218 >    toposForAtom.clear();
219 >    toposForAtom.resize(nAtomsInRow_);
220 >    topoDist.clear();
221 >    topoDist.resize(nAtomsInRow_);
222 >    for (int i = 0; i < nAtomsInRow_; i++) {
223 >      int iglob = AtomRowToGlobal[i];
224 >
225 >      for (int j = 0; j < nAtomsInCol_; j++) {
226 >        int jglob = AtomColToGlobal[j];
227 >
228 >        if (excludes->hasPair(iglob, jglob))
229 >          excludesForAtom[i].push_back(j);      
230 >        
231 >        if (oneTwo->hasPair(iglob, jglob)) {
232 >          toposForAtom[i].push_back(j);
233 >          topoDist[i].push_back(1);
234 >        } else {
235 >          if (oneThree->hasPair(iglob, jglob)) {
236 >            toposForAtom[i].push_back(j);
237 >            topoDist[i].push_back(2);
238 >          } else {
239 >            if (oneFour->hasPair(iglob, jglob)) {
240 >              toposForAtom[i].push_back(j);
241 >              topoDist[i].push_back(3);
242 >            }
243 >          }
244 >        }
245 >      }      
246 >    }
247 >
248 > #else
249 >    excludesForAtom.clear();
250 >    excludesForAtom.resize(nLocal_);
251 >    toposForAtom.clear();
252 >    toposForAtom.resize(nLocal_);
253 >    topoDist.clear();
254 >    topoDist.resize(nLocal_);
255 >
256 >    for (int i = 0; i < nLocal_; i++) {
257 >      int iglob = AtomLocalToGlobal[i];
258 >
259 >      for (int j = 0; j < nLocal_; j++) {
260 >        int jglob = AtomLocalToGlobal[j];
261 >
262 >        if (excludes->hasPair(iglob, jglob))
263 >          excludesForAtom[i].push_back(j);              
264 >        
265 >        if (oneTwo->hasPair(iglob, jglob)) {
266 >          toposForAtom[i].push_back(j);
267 >          topoDist[i].push_back(1);
268 >        } else {
269 >          if (oneThree->hasPair(iglob, jglob)) {
270 >            toposForAtom[i].push_back(j);
271 >            topoDist[i].push_back(2);
272 >          } else {
273 >            if (oneFour->hasPair(iglob, jglob)) {
274 >              toposForAtom[i].push_back(j);
275 >              topoDist[i].push_back(3);
276 >            }
277 >          }
278 >        }
279 >      }      
280 >    }
281 > #endif
282 >
283 >    // allocate memory for the parallel objects
284 >    atypesLocal.resize(nLocal_);
285 >
286 >    for (int i = 0; i < nLocal_; i++)
287 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
288 >
289 >    groupList_.clear();
290 >    groupList_.resize(nGroups_);
291 >    for (int i = 0; i < nGroups_; i++) {
292 >      int gid = cgLocalToGlobal[i];
293 >      for (int j = 0; j < nLocal_; j++) {
294 >        int aid = AtomLocalToGlobal[j];
295 >        if (globalGroupMembership[aid] == gid) {
296 >          groupList_[i].push_back(j);
297 >        }
298 >      }      
299 >    }
300 >
301 >
302 >    createGtypeCutoffMap();
303 >
304 >  }
305 >  
306 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
307      
308 <    // gather the information for atomtype IDs (atids):
309 <    vector<int> identsLocal = info_->getIdentArray();
310 <    identsRow.reserve(nAtomsInRow);
311 <    identsCol.reserve(nAtomsInCol);
308 >    RealType tol = 1e-6;
309 >    largestRcut_ = 0.0;
310 >    RealType rc;
311 >    int atid;
312 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
313      
314 <    AtomCommIntRow->gather(identsLocal, identsRow);
315 <    AtomCommIntColumn->gather(identsLocal, identsCol);
314 >    map<int, RealType> atypeCutoff;
315 >      
316 >    for (set<AtomType*>::iterator at = atypes.begin();
317 >         at != atypes.end(); ++at){
318 >      atid = (*at)->getIdent();
319 >      if (userChoseCutoff_)
320 >        atypeCutoff[atid] = userCutoff_;
321 >      else
322 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
323 >    }
324      
325 <    AtomLocalToGlobal = info_->getGlobalAtomIndices();
326 <    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
327 <    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
328 <    
329 <    cgLocalToGlobal = info_->getGlobalGroupIndices();
330 <    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
331 <    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
325 >    vector<RealType> gTypeCutoffs;
326 >    // first we do a single loop over the cutoff groups to find the
327 >    // largest cutoff for any atypes present in this group.
328 > #ifdef IS_MPI
329 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
330 >    groupRowToGtype.resize(nGroupsInRow_);
331 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
332 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
333 >      for (vector<int>::iterator ia = atomListRow.begin();
334 >           ia != atomListRow.end(); ++ia) {            
335 >        int atom1 = (*ia);
336 >        atid = identsRow[atom1];
337 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
338 >          groupCutoffRow[cg1] = atypeCutoff[atid];
339 >        }
340 >      }
341  
342 <    // still need:
343 <    // topoDist
344 <    // exclude
342 >      bool gTypeFound = false;
343 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
344 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
345 >          groupRowToGtype[cg1] = gt;
346 >          gTypeFound = true;
347 >        }
348 >      }
349 >      if (!gTypeFound) {
350 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
351 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
352 >      }
353 >      
354 >    }
355 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
356 >    groupColToGtype.resize(nGroupsInCol_);
357 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
358 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
359 >      for (vector<int>::iterator jb = atomListCol.begin();
360 >           jb != atomListCol.end(); ++jb) {            
361 >        int atom2 = (*jb);
362 >        atid = identsCol[atom2];
363 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
364 >          groupCutoffCol[cg2] = atypeCutoff[atid];
365 >        }
366 >      }
367 >      bool gTypeFound = false;
368 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
369 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
370 >          groupColToGtype[cg2] = gt;
371 >          gTypeFound = true;
372 >        }
373 >      }
374 >      if (!gTypeFound) {
375 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
376 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
377 >      }
378 >    }
379 > #else
380 >
381 >    vector<RealType> groupCutoff(nGroups_, 0.0);
382 >    groupToGtype.resize(nGroups_);
383 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
384 >      groupCutoff[cg1] = 0.0;
385 >      vector<int> atomList = getAtomsInGroupRow(cg1);
386 >      for (vector<int>::iterator ia = atomList.begin();
387 >           ia != atomList.end(); ++ia) {            
388 >        int atom1 = (*ia);
389 >        atid = idents[atom1];
390 >        if (atypeCutoff[atid] > groupCutoff[cg1])
391 >          groupCutoff[cg1] = atypeCutoff[atid];
392 >      }
393 >      
394 >      bool gTypeFound = false;
395 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
396 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
397 >          groupToGtype[cg1] = gt;
398 >          gTypeFound = true;
399 >        }
400 >      }
401 >      if (!gTypeFound) {      
402 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
403 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
404 >      }      
405 >    }
406   #endif
407 +
408 +    // Now we find the maximum group cutoff value present in the simulation
409 +
410 +    RealType groupMax = *max_element(gTypeCutoffs.begin(),
411 +                                     gTypeCutoffs.end());
412 +
413 + #ifdef IS_MPI
414 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
415 +                              MPI::MAX);
416 + #endif
417 +    
418 +    RealType tradRcut = groupMax;
419 +
420 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
421 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
422 +        RealType thisRcut;
423 +        switch(cutoffPolicy_) {
424 +        case TRADITIONAL:
425 +          thisRcut = tradRcut;
426 +          break;
427 +        case MIX:
428 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
429 +          break;
430 +        case MAX:
431 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
432 +          break;
433 +        default:
434 +          sprintf(painCave.errMsg,
435 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
436 +                  "hit an unknown cutoff policy!\n");
437 +          painCave.severity = OPENMD_ERROR;
438 +          painCave.isFatal = 1;
439 +          simError();
440 +          break;
441 +        }
442 +
443 +        pair<int,int> key = make_pair(i,j);
444 +        gTypeCutoffMap[key].first = thisRcut;
445 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
446 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
447 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
448 +        // sanity check
449 +        
450 +        if (userChoseCutoff_) {
451 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
452 +            sprintf(painCave.errMsg,
453 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
454 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
455 +            painCave.severity = OPENMD_ERROR;
456 +            painCave.isFatal = 1;
457 +            simError();            
458 +          }
459 +        }
460 +      }
461 +    }
462    }
463 +
464 +
465 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
466 +    int i, j;  
467 + #ifdef IS_MPI
468 +    i = groupRowToGtype[cg1];
469 +    j = groupColToGtype[cg2];
470 + #else
471 +    i = groupToGtype[cg1];
472 +    j = groupToGtype[cg2];
473 + #endif    
474 +    return gTypeCutoffMap[make_pair(i,j)];
475 +  }
476 +
477 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
478 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
479 +      if (toposForAtom[atom1][j] == atom2)
480 +        return topoDist[atom1][j];
481 +    }
482 +    return 0;
483 +  }
484 +
485 +  void ForceMatrixDecomposition::zeroWorkArrays() {
486 +    pairwisePot = 0.0;
487 +    embeddingPot = 0.0;
488 +
489 + #ifdef IS_MPI
490 +    if (storageLayout_ & DataStorage::dslForce) {
491 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
492 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
493 +    }
494 +
495 +    if (storageLayout_ & DataStorage::dslTorque) {
496 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
497 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
498 +    }
499      
500 +    fill(pot_row.begin(), pot_row.end(),
501 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
502  
503 +    fill(pot_col.begin(), pot_col.end(),
504 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
505  
506 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
507 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
508 +           0.0);
509 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
510 +           0.0);
511 +    }
512 +
513 +    if (storageLayout_ & DataStorage::dslDensity) {      
514 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
515 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
516 +    }
517 +
518 +    if (storageLayout_ & DataStorage::dslFunctional) {  
519 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
520 +           0.0);
521 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
522 +           0.0);
523 +    }
524 +
525 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
526 +      fill(atomRowData.functionalDerivative.begin(),
527 +           atomRowData.functionalDerivative.end(), 0.0);
528 +      fill(atomColData.functionalDerivative.begin(),
529 +           atomColData.functionalDerivative.end(), 0.0);
530 +    }
531 +
532 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
533 +      fill(atomRowData.skippedCharge.begin(),
534 +           atomRowData.skippedCharge.end(), 0.0);
535 +      fill(atomColData.skippedCharge.begin(),
536 +           atomColData.skippedCharge.end(), 0.0);
537 +    }
538 +
539 +    if (storageLayout_ & DataStorage::dslFlucQForce) {      
540 +      fill(atomRowData.flucQFrc.begin(),
541 +           atomRowData.flucQFrc.end(), 0.0);
542 +      fill(atomColData.flucQFrc.begin(),
543 +           atomColData.flucQFrc.end(), 0.0);
544 +    }
545 +
546 +    if (storageLayout_ & DataStorage::dslElectricField) {    
547 +      fill(atomRowData.electricField.begin(),
548 +           atomRowData.electricField.end(), V3Zero);
549 +      fill(atomColData.electricField.begin(),
550 +           atomColData.electricField.end(), V3Zero);
551 +    }
552 +
553 +    if (storageLayout_ & DataStorage::dslFlucQForce) {    
554 +      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
555 +           0.0);
556 +      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
557 +           0.0);
558 +    }
559 +
560 + #endif
561 +    // even in parallel, we need to zero out the local arrays:
562 +
563 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
564 +      fill(snap_->atomData.particlePot.begin(),
565 +           snap_->atomData.particlePot.end(), 0.0);
566 +    }
567 +    
568 +    if (storageLayout_ & DataStorage::dslDensity) {      
569 +      fill(snap_->atomData.density.begin(),
570 +           snap_->atomData.density.end(), 0.0);
571 +    }
572 +
573 +    if (storageLayout_ & DataStorage::dslFunctional) {
574 +      fill(snap_->atomData.functional.begin(),
575 +           snap_->atomData.functional.end(), 0.0);
576 +    }
577 +
578 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
579 +      fill(snap_->atomData.functionalDerivative.begin(),
580 +           snap_->atomData.functionalDerivative.end(), 0.0);
581 +    }
582 +
583 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
584 +      fill(snap_->atomData.skippedCharge.begin(),
585 +           snap_->atomData.skippedCharge.end(), 0.0);
586 +    }
587 +
588 +    if (storageLayout_ & DataStorage::dslElectricField) {      
589 +      fill(snap_->atomData.electricField.begin(),
590 +           snap_->atomData.electricField.end(), V3Zero);
591 +    }
592 +  }
593 +
594 +
595    void ForceMatrixDecomposition::distributeData()  {
596      snap_ = sman_->getCurrentSnapshot();
597      storageLayout_ = sman_->getStorageLayout();
598   #ifdef IS_MPI
599      
600      // gather up the atomic positions
601 <    AtomCommVectorRow->gather(snap_->atomData.position,
601 >    AtomPlanVectorRow->gather(snap_->atomData.position,
602                                atomRowData.position);
603 <    AtomCommVectorColumn->gather(snap_->atomData.position,
603 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
604                                   atomColData.position);
605      
606      // gather up the cutoff group positions
607 <    cgCommVectorRow->gather(snap_->cgData.position,
607 >
608 >    cgPlanVectorRow->gather(snap_->cgData.position,
609                              cgRowData.position);
610 <    cgCommVectorColumn->gather(snap_->cgData.position,
610 >
611 >    cgPlanVectorColumn->gather(snap_->cgData.position,
612                                 cgColData.position);
613 +
614 +
615 +
616 +    if (needVelocities_) {
617 +      // gather up the atomic velocities
618 +      AtomPlanVectorColumn->gather(snap_->atomData.velocity,
619 +                                   atomColData.velocity);
620 +      
621 +      cgPlanVectorColumn->gather(snap_->cgData.velocity,
622 +                                 cgColData.velocity);
623 +    }
624 +
625      
626      // if needed, gather the atomic rotation matrices
627      if (storageLayout_ & DataStorage::dslAmat) {
628 <      AtomCommMatrixRow->gather(snap_->atomData.aMat,
628 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
629                                  atomRowData.aMat);
630 <      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
630 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
631                                     atomColData.aMat);
632      }
633      
634      // if needed, gather the atomic eletrostatic frames
635      if (storageLayout_ & DataStorage::dslElectroFrame) {
636 <      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
636 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
637                                  atomRowData.electroFrame);
638 <      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
638 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
639                                     atomColData.electroFrame);
640      }
641 +
642 +    // if needed, gather the atomic fluctuating charge values
643 +    if (storageLayout_ & DataStorage::dslFlucQPosition) {
644 +      AtomPlanRealRow->gather(snap_->atomData.flucQPos,
645 +                              atomRowData.flucQPos);
646 +      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
647 +                                 atomColData.flucQPos);
648 +    }
649 +
650   #endif      
651    }
652    
653 +  /* collects information obtained during the pre-pair loop onto local
654 +   * data structures.
655 +   */
656    void ForceMatrixDecomposition::collectIntermediateData() {
657      snap_ = sman_->getCurrentSnapshot();
658      storageLayout_ = sman_->getStorageLayout();
# Line 162 | Line 660 | namespace OpenMD {
660      
661      if (storageLayout_ & DataStorage::dslDensity) {
662        
663 <      AtomCommRealRow->scatter(atomRowData.density,
663 >      AtomPlanRealRow->scatter(atomRowData.density,
664                                 snap_->atomData.density);
665        
666        int n = snap_->atomData.density.size();
667 <      std::vector<RealType> rho_tmp(n, 0.0);
668 <      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
667 >      vector<RealType> rho_tmp(n, 0.0);
668 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
669        for (int i = 0; i < n; i++)
670          snap_->atomData.density[i] += rho_tmp[i];
671      }
672 +
673 +    if (storageLayout_ & DataStorage::dslElectricField) {
674 +      
675 +      AtomPlanVectorRow->scatter(atomRowData.electricField,
676 +                                 snap_->atomData.electricField);
677 +      
678 +      int n = snap_->atomData.electricField.size();
679 +      vector<Vector3d> field_tmp(n, V3Zero);
680 +      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
681 +      for (int i = 0; i < n; i++)
682 +        snap_->atomData.electricField[i] += field_tmp[i];
683 +    }
684   #endif
685    }
686 <  
686 >
687 >  /*
688 >   * redistributes information obtained during the pre-pair loop out to
689 >   * row and column-indexed data structures
690 >   */
691    void ForceMatrixDecomposition::distributeIntermediateData() {
692      snap_ = sman_->getCurrentSnapshot();
693      storageLayout_ = sman_->getStorageLayout();
694   #ifdef IS_MPI
695      if (storageLayout_ & DataStorage::dslFunctional) {
696 <      AtomCommRealRow->gather(snap_->atomData.functional,
696 >      AtomPlanRealRow->gather(snap_->atomData.functional,
697                                atomRowData.functional);
698 <      AtomCommRealColumn->gather(snap_->atomData.functional,
698 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
699                                   atomColData.functional);
700      }
701      
702      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
703 <      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
703 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
704                                atomRowData.functionalDerivative);
705 <      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
705 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
706                                   atomColData.functionalDerivative);
707      }
708   #endif
# Line 202 | Line 716 | namespace OpenMD {
716      int n = snap_->atomData.force.size();
717      vector<Vector3d> frc_tmp(n, V3Zero);
718      
719 <    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
719 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
720      for (int i = 0; i < n; i++) {
721        snap_->atomData.force[i] += frc_tmp[i];
722        frc_tmp[i] = 0.0;
723      }
724      
725 <    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
726 <    for (int i = 0; i < n; i++)
725 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
726 >    for (int i = 0; i < n; i++) {
727        snap_->atomData.force[i] += frc_tmp[i];
728 <    
729 <    
728 >    }
729 >        
730      if (storageLayout_ & DataStorage::dslTorque) {
731  
732 <      int nt = snap_->atomData.force.size();
732 >      int nt = snap_->atomData.torque.size();
733        vector<Vector3d> trq_tmp(nt, V3Zero);
734  
735 <      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
736 <      for (int i = 0; i < n; i++) {
735 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
736 >      for (int i = 0; i < nt; i++) {
737          snap_->atomData.torque[i] += trq_tmp[i];
738          trq_tmp[i] = 0.0;
739        }
740        
741 <      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
742 <      for (int i = 0; i < n; i++)
741 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
742 >      for (int i = 0; i < nt; i++)
743          snap_->atomData.torque[i] += trq_tmp[i];
744      }
745 +
746 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
747 +
748 +      int ns = snap_->atomData.skippedCharge.size();
749 +      vector<RealType> skch_tmp(ns, 0.0);
750 +
751 +      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
752 +      for (int i = 0; i < ns; i++) {
753 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
754 +        skch_tmp[i] = 0.0;
755 +      }
756 +      
757 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
758 +      for (int i = 0; i < ns; i++)
759 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
760 +            
761 +    }
762      
763 <    int nLocal = snap_->getNumberOfAtoms();
763 >    if (storageLayout_ & DataStorage::dslFlucQForce) {
764  
765 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
766 <                                       vector<RealType> (nLocal, 0.0));
765 >      int nq = snap_->atomData.flucQFrc.size();
766 >      vector<RealType> fqfrc_tmp(nq, 0.0);
767 >
768 >      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
769 >      for (int i = 0; i < nq; i++) {
770 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
771 >        fqfrc_tmp[i] = 0.0;
772 >      }
773 >      
774 >      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
775 >      for (int i = 0; i < nq; i++)
776 >        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
777 >            
778 >    }
779 >
780 >    nLocal_ = snap_->getNumberOfAtoms();
781 >
782 >    vector<potVec> pot_temp(nLocal_,
783 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
784 >
785 >    // scatter/gather pot_row into the members of my column
786 >          
787 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
788 >
789 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
790 >      pairwisePot += pot_temp[ii];
791 >        
792 >    if (storageLayout_ & DataStorage::dslParticlePot) {
793 >      // This is the pairwise contribution to the particle pot.  The
794 >      // embedding contribution is added in each of the low level
795 >      // non-bonded routines.  In single processor, this is done in
796 >      // unpackInteractionData, not in collectData.
797 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
798 >        for (int i = 0; i < nLocal_; i++) {
799 >          // factor of two is because the total potential terms are divided
800 >          // by 2 in parallel due to row/ column scatter      
801 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
802 >        }
803 >      }
804 >    }
805 >
806 >    fill(pot_temp.begin(), pot_temp.end(),
807 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
808 >      
809 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
810      
811 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
812 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
813 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
814 <        pot_local[i] += pot_temp[i][ii];
811 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
812 >      pairwisePot += pot_temp[ii];    
813 >
814 >    if (storageLayout_ & DataStorage::dslParticlePot) {
815 >      // This is the pairwise contribution to the particle pot.  The
816 >      // embedding contribution is added in each of the low level
817 >      // non-bonded routines.  In single processor, this is done in
818 >      // unpackInteractionData, not in collectData.
819 >      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
820 >        for (int i = 0; i < nLocal_; i++) {
821 >          // factor of two is because the total potential terms are divided
822 >          // by 2 in parallel due to row/ column scatter      
823 >          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
824 >        }
825        }
826      }
827 +    
828 +    if (storageLayout_ & DataStorage::dslParticlePot) {
829 +      int npp = snap_->atomData.particlePot.size();
830 +      vector<RealType> ppot_temp(npp, 0.0);
831 +
832 +      // This is the direct or embedding contribution to the particle
833 +      // pot.
834 +      
835 +      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
836 +      for (int i = 0; i < npp; i++) {
837 +        snap_->atomData.particlePot[i] += ppot_temp[i];
838 +      }
839 +
840 +      fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
841 +      
842 +      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
843 +      for (int i = 0; i < npp; i++) {
844 +        snap_->atomData.particlePot[i] += ppot_temp[i];
845 +      }
846 +    }
847 +
848 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
849 +      RealType ploc1 = pairwisePot[ii];
850 +      RealType ploc2 = 0.0;
851 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
852 +      pairwisePot[ii] = ploc2;
853 +    }
854 +
855 +    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
856 +      RealType ploc1 = embeddingPot[ii];
857 +      RealType ploc2 = 0.0;
858 +      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
859 +      embeddingPot[ii] = ploc2;
860 +    }
861 +    
862 +    // Here be dragons.
863 +    MPI::Intracomm col = colComm.getComm();
864 +
865 +    col.Allreduce(MPI::IN_PLACE,
866 +                  &snap_->frameData.conductiveHeatFlux[0], 3,
867 +                  MPI::REALTYPE, MPI::SUM);
868 +
869 +
870   #endif
871 +
872    }
873  
874 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
875 + #ifdef IS_MPI
876 +    return nAtomsInRow_;
877 + #else
878 +    return nLocal_;
879 + #endif
880 +  }
881 +
882 +  /**
883 +   * returns the list of atoms belonging to this group.  
884 +   */
885 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
886 + #ifdef IS_MPI
887 +    return groupListRow_[cg1];
888 + #else
889 +    return groupList_[cg1];
890 + #endif
891 +  }
892 +
893 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
894 + #ifdef IS_MPI
895 +    return groupListCol_[cg2];
896 + #else
897 +    return groupList_[cg2];
898 + #endif
899 +  }
900    
901    Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
902      Vector3d d;
# Line 257 | Line 911 | namespace OpenMD {
911      return d;    
912    }
913  
914 +  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
915 + #ifdef IS_MPI
916 +    return cgColData.velocity[cg2];
917 + #else
918 +    return snap_->cgData.velocity[cg2];
919 + #endif
920 +  }
921  
922 +  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
923 + #ifdef IS_MPI
924 +    return atomColData.velocity[atom2];
925 + #else
926 +    return snap_->atomData.velocity[atom2];
927 + #endif
928 +  }
929 +
930 +
931    Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
932  
933      Vector3d d;
# Line 284 | Line 954 | namespace OpenMD {
954      snap_->wrapVector(d);
955      return d;    
956    }
957 +
958 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
959 + #ifdef IS_MPI
960 +    return massFactorsRow[atom1];
961 + #else
962 +    return massFactors[atom1];
963 + #endif
964 +  }
965 +
966 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
967 + #ifdef IS_MPI
968 +    return massFactorsCol[atom2];
969 + #else
970 +    return massFactors[atom2];
971 + #endif
972 +
973 +  }
974      
975    Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
976      Vector3d d;
# Line 298 | Line 985 | namespace OpenMD {
985      return d;    
986    }
987  
988 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
989 +    return excludesForAtom[atom1];
990 +  }
991 +
992 +  /**
993 +   * We need to exclude some overcounted interactions that result from
994 +   * the parallel decomposition.
995 +   */
996 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
997 +    int unique_id_1, unique_id_2;
998 +        
999 + #ifdef IS_MPI
1000 +    // in MPI, we have to look up the unique IDs for each atom
1001 +    unique_id_1 = AtomRowToGlobal[atom1];
1002 +    unique_id_2 = AtomColToGlobal[atom2];
1003 + #else
1004 +    unique_id_1 = AtomLocalToGlobal[atom1];
1005 +    unique_id_2 = AtomLocalToGlobal[atom2];
1006 + #endif  
1007 +
1008 +    if (unique_id_1 == unique_id_2) return true;
1009 +
1010 + #ifdef IS_MPI
1011 +    // this prevents us from doing the pair on multiple processors
1012 +    if (unique_id_1 < unique_id_2) {
1013 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1014 +    } else {
1015 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1016 +    }
1017 + #endif
1018 +    
1019 +    return false;
1020 +  }
1021 +
1022 +  /**
1023 +   * We need to handle the interactions for atoms who are involved in
1024 +   * the same rigid body as well as some short range interactions
1025 +   * (bonds, bends, torsions) differently from other interactions.
1026 +   * We'll still visit the pairwise routines, but with a flag that
1027 +   * tells those routines to exclude the pair from direct long range
1028 +   * interactions.  Some indirect interactions (notably reaction
1029 +   * field) must still be handled for these pairs.
1030 +   */
1031 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1032 +
1033 +    // excludesForAtom was constructed to use row/column indices in the MPI
1034 +    // version, and to use local IDs in the non-MPI version:
1035 +    
1036 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1037 +         i != excludesForAtom[atom1].end(); ++i) {
1038 +      if ( (*i) == atom2 ) return true;
1039 +    }
1040 +
1041 +    return false;
1042 +  }
1043 +
1044 +
1045    void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1046   #ifdef IS_MPI
1047      atomRowData.force[atom1] += fg;
# Line 312 | Line 1056 | namespace OpenMD {
1056   #else
1057      snap_->atomData.force[atom2] += fg;
1058   #endif
315
1059    }
1060  
1061      // filling interaction blocks with pointers
1062 <  InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {    
1062 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1063 >                                                     int atom1, int atom2) {
1064  
1065 <    InteractionData idat;
1065 >    idat.excluded = excludeAtomPair(atom1, atom2);
1066 >  
1067   #ifdef IS_MPI
1068 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1069 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1070 +    //                         ff_->getAtomType(identsCol[atom2]) );
1071 +    
1072      if (storageLayout_ & DataStorage::dslAmat) {
1073        idat.A1 = &(atomRowData.aMat[atom1]);
1074        idat.A2 = &(atomColData.aMat[atom2]);
1075      }
1076 <
1076 >    
1077      if (storageLayout_ & DataStorage::dslElectroFrame) {
1078        idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1079        idat.eFrame2 = &(atomColData.electroFrame[atom2]);
# Line 340 | Line 1089 | namespace OpenMD {
1089        idat.rho2 = &(atomColData.density[atom2]);
1090      }
1091  
1092 +    if (storageLayout_ & DataStorage::dslFunctional) {
1093 +      idat.frho1 = &(atomRowData.functional[atom1]);
1094 +      idat.frho2 = &(atomColData.functional[atom2]);
1095 +    }
1096 +
1097      if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1098        idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1099        idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1100      }
1101 < #endif
1101 >
1102 >    if (storageLayout_ & DataStorage::dslParticlePot) {
1103 >      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1104 >      idat.particlePot2 = &(atomColData.particlePot[atom2]);
1105 >    }
1106 >
1107 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
1108 >      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1109 >      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1110 >    }
1111 >
1112 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1113 >      idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1114 >      idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1115 >    }
1116 >
1117 > #else
1118      
1119 <  }
1120 <  InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
1121 <  }
1122 <  SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
1119 >
1120 >    // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
1121 >    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
1122 >    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
1123 >
1124 >    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1125 >    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1126 >    //                         ff_->getAtomType(idents[atom2]) );
1127 >
1128 >    if (storageLayout_ & DataStorage::dslAmat) {
1129 >      idat.A1 = &(snap_->atomData.aMat[atom1]);
1130 >      idat.A2 = &(snap_->atomData.aMat[atom2]);
1131 >    }
1132 >
1133 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
1134 >      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1135 >      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1136 >    }
1137 >
1138 >    if (storageLayout_ & DataStorage::dslTorque) {
1139 >      idat.t1 = &(snap_->atomData.torque[atom1]);
1140 >      idat.t2 = &(snap_->atomData.torque[atom2]);
1141 >    }
1142 >
1143 >    if (storageLayout_ & DataStorage::dslDensity) {    
1144 >      idat.rho1 = &(snap_->atomData.density[atom1]);
1145 >      idat.rho2 = &(snap_->atomData.density[atom2]);
1146 >    }
1147 >
1148 >    if (storageLayout_ & DataStorage::dslFunctional) {
1149 >      idat.frho1 = &(snap_->atomData.functional[atom1]);
1150 >      idat.frho2 = &(snap_->atomData.functional[atom2]);
1151 >    }
1152 >
1153 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1154 >      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1155 >      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1156 >    }
1157 >
1158 >    if (storageLayout_ & DataStorage::dslParticlePot) {
1159 >      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1160 >      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1161 >    }
1162 >
1163 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1164 >      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1165 >      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1166 >    }
1167 >
1168 >    if (storageLayout_ & DataStorage::dslFlucQPosition) {              
1169 >      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1170 >      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1171 >    }
1172 >
1173 > #endif
1174    }
1175  
1176    
1177 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1178 + #ifdef IS_MPI
1179 +    pot_row[atom1] += RealType(0.5) *  *(idat.pot);
1180 +    pot_col[atom2] += RealType(0.5) *  *(idat.pot);
1181 +
1182 +    atomRowData.force[atom1] += *(idat.f1);
1183 +    atomColData.force[atom2] -= *(idat.f1);
1184 +
1185 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1186 +      atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1);
1187 +      atomColData.flucQFrc[atom2] += *(idat.dVdFQ2);
1188 +    }
1189 +
1190 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1191 +      atomRowData.electricField[atom1] += *(idat.eField1);
1192 +      atomColData.electricField[atom2] += *(idat.eField2);
1193 +    }
1194 +
1195 + #else
1196 +    pairwisePot += *(idat.pot);
1197 +
1198 +    snap_->atomData.force[atom1] += *(idat.f1);
1199 +    snap_->atomData.force[atom2] -= *(idat.f1);
1200 +
1201 +    if (idat.doParticlePot) {
1202 +      // This is the pairwise contribution to the particle pot.  The
1203 +      // embedding contribution is added in each of the low level
1204 +      // non-bonded routines.  In parallel, this calculation is done
1205 +      // in collectData, not in unpackInteractionData.
1206 +      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1207 +      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1208 +    }
1209 +    
1210 +    if (storageLayout_ & DataStorage::dslFlucQForce) {              
1211 +      snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1);
1212 +      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1213 +    }
1214 +
1215 +    if (storageLayout_ & DataStorage::dslElectricField) {              
1216 +      snap_->atomData.electricField[atom1] += *(idat.eField1);
1217 +      snap_->atomData.electricField[atom2] += *(idat.eField2);
1218 +    }
1219 +
1220 + #endif
1221 +    
1222 +  }
1223 +
1224 +  /*
1225 +   * buildNeighborList
1226 +   *
1227 +   * first element of pair is row-indexed CutoffGroup
1228 +   * second element of pair is column-indexed CutoffGroup
1229 +   */
1230 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1231 +      
1232 +    vector<pair<int, int> > neighborList;
1233 +    groupCutoffs cuts;
1234 +    bool doAllPairs = false;
1235 +
1236 + #ifdef IS_MPI
1237 +    cellListRow_.clear();
1238 +    cellListCol_.clear();
1239 + #else
1240 +    cellList_.clear();
1241 + #endif
1242 +
1243 +    RealType rList_ = (largestRcut_ + skinThickness_);
1244 +    RealType rl2 = rList_ * rList_;
1245 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1246 +    Mat3x3d Hmat = snap_->getHmat();
1247 +    Vector3d Hx = Hmat.getColumn(0);
1248 +    Vector3d Hy = Hmat.getColumn(1);
1249 +    Vector3d Hz = Hmat.getColumn(2);
1250 +
1251 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1252 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1253 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1254 +
1255 +    // handle small boxes where the cell offsets can end up repeating cells
1256 +    
1257 +    if (nCells_.x() < 3) doAllPairs = true;
1258 +    if (nCells_.y() < 3) doAllPairs = true;
1259 +    if (nCells_.z() < 3) doAllPairs = true;
1260 +
1261 +    Mat3x3d invHmat = snap_->getInvHmat();
1262 +    Vector3d rs, scaled, dr;
1263 +    Vector3i whichCell;
1264 +    int cellIndex;
1265 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1266 +
1267 + #ifdef IS_MPI
1268 +    cellListRow_.resize(nCtot);
1269 +    cellListCol_.resize(nCtot);
1270 + #else
1271 +    cellList_.resize(nCtot);
1272 + #endif
1273 +
1274 +    if (!doAllPairs) {
1275 + #ifdef IS_MPI
1276 +
1277 +      for (int i = 0; i < nGroupsInRow_; i++) {
1278 +        rs = cgRowData.position[i];
1279 +        
1280 +        // scaled positions relative to the box vectors
1281 +        scaled = invHmat * rs;
1282 +        
1283 +        // wrap the vector back into the unit box by subtracting integer box
1284 +        // numbers
1285 +        for (int j = 0; j < 3; j++) {
1286 +          scaled[j] -= roundMe(scaled[j]);
1287 +          scaled[j] += 0.5;
1288 +        }
1289 +        
1290 +        // find xyz-indices of cell that cutoffGroup is in.
1291 +        whichCell.x() = nCells_.x() * scaled.x();
1292 +        whichCell.y() = nCells_.y() * scaled.y();
1293 +        whichCell.z() = nCells_.z() * scaled.z();
1294 +        
1295 +        // find single index of this cell:
1296 +        cellIndex = Vlinear(whichCell, nCells_);
1297 +        
1298 +        // add this cutoff group to the list of groups in this cell;
1299 +        cellListRow_[cellIndex].push_back(i);
1300 +      }
1301 +      for (int i = 0; i < nGroupsInCol_; i++) {
1302 +        rs = cgColData.position[i];
1303 +        
1304 +        // scaled positions relative to the box vectors
1305 +        scaled = invHmat * rs;
1306 +        
1307 +        // wrap the vector back into the unit box by subtracting integer box
1308 +        // numbers
1309 +        for (int j = 0; j < 3; j++) {
1310 +          scaled[j] -= roundMe(scaled[j]);
1311 +          scaled[j] += 0.5;
1312 +        }
1313 +        
1314 +        // find xyz-indices of cell that cutoffGroup is in.
1315 +        whichCell.x() = nCells_.x() * scaled.x();
1316 +        whichCell.y() = nCells_.y() * scaled.y();
1317 +        whichCell.z() = nCells_.z() * scaled.z();
1318 +        
1319 +        // find single index of this cell:
1320 +        cellIndex = Vlinear(whichCell, nCells_);
1321 +        
1322 +        // add this cutoff group to the list of groups in this cell;
1323 +        cellListCol_[cellIndex].push_back(i);
1324 +      }
1325 +    
1326 + #else
1327 +      for (int i = 0; i < nGroups_; i++) {
1328 +        rs = snap_->cgData.position[i];
1329 +        
1330 +        // scaled positions relative to the box vectors
1331 +        scaled = invHmat * rs;
1332 +        
1333 +        // wrap the vector back into the unit box by subtracting integer box
1334 +        // numbers
1335 +        for (int j = 0; j < 3; j++) {
1336 +          scaled[j] -= roundMe(scaled[j]);
1337 +          scaled[j] += 0.5;
1338 +        }
1339 +        
1340 +        // find xyz-indices of cell that cutoffGroup is in.
1341 +        whichCell.x() = nCells_.x() * scaled.x();
1342 +        whichCell.y() = nCells_.y() * scaled.y();
1343 +        whichCell.z() = nCells_.z() * scaled.z();
1344 +        
1345 +        // find single index of this cell:
1346 +        cellIndex = Vlinear(whichCell, nCells_);
1347 +        
1348 +        // add this cutoff group to the list of groups in this cell;
1349 +        cellList_[cellIndex].push_back(i);
1350 +      }
1351 +
1352 + #endif
1353 +
1354 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1355 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1356 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1357 +            Vector3i m1v(m1x, m1y, m1z);
1358 +            int m1 = Vlinear(m1v, nCells_);
1359 +            
1360 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1361 +                 os != cellOffsets_.end(); ++os) {
1362 +              
1363 +              Vector3i m2v = m1v + (*os);
1364 +            
1365 +
1366 +              if (m2v.x() >= nCells_.x()) {
1367 +                m2v.x() = 0;          
1368 +              } else if (m2v.x() < 0) {
1369 +                m2v.x() = nCells_.x() - 1;
1370 +              }
1371 +              
1372 +              if (m2v.y() >= nCells_.y()) {
1373 +                m2v.y() = 0;          
1374 +              } else if (m2v.y() < 0) {
1375 +                m2v.y() = nCells_.y() - 1;
1376 +              }
1377 +              
1378 +              if (m2v.z() >= nCells_.z()) {
1379 +                m2v.z() = 0;          
1380 +              } else if (m2v.z() < 0) {
1381 +                m2v.z() = nCells_.z() - 1;
1382 +              }
1383 +
1384 +              int m2 = Vlinear (m2v, nCells_);
1385 +              
1386 + #ifdef IS_MPI
1387 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1388 +                   j1 != cellListRow_[m1].end(); ++j1) {
1389 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1390 +                     j2 != cellListCol_[m2].end(); ++j2) {
1391 +                  
1392 +                  // In parallel, we need to visit *all* pairs of row
1393 +                  // & column indicies and will divide labor in the
1394 +                  // force evaluation later.
1395 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1396 +                  snap_->wrapVector(dr);
1397 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1398 +                  if (dr.lengthSquare() < cuts.third) {
1399 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1400 +                  }                  
1401 +                }
1402 +              }
1403 + #else
1404 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1405 +                   j1 != cellList_[m1].end(); ++j1) {
1406 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1407 +                     j2 != cellList_[m2].end(); ++j2) {
1408 +    
1409 +                  // Always do this if we're in different cells or if
1410 +                  // we're in the same cell and the global index of
1411 +                  // the j2 cutoff group is greater than or equal to
1412 +                  // the j1 cutoff group.  Note that Rappaport's code
1413 +                  // has a "less than" conditional here, but that
1414 +                  // deals with atom-by-atom computation.  OpenMD
1415 +                  // allows atoms within a single cutoff group to
1416 +                  // interact with each other.
1417 +
1418 +
1419 +
1420 +                  if (m2 != m1 || (*j2) >= (*j1) ) {
1421 +
1422 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1423 +                    snap_->wrapVector(dr);
1424 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1425 +                    if (dr.lengthSquare() < cuts.third) {
1426 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1427 +                    }
1428 +                  }
1429 +                }
1430 +              }
1431 + #endif
1432 +            }
1433 +          }
1434 +        }
1435 +      }
1436 +    } else {
1437 +      // branch to do all cutoff group pairs
1438 + #ifdef IS_MPI
1439 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1440 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {    
1441 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1442 +          snap_->wrapVector(dr);
1443 +          cuts = getGroupCutoffs( j1, j2 );
1444 +          if (dr.lengthSquare() < cuts.third) {
1445 +            neighborList.push_back(make_pair(j1, j2));
1446 +          }
1447 +        }
1448 +      }      
1449 + #else
1450 +      // include all groups here.
1451 +      for (int j1 = 0; j1 < nGroups_; j1++) {
1452 +        // include self group interactions j2 == j1
1453 +        for (int j2 = j1; j2 < nGroups_; j2++) {
1454 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1455 +          snap_->wrapVector(dr);
1456 +          cuts = getGroupCutoffs( j1, j2 );
1457 +          if (dr.lengthSquare() < cuts.third) {
1458 +            neighborList.push_back(make_pair(j1, j2));
1459 +          }
1460 +        }    
1461 +      }
1462 + #endif
1463 +    }
1464 +      
1465 +    // save the local cutoff group positions for the check that is
1466 +    // done on each loop:
1467 +    saved_CG_positions_.clear();
1468 +    for (int i = 0; i < nGroups_; i++)
1469 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1470 +    
1471 +    return neighborList;
1472 +  }
1473   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines