ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1569
Committed: Thu May 26 13:55:04 2011 UTC (13 years, 11 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 22544 byte(s)
Log Message:
A few more fixes for the missing routines

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41 #include "parallel/ForceMatrixDecomposition.hpp"
42 #include "math/SquareMatrix3.hpp"
43 #include "nonbonded/NonBondedInteraction.hpp"
44 #include "brains/SnapshotManager.hpp"
45
46 using namespace std;
47 namespace OpenMD {
48
49 /**
50 * distributeInitialData is essentially a copy of the older fortran
51 * SimulationSetup
52 */
53
54 void ForceMatrixDecomposition::distributeInitialData() {
55 snap_ = sman_->getCurrentSnapshot();
56 storageLayout_ = sman_->getStorageLayout();
57 nLocal_ = snap_->getNumberOfAtoms();
58 nGroups_ = snap_->getNumberOfCutoffGroups();
59
60 // gather the information for atomtype IDs (atids):
61 vector<int> identsLocal = info_->getIdentArray();
62 AtomLocalToGlobal = info_->getGlobalAtomIndices();
63 cgLocalToGlobal = info_->getGlobalGroupIndices();
64 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
65 vector<RealType> massFactorsLocal = info_->getMassFactors();
66 vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
67
68 #ifdef IS_MPI
69
70 AtomCommIntRow = new Communicator<Row,int>(nLocal_);
71 AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
72 AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
73 AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
74
75 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
76 AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
77 AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
78 AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
79
80 cgCommIntRow = new Communicator<Row,int>(nGroups_);
81 cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
82 cgCommIntColumn = new Communicator<Column,int>(nGroups_);
83 cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
84
85 nAtomsInRow_ = AtomCommIntRow->getSize();
86 nAtomsInCol_ = AtomCommIntColumn->getSize();
87 nGroupsInRow_ = cgCommIntRow->getSize();
88 nGroupsInCol_ = cgCommIntColumn->getSize();
89
90 // Modify the data storage objects with the correct layouts and sizes:
91 atomRowData.resize(nAtomsInRow_);
92 atomRowData.setStorageLayout(storageLayout_);
93 atomColData.resize(nAtomsInCol_);
94 atomColData.setStorageLayout(storageLayout_);
95 cgRowData.resize(nGroupsInRow_);
96 cgRowData.setStorageLayout(DataStorage::dslPosition);
97 cgColData.resize(nGroupsInCol_);
98 cgColData.setStorageLayout(DataStorage::dslPosition);
99
100 vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
101 vector<RealType> (nAtomsInRow_, 0.0));
102 vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
103 vector<RealType> (nAtomsInCol_, 0.0));
104
105 identsRow.reserve(nAtomsInRow_);
106 identsCol.reserve(nAtomsInCol_);
107
108 AtomCommIntRow->gather(identsLocal, identsRow);
109 AtomCommIntColumn->gather(identsLocal, identsCol);
110
111 AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
112 AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
113
114 cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
115 cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
116
117 AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
118 AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
119
120 groupListRow_.clear();
121 groupListRow_.reserve(nGroupsInRow_);
122 for (int i = 0; i < nGroupsInRow_; i++) {
123 int gid = cgRowToGlobal[i];
124 for (int j = 0; j < nAtomsInRow_; j++) {
125 int aid = AtomRowToGlobal[j];
126 if (globalGroupMembership[aid] == gid)
127 groupListRow_[i].push_back(j);
128 }
129 }
130
131 groupListCol_.clear();
132 groupListCol_.reserve(nGroupsInCol_);
133 for (int i = 0; i < nGroupsInCol_; i++) {
134 int gid = cgColToGlobal[i];
135 for (int j = 0; j < nAtomsInCol_; j++) {
136 int aid = AtomColToGlobal[j];
137 if (globalGroupMembership[aid] == gid)
138 groupListCol_[i].push_back(j);
139 }
140 }
141
142 #endif
143
144 groupList_.clear();
145 groupList_.reserve(nGroups_);
146 for (int i = 0; i < nGroups_; i++) {
147 int gid = cgLocalToGlobal[i];
148 for (int j = 0; j < nLocal_; j++) {
149 int aid = AtomLocalToGlobal[j];
150 if (globalGroupMembership[aid] == gid)
151 groupList_[i].push_back(j);
152 }
153 }
154
155
156 // still need:
157 // topoDist
158 // exclude
159
160 }
161
162
163
164 void ForceMatrixDecomposition::distributeData() {
165 snap_ = sman_->getCurrentSnapshot();
166 storageLayout_ = sman_->getStorageLayout();
167 #ifdef IS_MPI
168
169 // gather up the atomic positions
170 AtomCommVectorRow->gather(snap_->atomData.position,
171 atomRowData.position);
172 AtomCommVectorColumn->gather(snap_->atomData.position,
173 atomColData.position);
174
175 // gather up the cutoff group positions
176 cgCommVectorRow->gather(snap_->cgData.position,
177 cgRowData.position);
178 cgCommVectorColumn->gather(snap_->cgData.position,
179 cgColData.position);
180
181 // if needed, gather the atomic rotation matrices
182 if (storageLayout_ & DataStorage::dslAmat) {
183 AtomCommMatrixRow->gather(snap_->atomData.aMat,
184 atomRowData.aMat);
185 AtomCommMatrixColumn->gather(snap_->atomData.aMat,
186 atomColData.aMat);
187 }
188
189 // if needed, gather the atomic eletrostatic frames
190 if (storageLayout_ & DataStorage::dslElectroFrame) {
191 AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
192 atomRowData.electroFrame);
193 AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
194 atomColData.electroFrame);
195 }
196 #endif
197 }
198
199 void ForceMatrixDecomposition::collectIntermediateData() {
200 snap_ = sman_->getCurrentSnapshot();
201 storageLayout_ = sman_->getStorageLayout();
202 #ifdef IS_MPI
203
204 if (storageLayout_ & DataStorage::dslDensity) {
205
206 AtomCommRealRow->scatter(atomRowData.density,
207 snap_->atomData.density);
208
209 int n = snap_->atomData.density.size();
210 std::vector<RealType> rho_tmp(n, 0.0);
211 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
212 for (int i = 0; i < n; i++)
213 snap_->atomData.density[i] += rho_tmp[i];
214 }
215 #endif
216 }
217
218 void ForceMatrixDecomposition::distributeIntermediateData() {
219 snap_ = sman_->getCurrentSnapshot();
220 storageLayout_ = sman_->getStorageLayout();
221 #ifdef IS_MPI
222 if (storageLayout_ & DataStorage::dslFunctional) {
223 AtomCommRealRow->gather(snap_->atomData.functional,
224 atomRowData.functional);
225 AtomCommRealColumn->gather(snap_->atomData.functional,
226 atomColData.functional);
227 }
228
229 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
230 AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
231 atomRowData.functionalDerivative);
232 AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
233 atomColData.functionalDerivative);
234 }
235 #endif
236 }
237
238
239 void ForceMatrixDecomposition::collectData() {
240 snap_ = sman_->getCurrentSnapshot();
241 storageLayout_ = sman_->getStorageLayout();
242 #ifdef IS_MPI
243 int n = snap_->atomData.force.size();
244 vector<Vector3d> frc_tmp(n, V3Zero);
245
246 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
247 for (int i = 0; i < n; i++) {
248 snap_->atomData.force[i] += frc_tmp[i];
249 frc_tmp[i] = 0.0;
250 }
251
252 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
253 for (int i = 0; i < n; i++)
254 snap_->atomData.force[i] += frc_tmp[i];
255
256
257 if (storageLayout_ & DataStorage::dslTorque) {
258
259 int nt = snap_->atomData.force.size();
260 vector<Vector3d> trq_tmp(nt, V3Zero);
261
262 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
263 for (int i = 0; i < n; i++) {
264 snap_->atomData.torque[i] += trq_tmp[i];
265 trq_tmp[i] = 0.0;
266 }
267
268 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
269 for (int i = 0; i < n; i++)
270 snap_->atomData.torque[i] += trq_tmp[i];
271 }
272
273 nLocal_ = snap_->getNumberOfAtoms();
274
275 vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
276 vector<RealType> (nLocal_, 0.0));
277
278 for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
279 AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
280 for (int ii = 0; ii < pot_temp[i].size(); ii++ ) {
281 pot_local[i] += pot_temp[i][ii];
282 }
283 }
284 #endif
285 }
286
287 /**
288 * returns the list of atoms belonging to this group.
289 */
290 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
291 #ifdef IS_MPI
292 return groupListRow_[cg1];
293 #else
294 return groupList_[cg1];
295 #endif
296 }
297
298 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
299 #ifdef IS_MPI
300 return groupListCol_[cg2];
301 #else
302 return groupList_[cg2];
303 #endif
304 }
305
306 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
307 Vector3d d;
308
309 #ifdef IS_MPI
310 d = cgColData.position[cg2] - cgRowData.position[cg1];
311 #else
312 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
313 #endif
314
315 snap_->wrapVector(d);
316 return d;
317 }
318
319
320 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
321
322 Vector3d d;
323
324 #ifdef IS_MPI
325 d = cgRowData.position[cg1] - atomRowData.position[atom1];
326 #else
327 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
328 #endif
329
330 snap_->wrapVector(d);
331 return d;
332 }
333
334 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
335 Vector3d d;
336
337 #ifdef IS_MPI
338 d = cgColData.position[cg2] - atomColData.position[atom2];
339 #else
340 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
341 #endif
342
343 snap_->wrapVector(d);
344 return d;
345 }
346
347 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
348 #ifdef IS_MPI
349 return massFactorsRow[atom1];
350 #else
351 return massFactorsLocal[atom1];
352 #endif
353 }
354
355 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
356 #ifdef IS_MPI
357 return massFactorsCol[atom2];
358 #else
359 return massFactorsLocal[atom2];
360 #endif
361
362 }
363
364 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
365 Vector3d d;
366
367 #ifdef IS_MPI
368 d = atomColData.position[atom2] - atomRowData.position[atom1];
369 #else
370 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
371 #endif
372
373 snap_->wrapVector(d);
374 return d;
375 }
376
377 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
378 #ifdef IS_MPI
379 atomRowData.force[atom1] += fg;
380 #else
381 snap_->atomData.force[atom1] += fg;
382 #endif
383 }
384
385 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
386 #ifdef IS_MPI
387 atomColData.force[atom2] += fg;
388 #else
389 snap_->atomData.force[atom2] += fg;
390 #endif
391 }
392
393 // filling interaction blocks with pointers
394 InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
395 InteractionData idat;
396
397 #ifdef IS_MPI
398 if (storageLayout_ & DataStorage::dslAmat) {
399 idat.A1 = &(atomRowData.aMat[atom1]);
400 idat.A2 = &(atomColData.aMat[atom2]);
401 }
402
403 if (storageLayout_ & DataStorage::dslElectroFrame) {
404 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
405 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
406 }
407
408 if (storageLayout_ & DataStorage::dslTorque) {
409 idat.t1 = &(atomRowData.torque[atom1]);
410 idat.t2 = &(atomColData.torque[atom2]);
411 }
412
413 if (storageLayout_ & DataStorage::dslDensity) {
414 idat.rho1 = &(atomRowData.density[atom1]);
415 idat.rho2 = &(atomColData.density[atom2]);
416 }
417
418 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
419 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
420 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
421 }
422 #else
423 if (storageLayout_ & DataStorage::dslAmat) {
424 idat.A1 = &(snap_->atomData.aMat[atom1]);
425 idat.A2 = &(snap_->atomData.aMat[atom2]);
426 }
427
428 if (storageLayout_ & DataStorage::dslElectroFrame) {
429 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
430 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
431 }
432
433 if (storageLayout_ & DataStorage::dslTorque) {
434 idat.t1 = &(snap_->atomData.torque[atom1]);
435 idat.t2 = &(snap_->atomData.torque[atom2]);
436 }
437
438 if (storageLayout_ & DataStorage::dslDensity) {
439 idat.rho1 = &(snap_->atomData.density[atom1]);
440 idat.rho2 = &(snap_->atomData.density[atom2]);
441 }
442
443 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
444 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
445 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
446 }
447 #endif
448 return idat;
449 }
450
451 InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
452
453 InteractionData idat;
454 #ifdef IS_MPI
455 if (storageLayout_ & DataStorage::dslElectroFrame) {
456 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
457 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
458 }
459 if (storageLayout_ & DataStorage::dslTorque) {
460 idat.t1 = &(atomRowData.torque[atom1]);
461 idat.t2 = &(atomColData.torque[atom2]);
462 }
463 if (storageLayout_ & DataStorage::dslForce) {
464 idat.t1 = &(atomRowData.force[atom1]);
465 idat.t2 = &(atomColData.force[atom2]);
466 }
467 #else
468 if (storageLayout_ & DataStorage::dslElectroFrame) {
469 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
470 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
471 }
472 if (storageLayout_ & DataStorage::dslTorque) {
473 idat.t1 = &(snap_->atomData.torque[atom1]);
474 idat.t2 = &(snap_->atomData.torque[atom2]);
475 }
476 if (storageLayout_ & DataStorage::dslForce) {
477 idat.t1 = &(snap_->atomData.force[atom1]);
478 idat.t2 = &(snap_->atomData.force[atom2]);
479 }
480 #endif
481
482 }
483
484
485
486
487 /*
488 * buildNeighborList
489 *
490 * first element of pair is row-indexed CutoffGroup
491 * second element of pair is column-indexed CutoffGroup
492 */
493 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
494
495 vector<pair<int, int> > neighborList;
496 #ifdef IS_MPI
497 cellListRow_.clear();
498 cellListCol_.clear();
499 #else
500 cellList_.clear();
501 #endif
502
503 // dangerous to not do error checking.
504 RealType rCut_;
505
506 RealType rList_ = (rCut_ + skinThickness_);
507 RealType rl2 = rList_ * rList_;
508 Snapshot* snap_ = sman_->getCurrentSnapshot();
509 Mat3x3d Hmat = snap_->getHmat();
510 Vector3d Hx = Hmat.getColumn(0);
511 Vector3d Hy = Hmat.getColumn(1);
512 Vector3d Hz = Hmat.getColumn(2);
513
514 nCells_.x() = (int) ( Hx.length() )/ rList_;
515 nCells_.y() = (int) ( Hy.length() )/ rList_;
516 nCells_.z() = (int) ( Hz.length() )/ rList_;
517
518 Mat3x3d invHmat = snap_->getInvHmat();
519 Vector3d rs, scaled, dr;
520 Vector3i whichCell;
521 int cellIndex;
522
523 #ifdef IS_MPI
524 for (int i = 0; i < nGroupsInRow_; i++) {
525 rs = cgRowData.position[i];
526 // scaled positions relative to the box vectors
527 scaled = invHmat * rs;
528 // wrap the vector back into the unit box by subtracting integer box
529 // numbers
530 for (int j = 0; j < 3; j++)
531 scaled[j] -= roundMe(scaled[j]);
532
533 // find xyz-indices of cell that cutoffGroup is in.
534 whichCell.x() = nCells_.x() * scaled.x();
535 whichCell.y() = nCells_.y() * scaled.y();
536 whichCell.z() = nCells_.z() * scaled.z();
537
538 // find single index of this cell:
539 cellIndex = Vlinear(whichCell, nCells_);
540 // add this cutoff group to the list of groups in this cell;
541 cellListRow_[cellIndex].push_back(i);
542 }
543
544 for (int i = 0; i < nGroupsInCol_; i++) {
545 rs = cgColData.position[i];
546 // scaled positions relative to the box vectors
547 scaled = invHmat * rs;
548 // wrap the vector back into the unit box by subtracting integer box
549 // numbers
550 for (int j = 0; j < 3; j++)
551 scaled[j] -= roundMe(scaled[j]);
552
553 // find xyz-indices of cell that cutoffGroup is in.
554 whichCell.x() = nCells_.x() * scaled.x();
555 whichCell.y() = nCells_.y() * scaled.y();
556 whichCell.z() = nCells_.z() * scaled.z();
557
558 // find single index of this cell:
559 cellIndex = Vlinear(whichCell, nCells_);
560 // add this cutoff group to the list of groups in this cell;
561 cellListCol_[cellIndex].push_back(i);
562 }
563 #else
564 for (int i = 0; i < nGroups_; i++) {
565 rs = snap_->cgData.position[i];
566 // scaled positions relative to the box vectors
567 scaled = invHmat * rs;
568 // wrap the vector back into the unit box by subtracting integer box
569 // numbers
570 for (int j = 0; j < 3; j++)
571 scaled[j] -= roundMe(scaled[j]);
572
573 // find xyz-indices of cell that cutoffGroup is in.
574 whichCell.x() = nCells_.x() * scaled.x();
575 whichCell.y() = nCells_.y() * scaled.y();
576 whichCell.z() = nCells_.z() * scaled.z();
577
578 // find single index of this cell:
579 cellIndex = Vlinear(whichCell, nCells_);
580 // add this cutoff group to the list of groups in this cell;
581 cellList_[cellIndex].push_back(i);
582 }
583 #endif
584
585
586
587 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
588 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
589 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
590 Vector3i m1v(m1x, m1y, m1z);
591 int m1 = Vlinear(m1v, nCells_);
592
593 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
594 os != cellOffsets_.end(); ++os) {
595
596 Vector3i m2v = m1v + (*os);
597
598 if (m2v.x() >= nCells_.x()) {
599 m2v.x() = 0;
600 } else if (m2v.x() < 0) {
601 m2v.x() = nCells_.x() - 1;
602 }
603
604 if (m2v.y() >= nCells_.y()) {
605 m2v.y() = 0;
606 } else if (m2v.y() < 0) {
607 m2v.y() = nCells_.y() - 1;
608 }
609
610 if (m2v.z() >= nCells_.z()) {
611 m2v.z() = 0;
612 } else if (m2v.z() < 0) {
613 m2v.z() = nCells_.z() - 1;
614 }
615
616 int m2 = Vlinear (m2v, nCells_);
617
618 #ifdef IS_MPI
619 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
620 j1 != cellListRow_[m1].end(); ++j1) {
621 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
622 j2 != cellListCol_[m2].end(); ++j2) {
623
624 // Always do this if we're in different cells or if
625 // we're in the same cell and the global index of the
626 // j2 cutoff group is less than the j1 cutoff group
627
628 if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
629 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
630 snap_->wrapVector(dr);
631 if (dr.lengthSquare() < rl2) {
632 neighborList.push_back(make_pair((*j1), (*j2)));
633 }
634 }
635 }
636 }
637 #else
638 for (vector<int>::iterator j1 = cellList_[m1].begin();
639 j1 != cellList_[m1].end(); ++j1) {
640 for (vector<int>::iterator j2 = cellList_[m2].begin();
641 j2 != cellList_[m2].end(); ++j2) {
642
643 // Always do this if we're in different cells or if
644 // we're in the same cell and the global index of the
645 // j2 cutoff group is less than the j1 cutoff group
646
647 if (m2 != m1 || (*j2) < (*j1)) {
648 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
649 snap_->wrapVector(dr);
650 if (dr.lengthSquare() < rl2) {
651 neighborList.push_back(make_pair((*j1), (*j2)));
652 }
653 }
654 }
655 }
656 #endif
657 }
658 }
659 }
660 }
661
662 // save the local cutoff group positions for the check that is
663 // done on each loop:
664 saved_CG_positions_.clear();
665 for (int i = 0; i < nGroups_; i++)
666 saved_CG_positions_.push_back(snap_->cgData.position[i]);
667
668 return neighborList;
669 }
670 } //end namespace OpenMD