47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
49 |
|
|
50 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 |
+ |
|
52 |
+ |
// In a parallel computation, row and colum scans must visit all |
53 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
54 |
+ |
// are used when the processor can see all pairs) |
55 |
+ |
#ifdef IS_MPI |
56 |
+ |
cellOffsets_.clear(); |
57 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
58 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
84 |
+ |
#endif |
85 |
+ |
} |
86 |
+ |
|
87 |
+ |
|
88 |
|
/** |
89 |
|
* distributeInitialData is essentially a copy of the older fortran |
90 |
|
* SimulationSetup |
91 |
|
*/ |
54 |
– |
|
92 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
93 |
|
snap_ = sman_->getCurrentSnapshot(); |
94 |
|
storageLayout_ = sman_->getStorageLayout(); |
111 |
|
|
112 |
|
#ifdef IS_MPI |
113 |
|
|
114 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
115 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
114 |
> |
MPI::Intracomm row = rowComm.getComm(); |
115 |
> |
MPI::Intracomm col = colComm.getComm(); |
116 |
|
|
117 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
118 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
119 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
120 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
121 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
117 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
118 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
119 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
120 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
121 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
122 |
|
|
123 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
124 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
125 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
126 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
123 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
124 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
125 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
126 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
127 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
128 |
|
|
129 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
130 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
131 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
132 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
129 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
130 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
131 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
132 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
133 |
|
|
134 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
135 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
136 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
137 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
138 |
+ |
|
139 |
|
// Modify the data storage objects with the correct layouts and sizes: |
140 |
|
atomRowData.resize(nAtomsInRow_); |
141 |
|
atomRowData.setStorageLayout(storageLayout_); |
149 |
|
identsRow.resize(nAtomsInRow_); |
150 |
|
identsCol.resize(nAtomsInCol_); |
151 |
|
|
152 |
< |
AtomCommIntRow->gather(idents, identsRow); |
153 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
152 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
153 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
154 |
|
|
155 |
|
// allocate memory for the parallel objects |
156 |
|
atypesRow.resize(nAtomsInRow_); |
166 |
|
|
167 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
168 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
169 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
170 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
171 |
< |
|
169 |
> |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
170 |
> |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
171 |
> |
|
172 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
173 |
|
cgColToGlobal.resize(nGroupsInCol_); |
174 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
175 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
174 |
> |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
175 |
> |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
176 |
|
|
177 |
|
massFactorsRow.resize(nAtomsInRow_); |
178 |
|
massFactorsCol.resize(nAtomsInCol_); |
179 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
180 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
179 |
> |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
180 |
> |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
181 |
|
|
182 |
|
groupListRow_.clear(); |
183 |
|
groupListRow_.resize(nGroupsInRow_); |
233 |
|
} |
234 |
|
} |
235 |
|
|
236 |
< |
#endif |
197 |
< |
|
198 |
< |
// allocate memory for the parallel objects |
199 |
< |
atypesLocal.resize(nLocal_); |
200 |
< |
|
201 |
< |
for (int i = 0; i < nLocal_; i++) |
202 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 |
< |
|
204 |
< |
groupList_.clear(); |
205 |
< |
groupList_.resize(nGroups_); |
206 |
< |
for (int i = 0; i < nGroups_; i++) { |
207 |
< |
int gid = cgLocalToGlobal[i]; |
208 |
< |
for (int j = 0; j < nLocal_; j++) { |
209 |
< |
int aid = AtomLocalToGlobal[j]; |
210 |
< |
if (globalGroupMembership[aid] == gid) { |
211 |
< |
groupList_[i].push_back(j); |
212 |
< |
} |
213 |
< |
} |
214 |
< |
} |
215 |
< |
|
236 |
> |
#else |
237 |
|
excludesForAtom.clear(); |
238 |
|
excludesForAtom.resize(nLocal_); |
239 |
|
toposForAtom.clear(); |
266 |
|
} |
267 |
|
} |
268 |
|
} |
269 |
< |
|
269 |
> |
#endif |
270 |
> |
|
271 |
> |
// allocate memory for the parallel objects |
272 |
> |
atypesLocal.resize(nLocal_); |
273 |
> |
|
274 |
> |
for (int i = 0; i < nLocal_; i++) |
275 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
276 |
> |
|
277 |
> |
groupList_.clear(); |
278 |
> |
groupList_.resize(nGroups_); |
279 |
> |
for (int i = 0; i < nGroups_; i++) { |
280 |
> |
int gid = cgLocalToGlobal[i]; |
281 |
> |
for (int j = 0; j < nLocal_; j++) { |
282 |
> |
int aid = AtomLocalToGlobal[j]; |
283 |
> |
if (globalGroupMembership[aid] == gid) { |
284 |
> |
groupList_[i].push_back(j); |
285 |
> |
} |
286 |
> |
} |
287 |
> |
} |
288 |
> |
|
289 |
> |
|
290 |
|
createGtypeCutoffMap(); |
291 |
|
|
292 |
|
} |
558 |
|
#ifdef IS_MPI |
559 |
|
|
560 |
|
// gather up the atomic positions |
561 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
561 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
562 |
|
atomRowData.position); |
563 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
563 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
564 |
|
atomColData.position); |
565 |
|
|
566 |
|
// gather up the cutoff group positions |
567 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
567 |
> |
|
568 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
569 |
|
cgRowData.position); |
570 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
570 |
> |
|
571 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
572 |
|
cgColData.position); |
573 |
+ |
|
574 |
|
|
575 |
|
// if needed, gather the atomic rotation matrices |
576 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
577 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
577 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
578 |
|
atomRowData.aMat); |
579 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
579 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
580 |
|
atomColData.aMat); |
581 |
|
} |
582 |
|
|
583 |
|
// if needed, gather the atomic eletrostatic frames |
584 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
585 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
585 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
586 |
|
atomRowData.electroFrame); |
587 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
587 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
588 |
|
atomColData.electroFrame); |
589 |
|
} |
590 |
|
|
601 |
|
|
602 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
603 |
|
|
604 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
604 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
605 |
|
snap_->atomData.density); |
606 |
|
|
607 |
|
int n = snap_->atomData.density.size(); |
608 |
|
vector<RealType> rho_tmp(n, 0.0); |
609 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
609 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
610 |
|
for (int i = 0; i < n; i++) |
611 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
612 |
|
} |
622 |
|
storageLayout_ = sman_->getStorageLayout(); |
623 |
|
#ifdef IS_MPI |
624 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
625 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
625 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
626 |
|
atomRowData.functional); |
627 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
627 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
628 |
|
atomColData.functional); |
629 |
|
} |
630 |
|
|
631 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
632 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
632 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
633 |
|
atomRowData.functionalDerivative); |
634 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
634 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
635 |
|
atomColData.functionalDerivative); |
636 |
|
} |
637 |
|
#endif |
645 |
|
int n = snap_->atomData.force.size(); |
646 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
647 |
|
|
648 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
648 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
649 |
|
for (int i = 0; i < n; i++) { |
650 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
651 |
|
frc_tmp[i] = 0.0; |
652 |
|
} |
653 |
|
|
654 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
655 |
< |
for (int i = 0; i < n; i++) |
654 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
655 |
> |
for (int i = 0; i < n; i++) { |
656 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
657 |
+ |
} |
658 |
|
|
659 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
660 |
|
|
661 |
|
int nt = snap_->atomData.torque.size(); |
662 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
663 |
|
|
664 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
664 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
665 |
|
for (int i = 0; i < nt; i++) { |
666 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
667 |
|
trq_tmp[i] = 0.0; |
668 |
|
} |
669 |
|
|
670 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
670 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
671 |
|
for (int i = 0; i < nt; i++) |
672 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
673 |
|
} |
677 |
|
int ns = snap_->atomData.skippedCharge.size(); |
678 |
|
vector<RealType> skch_tmp(ns, 0.0); |
679 |
|
|
680 |
< |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
680 |
> |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
681 |
|
for (int i = 0; i < ns; i++) { |
682 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
683 |
|
skch_tmp[i] = 0.0; |
684 |
|
} |
685 |
|
|
686 |
< |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
687 |
< |
for (int i = 0; i < ns; i++) |
686 |
> |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
687 |
> |
for (int i = 0; i < ns; i++) |
688 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
689 |
+ |
|
690 |
|
} |
691 |
|
|
692 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
696 |
|
|
697 |
|
// scatter/gather pot_row into the members of my column |
698 |
|
|
699 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
699 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
700 |
|
|
701 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
702 |
|
pairwisePot += pot_temp[ii]; |
704 |
|
fill(pot_temp.begin(), pot_temp.end(), |
705 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
706 |
|
|
707 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
707 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
708 |
|
|
709 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
710 |
|
pairwisePot += pot_temp[ii]; |
711 |
+ |
|
712 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
713 |
+ |
RealType ploc1 = pairwisePot[ii]; |
714 |
+ |
RealType ploc2 = 0.0; |
715 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
716 |
+ |
pairwisePot[ii] = ploc2; |
717 |
+ |
} |
718 |
+ |
|
719 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
720 |
+ |
RealType ploc1 = embeddingPot[ii]; |
721 |
+ |
RealType ploc2 = 0.0; |
722 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
723 |
+ |
embeddingPot[ii] = ploc2; |
724 |
+ |
} |
725 |
+ |
|
726 |
|
#endif |
727 |
|
|
728 |
|
} |
835 |
|
*/ |
836 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
837 |
|
int unique_id_1, unique_id_2; |
838 |
< |
|
838 |
> |
|
839 |
|
#ifdef IS_MPI |
840 |
|
// in MPI, we have to look up the unique IDs for each atom |
841 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
842 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
843 |
+ |
#else |
844 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
845 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
846 |
+ |
#endif |
847 |
|
|
783 |
– |
// this situation should only arise in MPI simulations |
848 |
|
if (unique_id_1 == unique_id_2) return true; |
849 |
< |
|
849 |
> |
|
850 |
> |
#ifdef IS_MPI |
851 |
|
// this prevents us from doing the pair on multiple processors |
852 |
|
if (unique_id_1 < unique_id_2) { |
853 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
854 |
|
} else { |
855 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
855 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
856 |
|
} |
857 |
|
#endif |
858 |
+ |
|
859 |
|
return false; |
860 |
|
} |
861 |
|
|
869 |
|
* field) must still be handled for these pairs. |
870 |
|
*/ |
871 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
872 |
< |
int unique_id_2; |
873 |
< |
|
874 |
< |
#ifdef IS_MPI |
809 |
< |
// in MPI, we have to look up the unique IDs for the row atom. |
810 |
< |
unique_id_2 = AtomColToGlobal[atom2]; |
811 |
< |
#else |
812 |
< |
// in the normal loop, the atom numbers are unique |
813 |
< |
unique_id_2 = atom2; |
814 |
< |
#endif |
872 |
> |
|
873 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
874 |
> |
// version, and to use local IDs in the non-MPI version: |
875 |
|
|
876 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
877 |
|
i != excludesForAtom[atom1].end(); ++i) { |
878 |
< |
if ( (*i) == unique_id_2 ) return true; |
878 |
> |
if ( (*i) == atom2 ) return true; |
879 |
|
} |
880 |
|
|
881 |
|
return false; |
1091 |
|
// add this cutoff group to the list of groups in this cell; |
1092 |
|
cellListRow_[cellIndex].push_back(i); |
1093 |
|
} |
1034 |
– |
|
1094 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
1095 |
|
rs = cgColData.position[i]; |
1096 |
|
|
1115 |
|
// add this cutoff group to the list of groups in this cell; |
1116 |
|
cellListCol_[cellIndex].push_back(i); |
1117 |
|
} |
1118 |
+ |
|
1119 |
|
#else |
1120 |
|
for (int i = 0; i < nGroups_; i++) { |
1121 |
|
rs = snap_->cgData.position[i]; |
1136 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
1137 |
|
|
1138 |
|
// find single index of this cell: |
1139 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1139 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1140 |
|
|
1141 |
|
// add this cutoff group to the list of groups in this cell; |
1142 |
|
cellList_[cellIndex].push_back(i); |
1143 |
|
} |
1144 |
+ |
|
1145 |
|
#endif |
1146 |
|
|
1147 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1154 |
|
os != cellOffsets_.end(); ++os) { |
1155 |
|
|
1156 |
|
Vector3i m2v = m1v + (*os); |
1157 |
< |
|
1157 |
> |
|
1158 |
> |
|
1159 |
|
if (m2v.x() >= nCells_.x()) { |
1160 |
|
m2v.x() = 0; |
1161 |
|
} else if (m2v.x() < 0) { |
1173 |
|
} else if (m2v.z() < 0) { |
1174 |
|
m2v.z() = nCells_.z() - 1; |
1175 |
|
} |
1176 |
< |
|
1176 |
> |
|
1177 |
|
int m2 = Vlinear (m2v, nCells_); |
1178 |
|
|
1179 |
|
#ifdef IS_MPI |
1181 |
|
j1 != cellListRow_[m1].end(); ++j1) { |
1182 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1183 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1122 |
– |
|
1123 |
– |
// Always do this if we're in different cells or if |
1124 |
– |
// we're in the same cell and the global index of the |
1125 |
– |
// j2 cutoff group is less than the j1 cutoff group |
1184 |
|
|
1185 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1186 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1187 |
< |
snap_->wrapVector(dr); |
1188 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1189 |
< |
if (dr.lengthSquare() < cuts.third) { |
1190 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1191 |
< |
} |
1192 |
< |
} |
1185 |
> |
// In parallel, we need to visit *all* pairs of row |
1186 |
> |
// & column indicies and will divide labor in the |
1187 |
> |
// force evaluation later. |
1188 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1189 |
> |
snap_->wrapVector(dr); |
1190 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1191 |
> |
if (dr.lengthSquare() < cuts.third) { |
1192 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1193 |
> |
} |
1194 |
|
} |
1195 |
|
} |
1196 |
|
#else |
1138 |
– |
|
1197 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1198 |
|
j1 != cellList_[m1].end(); ++j1) { |
1199 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1200 |
|
j2 != cellList_[m2].end(); ++j2) { |
1201 |
< |
|
1201 |
> |
|
1202 |
|
// Always do this if we're in different cells or if |
1203 |
< |
// we're in the same cell and the global index of the |
1204 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1205 |
< |
|
1206 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1203 |
> |
// we're in the same cell and the global index of |
1204 |
> |
// the j2 cutoff group is greater than or equal to |
1205 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1206 |
> |
// has a "less than" conditional here, but that |
1207 |
> |
// deals with atom-by-atom computation. OpenMD |
1208 |
> |
// allows atoms within a single cutoff group to |
1209 |
> |
// interact with each other. |
1210 |
> |
|
1211 |
> |
|
1212 |
> |
|
1213 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1214 |
> |
|
1215 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1216 |
|
snap_->wrapVector(dr); |
1217 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1230 |
|
// branch to do all cutoff group pairs |
1231 |
|
#ifdef IS_MPI |
1232 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1233 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1233 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1234 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1235 |
|
snap_->wrapVector(dr); |
1236 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1238 |
|
neighborList.push_back(make_pair(j1, j2)); |
1239 |
|
} |
1240 |
|
} |
1241 |
< |
} |
1241 |
> |
} |
1242 |
|
#else |
1243 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1244 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1243 |
> |
// include all groups here. |
1244 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1245 |
> |
// include self group interactions j2 == j1 |
1246 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1247 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1248 |
|
snap_->wrapVector(dr); |
1249 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1250 |
|
if (dr.lengthSquare() < cuts.third) { |
1251 |
|
neighborList.push_back(make_pair(j1, j2)); |
1252 |
|
} |
1253 |
< |
} |
1254 |
< |
} |
1253 |
> |
} |
1254 |
> |
} |
1255 |
|
#endif |
1256 |
|
} |
1257 |
|
|