ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1549 by gezelter, Wed Apr 27 18:38:15 2011 UTC vs.
Revision 1583 by gezelter, Thu Jun 16 22:00:08 2011 UTC

# Line 42 | Line 42
42   #include "math/SquareMatrix3.hpp"
43   #include "nonbonded/NonBondedInteraction.hpp"
44   #include "brains/SnapshotManager.hpp"
45 + #include "brains/PairList.hpp"
46  
47   using namespace std;
48   namespace OpenMD {
# Line 52 | Line 53 | namespace OpenMD {
53     */
54    
55    void ForceMatrixDecomposition::distributeInitialData() {
56 < #ifdef IS_MPI    
57 <    Snapshot* snap = sman_->getCurrentSnapshot();
58 <    int nLocal = snap->getNumberOfAtoms();
59 <    int nGroups = snap->getNumberOfCutoffGroups();
56 >    snap_ = sman_->getCurrentSnapshot();
57 >    storageLayout_ = sman_->getStorageLayout();
58 >    ff_ = info_->getForceField();
59 >    nLocal_ = snap_->getNumberOfAtoms();
60  
61 <    AtomCommIntRow = new Communicator<Row,int>(nLocal);
62 <    AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
63 <    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
64 <    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
61 >    nGroups_ = info_->getNLocalCutoffGroups();
62 >    cerr << "in dId, nGroups = " << nGroups_ << "\n";
63 >    // gather the information for atomtype IDs (atids):
64 >    idents = info_->getIdentArray();
65 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
66 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
67 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
68 >    massFactors = info_->getMassFactors();
69 >    PairList excludes = info_->getExcludedInteractions();
70 >    PairList oneTwo = info_->getOneTwoInteractions();
71 >    PairList oneThree = info_->getOneThreeInteractions();
72 >    PairList oneFour = info_->getOneFourInteractions();
73  
74 <    AtomCommIntColumn = new Communicator<Column,int>(nLocal);
75 <    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
76 <    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
77 <    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
74 > #ifdef IS_MPI
75 >
76 >    AtomCommIntRow = new Communicator<Row,int>(nLocal_);
77 >    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 >    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 >    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 >    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
81  
82 <    cgCommIntRow = new Communicator<Row,int>(nGroups);
83 <    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
84 <    cgCommIntColumn = new Communicator<Column,int>(nGroups);
85 <    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
82 >    AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
83 >    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
84 >    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
85 >    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
86 >    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
87  
88 <    int nAtomsInRow = AtomCommIntRow->getSize();
89 <    int nAtomsInCol = AtomCommIntColumn->getSize();
90 <    int nGroupsInRow = cgCommIntRow->getSize();
91 <    int nGroupsInCol = cgCommIntColumn->getSize();
88 >    cgCommIntRow = new Communicator<Row,int>(nGroups_);
89 >    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
90 >    cgCommIntColumn = new Communicator<Column,int>(nGroups_);
91 >    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
92 >
93 >    nAtomsInRow_ = AtomCommIntRow->getSize();
94 >    nAtomsInCol_ = AtomCommIntColumn->getSize();
95 >    nGroupsInRow_ = cgCommIntRow->getSize();
96 >    nGroupsInCol_ = cgCommIntColumn->getSize();
97 >
98 >    // Modify the data storage objects with the correct layouts and sizes:
99 >    atomRowData.resize(nAtomsInRow_);
100 >    atomRowData.setStorageLayout(storageLayout_);
101 >    atomColData.resize(nAtomsInCol_);
102 >    atomColData.setStorageLayout(storageLayout_);
103 >    cgRowData.resize(nGroupsInRow_);
104 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
105 >    cgColData.resize(nGroupsInCol_);
106 >    cgColData.setStorageLayout(DataStorage::dslPosition);
107 >        
108 >    identsRow.resize(nAtomsInRow_);
109 >    identsCol.resize(nAtomsInCol_);
110      
111 <    vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
112 <                                      vector<RealType> (nAtomsInRow, 0.0));
82 <    vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
83 <                                      vector<RealType> (nAtomsInCol, 0.0));
111 >    AtomCommIntRow->gather(idents, identsRow);
112 >    AtomCommIntColumn->gather(idents, identsCol);
113      
85    vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
86    
87    // gather the information for atomtype IDs (atids):
88    vector<int> identsLocal = info_->getIdentArray();
89    identsRow.reserve(nAtomsInRow);
90    identsCol.reserve(nAtomsInCol);
91    
92    AtomCommIntRow->gather(identsLocal, identsRow);
93    AtomCommIntColumn->gather(identsLocal, identsCol);
94    
95    AtomLocalToGlobal = info_->getGlobalAtomIndices();
114      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
115      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
116      
99    cgLocalToGlobal = info_->getGlobalGroupIndices();
117      cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
118      cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
119  
120 <    // still need:
121 <    // topoDist
122 <    // exclude
120 >    AtomCommRealRow->gather(massFactors, massFactorsRow);
121 >    AtomCommRealColumn->gather(massFactors, massFactorsCol);
122 >
123 >    groupListRow_.clear();
124 >    groupListRow_.resize(nGroupsInRow_);
125 >    for (int i = 0; i < nGroupsInRow_; i++) {
126 >      int gid = cgRowToGlobal[i];
127 >      for (int j = 0; j < nAtomsInRow_; j++) {
128 >        int aid = AtomRowToGlobal[j];
129 >        if (globalGroupMembership[aid] == gid)
130 >          groupListRow_[i].push_back(j);
131 >      }      
132 >    }
133 >
134 >    groupListCol_.clear();
135 >    groupListCol_.resize(nGroupsInCol_);
136 >    for (int i = 0; i < nGroupsInCol_; i++) {
137 >      int gid = cgColToGlobal[i];
138 >      for (int j = 0; j < nAtomsInCol_; j++) {
139 >        int aid = AtomColToGlobal[j];
140 >        if (globalGroupMembership[aid] == gid)
141 >          groupListCol_[i].push_back(j);
142 >      }      
143 >    }
144 >
145 >    skipsForAtom.clear();
146 >    skipsForAtom.resize(nAtomsInRow_);
147 >    toposForAtom.clear();
148 >    toposForAtom.resize(nAtomsInRow_);
149 >    topoDist.clear();
150 >    topoDist.resize(nAtomsInRow_);
151 >    for (int i = 0; i < nAtomsInRow_; i++) {
152 >      int iglob = AtomRowToGlobal[i];
153 >
154 >      for (int j = 0; j < nAtomsInCol_; j++) {
155 >        int jglob = AtomColToGlobal[j];
156 >
157 >        if (excludes.hasPair(iglob, jglob))
158 >          skipsForAtom[i].push_back(j);      
159 >        
160 >        if (oneTwo.hasPair(iglob, jglob)) {
161 >          toposForAtom[i].push_back(j);
162 >          topoDist[i].push_back(1);
163 >        } else {
164 >          if (oneThree.hasPair(iglob, jglob)) {
165 >            toposForAtom[i].push_back(j);
166 >            topoDist[i].push_back(2);
167 >          } else {
168 >            if (oneFour.hasPair(iglob, jglob)) {
169 >              toposForAtom[i].push_back(j);
170 >              topoDist[i].push_back(3);
171 >            }
172 >          }
173 >        }
174 >      }      
175 >    }
176 >
177 > #endif
178 >
179 >    groupList_.clear();
180 >    groupList_.resize(nGroups_);
181 >    for (int i = 0; i < nGroups_; i++) {
182 >      int gid = cgLocalToGlobal[i];
183 >      for (int j = 0; j < nLocal_; j++) {
184 >        int aid = AtomLocalToGlobal[j];
185 >        if (globalGroupMembership[aid] == gid) {
186 >          groupList_[i].push_back(j);
187 >        }
188 >      }      
189 >    }
190 >
191 >    skipsForAtom.clear();
192 >    skipsForAtom.resize(nLocal_);
193 >    toposForAtom.clear();
194 >    toposForAtom.resize(nLocal_);
195 >    topoDist.clear();
196 >    topoDist.resize(nLocal_);
197 >
198 >    for (int i = 0; i < nLocal_; i++) {
199 >      int iglob = AtomLocalToGlobal[i];
200 >
201 >      for (int j = 0; j < nLocal_; j++) {
202 >        int jglob = AtomLocalToGlobal[j];
203 >
204 >        if (excludes.hasPair(iglob, jglob))
205 >          skipsForAtom[i].push_back(j);              
206 >        
207 >        if (oneTwo.hasPair(iglob, jglob)) {
208 >          toposForAtom[i].push_back(j);
209 >          topoDist[i].push_back(1);
210 >        } else {
211 >          if (oneThree.hasPair(iglob, jglob)) {
212 >            toposForAtom[i].push_back(j);
213 >            topoDist[i].push_back(2);
214 >          } else {
215 >            if (oneFour.hasPair(iglob, jglob)) {
216 >              toposForAtom[i].push_back(j);
217 >              topoDist[i].push_back(3);
218 >            }
219 >          }
220 >        }
221 >      }      
222 >    }
223 >    
224 >    createGtypeCutoffMap();
225 >  }
226 >  
227 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
228 >
229 >    RealType tol = 1e-6;
230 >    RealType rc;
231 >    int atid;
232 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
233 >    vector<RealType> atypeCutoff;
234 >    atypeCutoff.resize( atypes.size() );
235 >      
236 >    for (set<AtomType*>::iterator at = atypes.begin();
237 >         at != atypes.end(); ++at){
238 >      atid = (*at)->getIdent();
239 >
240 >      if (userChoseCutoff_)
241 >        atypeCutoff[atid] = userCutoff_;
242 >      else
243 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
244 >    }
245 >
246 >    vector<RealType> gTypeCutoffs;
247 >
248 >    // first we do a single loop over the cutoff groups to find the
249 >    // largest cutoff for any atypes present in this group.
250 > #ifdef IS_MPI
251 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
252 >    groupRowToGtype.resize(nGroupsInRow_);
253 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
254 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
255 >      for (vector<int>::iterator ia = atomListRow.begin();
256 >           ia != atomListRow.end(); ++ia) {            
257 >        int atom1 = (*ia);
258 >        atid = identsRow[atom1];
259 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
260 >          groupCutoffRow[cg1] = atypeCutoff[atid];
261 >        }
262 >      }
263 >
264 >      bool gTypeFound = false;
265 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
266 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
267 >          groupRowToGtype[cg1] = gt;
268 >          gTypeFound = true;
269 >        }
270 >      }
271 >      if (!gTypeFound) {
272 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
273 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
274 >      }
275 >      
276 >    }
277 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
278 >    groupColToGtype.resize(nGroupsInCol_);
279 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
280 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
281 >      for (vector<int>::iterator jb = atomListCol.begin();
282 >           jb != atomListCol.end(); ++jb) {            
283 >        int atom2 = (*jb);
284 >        atid = identsCol[atom2];
285 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
286 >          groupCutoffCol[cg2] = atypeCutoff[atid];
287 >        }
288 >      }
289 >      bool gTypeFound = false;
290 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
291 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
292 >          groupColToGtype[cg2] = gt;
293 >          gTypeFound = true;
294 >        }
295 >      }
296 >      if (!gTypeFound) {
297 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
298 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
299 >      }
300 >    }
301 > #else
302 >
303 >    vector<RealType> groupCutoff(nGroups_, 0.0);
304 >    groupToGtype.resize(nGroups_);
305 >
306 >    cerr << "nGroups = " << nGroups_ << "\n";
307 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
308 >
309 >      groupCutoff[cg1] = 0.0;
310 >      vector<int> atomList = getAtomsInGroupRow(cg1);
311 >
312 >      for (vector<int>::iterator ia = atomList.begin();
313 >           ia != atomList.end(); ++ia) {            
314 >        int atom1 = (*ia);
315 >        atid = idents[atom1];
316 >        if (atypeCutoff[atid] > groupCutoff[cg1]) {
317 >          groupCutoff[cg1] = atypeCutoff[atid];
318 >        }
319 >      }
320 >
321 >      bool gTypeFound = false;
322 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
323 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
324 >          groupToGtype[cg1] = gt;
325 >          gTypeFound = true;
326 >        }
327 >      }
328 >      if (!gTypeFound) {
329 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
330 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
331 >      }      
332 >    }
333   #endif
334 +
335 +    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
336 +    // Now we find the maximum group cutoff value present in the simulation
337 +
338 +    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
339 +
340 + #ifdef IS_MPI
341 +    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
342 + #endif
343 +    
344 +    RealType tradRcut = groupMax;
345 +
346 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
347 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
348 +        RealType thisRcut;
349 +        switch(cutoffPolicy_) {
350 +        case TRADITIONAL:
351 +          thisRcut = tradRcut;
352 +          break;
353 +        case MIX:
354 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
355 +          break;
356 +        case MAX:
357 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
358 +          break;
359 +        default:
360 +          sprintf(painCave.errMsg,
361 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
362 +                  "hit an unknown cutoff policy!\n");
363 +          painCave.severity = OPENMD_ERROR;
364 +          painCave.isFatal = 1;
365 +          simError();
366 +          break;
367 +        }
368 +
369 +        pair<int,int> key = make_pair(i,j);
370 +        gTypeCutoffMap[key].first = thisRcut;
371 +
372 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
373 +
374 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
375 +        
376 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
377 +
378 +        // sanity check
379 +        
380 +        if (userChoseCutoff_) {
381 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
382 +            sprintf(painCave.errMsg,
383 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
384 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
385 +            painCave.severity = OPENMD_ERROR;
386 +            painCave.isFatal = 1;
387 +            simError();            
388 +          }
389 +        }
390 +      }
391 +    }
392    }
393 +
394 +
395 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
396 +    int i, j;  
397 + #ifdef IS_MPI
398 +    i = groupRowToGtype[cg1];
399 +    j = groupColToGtype[cg2];
400 + #else
401 +    i = groupToGtype[cg1];
402 +    j = groupToGtype[cg2];
403 + #endif    
404 +    return gTypeCutoffMap[make_pair(i,j)];
405 +  }
406 +
407 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
408 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
409 +      if (toposForAtom[atom1][j] == atom2)
410 +        return topoDist[atom1][j];
411 +    }
412 +    return 0;
413 +  }
414 +
415 +  void ForceMatrixDecomposition::zeroWorkArrays() {
416 +    pairwisePot = 0.0;
417 +    embeddingPot = 0.0;
418 +
419 + #ifdef IS_MPI
420 +    if (storageLayout_ & DataStorage::dslForce) {
421 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
422 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
423 +    }
424 +
425 +    if (storageLayout_ & DataStorage::dslTorque) {
426 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
427 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
428 +    }
429      
430 +    fill(pot_row.begin(), pot_row.end(),
431 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
432  
433 +    fill(pot_col.begin(), pot_col.end(),
434 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
435  
436 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
437 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
438 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
439 +    }
440 +
441 +    if (storageLayout_ & DataStorage::dslDensity) {      
442 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
443 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
444 +    }
445 +
446 +    if (storageLayout_ & DataStorage::dslFunctional) {  
447 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
448 +      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
449 +    }
450 +
451 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
452 +      fill(atomRowData.functionalDerivative.begin(),
453 +           atomRowData.functionalDerivative.end(), 0.0);
454 +      fill(atomColData.functionalDerivative.begin(),
455 +           atomColData.functionalDerivative.end(), 0.0);
456 +    }
457 +
458 + #else
459 +    
460 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
461 +      fill(snap_->atomData.particlePot.begin(),
462 +           snap_->atomData.particlePot.end(), 0.0);
463 +    }
464 +    
465 +    if (storageLayout_ & DataStorage::dslDensity) {      
466 +      fill(snap_->atomData.density.begin(),
467 +           snap_->atomData.density.end(), 0.0);
468 +    }
469 +    if (storageLayout_ & DataStorage::dslFunctional) {
470 +      fill(snap_->atomData.functional.begin(),
471 +           snap_->atomData.functional.end(), 0.0);
472 +    }
473 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
474 +      fill(snap_->atomData.functionalDerivative.begin(),
475 +           snap_->atomData.functionalDerivative.end(), 0.0);
476 +    }
477 + #endif
478 +    
479 +  }
480 +
481 +
482    void ForceMatrixDecomposition::distributeData()  {
483 +    snap_ = sman_->getCurrentSnapshot();
484 +    storageLayout_ = sman_->getStorageLayout();
485   #ifdef IS_MPI
113    Snapshot* snap = sman_->getCurrentSnapshot();
486      
487      // gather up the atomic positions
488 <    AtomCommVectorRow->gather(snap->atomData.position,
489 <                            snap->atomIData.position);
490 <    AtomCommVectorColumn->gather(snap->atomData.position,
491 <                            snap->atomJData.position);
488 >    AtomCommVectorRow->gather(snap_->atomData.position,
489 >                              atomRowData.position);
490 >    AtomCommVectorColumn->gather(snap_->atomData.position,
491 >                                 atomColData.position);
492      
493      // gather up the cutoff group positions
494 <    cgCommVectorRow->gather(snap->cgData.position,
495 <                          snap->cgIData.position);
496 <    cgCommVectorColumn->gather(snap->cgData.position,
497 <                          snap->cgJData.position);
494 >    cgCommVectorRow->gather(snap_->cgData.position,
495 >                            cgRowData.position);
496 >    cgCommVectorColumn->gather(snap_->cgData.position,
497 >                               cgColData.position);
498      
499      // if needed, gather the atomic rotation matrices
500 <    if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) {
501 <      AtomCommMatrixRow->gather(snap->atomData.aMat,
502 <                              snap->atomIData.aMat);
503 <      AtomCommMatrixColumn->gather(snap->atomData.aMat,
504 <                              snap->atomJData.aMat);
500 >    if (storageLayout_ & DataStorage::dslAmat) {
501 >      AtomCommMatrixRow->gather(snap_->atomData.aMat,
502 >                                atomRowData.aMat);
503 >      AtomCommMatrixColumn->gather(snap_->atomData.aMat,
504 >                                   atomColData.aMat);
505      }
506      
507      // if needed, gather the atomic eletrostatic frames
508 <    if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) {
509 <      AtomCommMatrixRow->gather(snap->atomData.electroFrame,
510 <                              snap->atomIData.electroFrame);
511 <      AtomCommMatrixColumn->gather(snap->atomData.electroFrame,
512 <                              snap->atomJData.electroFrame);
508 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
509 >      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
510 >                                atomRowData.electroFrame);
511 >      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
512 >                                   atomColData.electroFrame);
513      }
514   #endif      
515    }
516    
517 +  /* collects information obtained during the pre-pair loop onto local
518 +   * data structures.
519 +   */
520    void ForceMatrixDecomposition::collectIntermediateData() {
521 +    snap_ = sman_->getCurrentSnapshot();
522 +    storageLayout_ = sman_->getStorageLayout();
523   #ifdef IS_MPI
147    Snapshot* snap = sman_->getCurrentSnapshot();
524      
525 <    if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) {
526 <
527 <      AtomCommRealRow->scatter(snap->atomIData.density,
528 <                             snap->atomData.density);
529 <
530 <      int n = snap->atomData.density.size();
531 <      std::vector<RealType> rho_tmp(n, 0.0);
532 <      AtomCommRealColumn->scatter(snap->atomJData.density, rho_tmp);
525 >    if (storageLayout_ & DataStorage::dslDensity) {
526 >      
527 >      AtomCommRealRow->scatter(atomRowData.density,
528 >                               snap_->atomData.density);
529 >      
530 >      int n = snap_->atomData.density.size();
531 >      vector<RealType> rho_tmp(n, 0.0);
532 >      AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
533        for (int i = 0; i < n; i++)
534 <        snap->atomData.density[i] += rho_tmp[i];
534 >        snap_->atomData.density[i] += rho_tmp[i];
535      }
536   #endif
537    }
538 <  
538 >
539 >  /*
540 >   * redistributes information obtained during the pre-pair loop out to
541 >   * row and column-indexed data structures
542 >   */
543    void ForceMatrixDecomposition::distributeIntermediateData() {
544 +    snap_ = sman_->getCurrentSnapshot();
545 +    storageLayout_ = sman_->getStorageLayout();
546   #ifdef IS_MPI
547 <    Snapshot* snap = sman_->getCurrentSnapshot();
548 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) {
549 <      AtomCommRealRow->gather(snap->atomData.functional,
550 <                            snap->atomIData.functional);
551 <      AtomCommRealColumn->gather(snap->atomData.functional,
170 <                            snap->atomJData.functional);
547 >    if (storageLayout_ & DataStorage::dslFunctional) {
548 >      AtomCommRealRow->gather(snap_->atomData.functional,
549 >                              atomRowData.functional);
550 >      AtomCommRealColumn->gather(snap_->atomData.functional,
551 >                                 atomColData.functional);
552      }
553      
554 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) {
555 <      AtomCommRealRow->gather(snap->atomData.functionalDerivative,
556 <                            snap->atomIData.functionalDerivative);
557 <      AtomCommRealColumn->gather(snap->atomData.functionalDerivative,
558 <                            snap->atomJData.functionalDerivative);
554 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
555 >      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
556 >                              atomRowData.functionalDerivative);
557 >      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
558 >                                 atomColData.functionalDerivative);
559      }
560   #endif
561    }
562    
563    
564    void ForceMatrixDecomposition::collectData() {
565 < #ifdef IS_MPI
566 <    Snapshot* snap = sman_->getCurrentSnapshot();
567 <    
568 <    int n = snap->atomData.force.size();
565 >    snap_ = sman_->getCurrentSnapshot();
566 >    storageLayout_ = sman_->getStorageLayout();
567 > #ifdef IS_MPI    
568 >    int n = snap_->atomData.force.size();
569      vector<Vector3d> frc_tmp(n, V3Zero);
570      
571 <    AtomCommVectorRow->scatter(snap->atomIData.force, frc_tmp);
571 >    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
572      for (int i = 0; i < n; i++) {
573 <      snap->atomData.force[i] += frc_tmp[i];
573 >      snap_->atomData.force[i] += frc_tmp[i];
574        frc_tmp[i] = 0.0;
575      }
576      
577 <    AtomCommVectorColumn->scatter(snap->atomJData.force, frc_tmp);
577 >    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
578      for (int i = 0; i < n; i++)
579 <      snap->atomData.force[i] += frc_tmp[i];
579 >      snap_->atomData.force[i] += frc_tmp[i];
580      
581      
582 <    if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) {
582 >    if (storageLayout_ & DataStorage::dslTorque) {
583  
584 <      int nt = snap->atomData.force.size();
584 >      int nt = snap_->atomData.force.size();
585        vector<Vector3d> trq_tmp(nt, V3Zero);
586  
587 <      AtomCommVectorRow->scatter(snap->atomIData.torque, trq_tmp);
587 >      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
588        for (int i = 0; i < n; i++) {
589 <        snap->atomData.torque[i] += trq_tmp[i];
589 >        snap_->atomData.torque[i] += trq_tmp[i];
590          trq_tmp[i] = 0.0;
591        }
592        
593 <      AtomCommVectorColumn->scatter(snap->atomJData.torque, trq_tmp);
593 >      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
594        for (int i = 0; i < n; i++)
595 <        snap->atomData.torque[i] += trq_tmp[i];
595 >        snap_->atomData.torque[i] += trq_tmp[i];
596      }
597      
598 <    int nLocal = snap->getNumberOfAtoms();
598 >    nLocal_ = snap_->getNumberOfAtoms();
599  
600 <    vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
601 <                                       vector<RealType> (nLocal, 0.0));
600 >    vector<potVec> pot_temp(nLocal_,
601 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
602 >
603 >    // scatter/gather pot_row into the members of my column
604 >          
605 >    AtomCommPotRow->scatter(pot_row, pot_temp);
606 >
607 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
608 >      pairwisePot += pot_temp[ii];
609      
610 <    for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
611 <      AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
612 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
613 <        pot_local[i] += pot_temp[i][ii];
614 <      }
610 >    fill(pot_temp.begin(), pot_temp.end(),
611 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
612 >      
613 >    AtomCommPotColumn->scatter(pot_col, pot_temp);    
614 >    
615 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
616 >      pairwisePot += pot_temp[ii];    
617 > #endif
618 >
619 >  }
620 >
621 >  int ForceMatrixDecomposition::getNAtomsInRow() {  
622 > #ifdef IS_MPI
623 >    return nAtomsInRow_;
624 > #else
625 >    return nLocal_;
626 > #endif
627 >  }
628 >
629 >  /**
630 >   * returns the list of atoms belonging to this group.  
631 >   */
632 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
633 > #ifdef IS_MPI
634 >    return groupListRow_[cg1];
635 > #else
636 >    return groupList_[cg1];
637 > #endif
638 >  }
639 >
640 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
641 > #ifdef IS_MPI
642 >    return groupListCol_[cg2];
643 > #else
644 >    return groupList_[cg2];
645 > #endif
646 >  }
647 >  
648 >  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
649 >    Vector3d d;
650 >    
651 > #ifdef IS_MPI
652 >    d = cgColData.position[cg2] - cgRowData.position[cg1];
653 > #else
654 >    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
655 > #endif
656 >    
657 >    snap_->wrapVector(d);
658 >    return d;    
659 >  }
660 >
661 >
662 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
663 >
664 >    Vector3d d;
665 >    
666 > #ifdef IS_MPI
667 >    d = cgRowData.position[cg1] - atomRowData.position[atom1];
668 > #else
669 >    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
670 > #endif
671 >
672 >    snap_->wrapVector(d);
673 >    return d;    
674 >  }
675 >  
676 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
677 >    Vector3d d;
678 >    
679 > #ifdef IS_MPI
680 >    d = cgColData.position[cg2] - atomColData.position[atom2];
681 > #else
682 >    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
683 > #endif
684 >    
685 >    snap_->wrapVector(d);
686 >    return d;    
687 >  }
688 >
689 >  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
690 > #ifdef IS_MPI
691 >    return massFactorsRow[atom1];
692 > #else
693 >    return massFactors[atom1];
694 > #endif
695 >  }
696 >
697 >  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
698 > #ifdef IS_MPI
699 >    return massFactorsCol[atom2];
700 > #else
701 >    return massFactors[atom2];
702 > #endif
703 >
704 >  }
705 >    
706 >  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
707 >    Vector3d d;
708 >    
709 > #ifdef IS_MPI
710 >    d = atomColData.position[atom2] - atomRowData.position[atom1];
711 > #else
712 >    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
713 > #endif
714 >
715 >    snap_->wrapVector(d);
716 >    return d;    
717 >  }
718 >
719 >  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
720 >    return skipsForAtom[atom1];
721 >  }
722 >
723 >  /**
724 >   * There are a number of reasons to skip a pair or a
725 >   * particle. Mostly we do this to exclude atoms who are involved in
726 >   * short range interactions (bonds, bends, torsions), but we also
727 >   * need to exclude some overcounted interactions that result from
728 >   * the parallel decomposition.
729 >   */
730 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
731 >    int unique_id_1, unique_id_2;
732 >
733 > #ifdef IS_MPI
734 >    // in MPI, we have to look up the unique IDs for each atom
735 >    unique_id_1 = AtomRowToGlobal[atom1];
736 >    unique_id_2 = AtomColToGlobal[atom2];
737 >
738 >    // this situation should only arise in MPI simulations
739 >    if (unique_id_1 == unique_id_2) return true;
740 >    
741 >    // this prevents us from doing the pair on multiple processors
742 >    if (unique_id_1 < unique_id_2) {
743 >      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
744 >    } else {
745 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
746      }
747 + #else
748 +    // in the normal loop, the atom numbers are unique
749 +    unique_id_1 = atom1;
750 +    unique_id_2 = atom2;
751   #endif
752 +    
753 +    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
754 +         i != skipsForAtom[atom1].end(); ++i) {
755 +      if ( (*i) == unique_id_2 ) return true;
756 +    }
757 +
758 +    return false;
759    }
760 +
761 +
762 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
763 + #ifdef IS_MPI
764 +    atomRowData.force[atom1] += fg;
765 + #else
766 +    snap_->atomData.force[atom1] += fg;
767 + #endif
768 +  }
769 +
770 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
771 + #ifdef IS_MPI
772 +    atomColData.force[atom2] += fg;
773 + #else
774 +    snap_->atomData.force[atom2] += fg;
775 + #endif
776 +  }
777 +
778 +    // filling interaction blocks with pointers
779 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
780 +                                                     int atom1, int atom2) {    
781 + #ifdef IS_MPI
782 +    
783 +    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
784 +                             ff_->getAtomType(identsCol[atom2]) );
785 +    
786 +    if (storageLayout_ & DataStorage::dslAmat) {
787 +      idat.A1 = &(atomRowData.aMat[atom1]);
788 +      idat.A2 = &(atomColData.aMat[atom2]);
789 +    }
790 +    
791 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
792 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
793 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
794 +    }
795 +
796 +    if (storageLayout_ & DataStorage::dslTorque) {
797 +      idat.t1 = &(atomRowData.torque[atom1]);
798 +      idat.t2 = &(atomColData.torque[atom2]);
799 +    }
800 +
801 +    if (storageLayout_ & DataStorage::dslDensity) {
802 +      idat.rho1 = &(atomRowData.density[atom1]);
803 +      idat.rho2 = &(atomColData.density[atom2]);
804 +    }
805 +
806 +    if (storageLayout_ & DataStorage::dslFunctional) {
807 +      idat.frho1 = &(atomRowData.functional[atom1]);
808 +      idat.frho2 = &(atomColData.functional[atom2]);
809 +    }
810 +
811 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
812 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
813 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
814 +    }
815 +
816 +    if (storageLayout_ & DataStorage::dslParticlePot) {
817 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
818 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
819 +    }
820 +
821 + #else
822 +
823 +    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
824 +                             ff_->getAtomType(idents[atom2]) );
825 +
826 +    if (storageLayout_ & DataStorage::dslAmat) {
827 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
828 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
829 +    }
830 +
831 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
832 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
833 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
834 +    }
835 +
836 +    if (storageLayout_ & DataStorage::dslTorque) {
837 +      idat.t1 = &(snap_->atomData.torque[atom1]);
838 +      idat.t2 = &(snap_->atomData.torque[atom2]);
839 +    }
840 +
841 +    if (storageLayout_ & DataStorage::dslDensity) {    
842 +      idat.rho1 = &(snap_->atomData.density[atom1]);
843 +      idat.rho2 = &(snap_->atomData.density[atom2]);
844 +    }
845 +
846 +    if (storageLayout_ & DataStorage::dslFunctional) {
847 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
848 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
849 +    }
850 +
851 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
852 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
853 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
854 +    }
855 +
856 +    if (storageLayout_ & DataStorage::dslParticlePot) {
857 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
858 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
859 +    }
860 +
861 + #endif
862 +  }
863 +
864    
865 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
866 + #ifdef IS_MPI
867 +    pot_row[atom1] += 0.5 *  *(idat.pot);
868 +    pot_col[atom2] += 0.5 *  *(idat.pot);
869 +
870 +    atomRowData.force[atom1] += *(idat.f1);
871 +    atomColData.force[atom2] -= *(idat.f1);
872 + #else
873 +    pairwisePot += *(idat.pot);
874 +
875 +    snap_->atomData.force[atom1] += *(idat.f1);
876 +    snap_->atomData.force[atom2] -= *(idat.f1);
877 + #endif
878 +
879 +  }
880 +
881 +
882 +  void ForceMatrixDecomposition::fillSkipData(InteractionData &idat,
883 +                                              int atom1, int atom2) {
884 +    // Still Missing:: skippedCharge fill must be added to DataStorage
885 + #ifdef IS_MPI
886 +    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
887 +                             ff_->getAtomType(identsCol[atom2]) );
888 +
889 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
890 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
891 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
892 +    }
893 +    if (storageLayout_ & DataStorage::dslTorque) {
894 +      idat.t1 = &(atomRowData.torque[atom1]);
895 +      idat.t2 = &(atomColData.torque[atom2]);
896 +    }
897 + #else
898 +    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
899 +                             ff_->getAtomType(idents[atom2]) );
900 +
901 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
902 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
903 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
904 +    }
905 +    if (storageLayout_ & DataStorage::dslTorque) {
906 +      idat.t1 = &(snap_->atomData.torque[atom1]);
907 +      idat.t2 = &(snap_->atomData.torque[atom2]);
908 +    }
909 + #endif    
910 +  }
911 +
912 +
913 +  void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) {    
914 + #ifdef IS_MPI
915 +    pot_row[atom1] += 0.5 *  *(idat.pot);
916 +    pot_col[atom2] += 0.5 *  *(idat.pot);
917 + #else
918 +    pairwisePot += *(idat.pot);  
919 + #endif
920 +
921 +  }
922 +
923 +
924 +  /*
925 +   * buildNeighborList
926 +   *
927 +   * first element of pair is row-indexed CutoffGroup
928 +   * second element of pair is column-indexed CutoffGroup
929 +   */
930 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
931 +      
932 +    vector<pair<int, int> > neighborList;
933 +    groupCutoffs cuts;
934 + #ifdef IS_MPI
935 +    cellListRow_.clear();
936 +    cellListCol_.clear();
937 + #else
938 +    cellList_.clear();
939 + #endif
940 +
941 +    RealType rList_ = (largestRcut_ + skinThickness_);
942 +    RealType rl2 = rList_ * rList_;
943 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
944 +    Mat3x3d Hmat = snap_->getHmat();
945 +    Vector3d Hx = Hmat.getColumn(0);
946 +    Vector3d Hy = Hmat.getColumn(1);
947 +    Vector3d Hz = Hmat.getColumn(2);
948 +
949 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
950 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
951 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
952 +
953 +    Mat3x3d invHmat = snap_->getInvHmat();
954 +    Vector3d rs, scaled, dr;
955 +    Vector3i whichCell;
956 +    int cellIndex;
957 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
958 +
959 + #ifdef IS_MPI
960 +    cellListRow_.resize(nCtot);
961 +    cellListCol_.resize(nCtot);
962 + #else
963 +    cellList_.resize(nCtot);
964 + #endif
965 +
966 + #ifdef IS_MPI
967 +    for (int i = 0; i < nGroupsInRow_; i++) {
968 +      rs = cgRowData.position[i];
969 +
970 +      // scaled positions relative to the box vectors
971 +      scaled = invHmat * rs;
972 +
973 +      // wrap the vector back into the unit box by subtracting integer box
974 +      // numbers
975 +      for (int j = 0; j < 3; j++) {
976 +        scaled[j] -= roundMe(scaled[j]);
977 +        scaled[j] += 0.5;
978 +      }
979 +    
980 +      // find xyz-indices of cell that cutoffGroup is in.
981 +      whichCell.x() = nCells_.x() * scaled.x();
982 +      whichCell.y() = nCells_.y() * scaled.y();
983 +      whichCell.z() = nCells_.z() * scaled.z();
984 +
985 +      // find single index of this cell:
986 +      cellIndex = Vlinear(whichCell, nCells_);
987 +
988 +      // add this cutoff group to the list of groups in this cell;
989 +      cellListRow_[cellIndex].push_back(i);
990 +    }
991 +
992 +    for (int i = 0; i < nGroupsInCol_; i++) {
993 +      rs = cgColData.position[i];
994 +
995 +      // scaled positions relative to the box vectors
996 +      scaled = invHmat * rs;
997 +
998 +      // wrap the vector back into the unit box by subtracting integer box
999 +      // numbers
1000 +      for (int j = 0; j < 3; j++) {
1001 +        scaled[j] -= roundMe(scaled[j]);
1002 +        scaled[j] += 0.5;
1003 +      }
1004 +
1005 +      // find xyz-indices of cell that cutoffGroup is in.
1006 +      whichCell.x() = nCells_.x() * scaled.x();
1007 +      whichCell.y() = nCells_.y() * scaled.y();
1008 +      whichCell.z() = nCells_.z() * scaled.z();
1009 +
1010 +      // find single index of this cell:
1011 +      cellIndex = Vlinear(whichCell, nCells_);
1012 +
1013 +      // add this cutoff group to the list of groups in this cell;
1014 +      cellListCol_[cellIndex].push_back(i);
1015 +    }
1016 + #else
1017 +    for (int i = 0; i < nGroups_; i++) {
1018 +      rs = snap_->cgData.position[i];
1019 +
1020 +      // scaled positions relative to the box vectors
1021 +      scaled = invHmat * rs;
1022 +
1023 +      // wrap the vector back into the unit box by subtracting integer box
1024 +      // numbers
1025 +      for (int j = 0; j < 3; j++) {
1026 +        scaled[j] -= roundMe(scaled[j]);
1027 +        scaled[j] += 0.5;
1028 +      }
1029 +
1030 +      // find xyz-indices of cell that cutoffGroup is in.
1031 +      whichCell.x() = nCells_.x() * scaled.x();
1032 +      whichCell.y() = nCells_.y() * scaled.y();
1033 +      whichCell.z() = nCells_.z() * scaled.z();
1034 +
1035 +      // find single index of this cell:
1036 +      cellIndex = Vlinear(whichCell, nCells_);      
1037 +
1038 +      // add this cutoff group to the list of groups in this cell;
1039 +      cellList_[cellIndex].push_back(i);
1040 +    }
1041 + #endif
1042 +
1043 +    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1044 +      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1045 +        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1046 +          Vector3i m1v(m1x, m1y, m1z);
1047 +          int m1 = Vlinear(m1v, nCells_);
1048 +
1049 +          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1050 +               os != cellOffsets_.end(); ++os) {
1051 +            
1052 +            Vector3i m2v = m1v + (*os);
1053 +            
1054 +            if (m2v.x() >= nCells_.x()) {
1055 +              m2v.x() = 0;          
1056 +            } else if (m2v.x() < 0) {
1057 +              m2v.x() = nCells_.x() - 1;
1058 +            }
1059 +            
1060 +            if (m2v.y() >= nCells_.y()) {
1061 +              m2v.y() = 0;          
1062 +            } else if (m2v.y() < 0) {
1063 +              m2v.y() = nCells_.y() - 1;
1064 +            }
1065 +            
1066 +            if (m2v.z() >= nCells_.z()) {
1067 +              m2v.z() = 0;          
1068 +            } else if (m2v.z() < 0) {
1069 +              m2v.z() = nCells_.z() - 1;
1070 +            }
1071 +            
1072 +            int m2 = Vlinear (m2v, nCells_);
1073 +
1074 + #ifdef IS_MPI
1075 +            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1076 +                 j1 != cellListRow_[m1].end(); ++j1) {
1077 +              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1078 +                   j2 != cellListCol_[m2].end(); ++j2) {
1079 +                              
1080 +                // Always do this if we're in different cells or if
1081 +                // we're in the same cell and the global index of the
1082 +                // j2 cutoff group is less than the j1 cutoff group
1083 +
1084 +                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1085 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1086 +                  snap_->wrapVector(dr);
1087 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1088 +                  if (dr.lengthSquare() < cuts.third) {
1089 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1090 +                  }
1091 +                }
1092 +              }
1093 +            }
1094 + #else
1095 +
1096 +            for (vector<int>::iterator j1 = cellList_[m1].begin();
1097 +                 j1 != cellList_[m1].end(); ++j1) {
1098 +              for (vector<int>::iterator j2 = cellList_[m2].begin();
1099 +                   j2 != cellList_[m2].end(); ++j2) {
1100 +
1101 +                // Always do this if we're in different cells or if
1102 +                // we're in the same cell and the global index of the
1103 +                // j2 cutoff group is less than the j1 cutoff group
1104 +
1105 +                if (m2 != m1 || (*j2) < (*j1)) {
1106 +                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1107 +                  snap_->wrapVector(dr);
1108 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1109 +                  if (dr.lengthSquare() < cuts.third) {
1110 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1111 +                  }
1112 +                }
1113 +              }
1114 +            }
1115 + #endif
1116 +          }
1117 +        }
1118 +      }
1119 +    }
1120 +    
1121 +    // save the local cutoff group positions for the check that is
1122 +    // done on each loop:
1123 +    saved_CG_positions_.clear();
1124 +    for (int i = 0; i < nGroups_; i++)
1125 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1126 +  
1127 +    return neighborList;
1128 +  }
1129   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines