57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
|
ff_ = info_->getForceField(); |
59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
60 |
< |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
61 |
< |
|
60 |
> |
|
61 |
> |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
|
// gather the information for atomtype IDs (atids): |
63 |
< |
identsLocal = info_->getIdentArray(); |
63 |
> |
idents = info_->getIdentArray(); |
64 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 |
– |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 |
– |
PairList excludes = info_->getExcludedInteractions(); |
69 |
– |
PairList oneTwo = info_->getOneTwoInteractions(); |
70 |
– |
PairList oneThree = info_->getOneThreeInteractions(); |
71 |
– |
PairList oneFour = info_->getOneFourInteractions(); |
67 |
|
|
68 |
+ |
massFactors = info_->getMassFactors(); |
69 |
+ |
|
70 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
71 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
72 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
73 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
74 |
+ |
|
75 |
|
#ifdef IS_MPI |
76 |
|
|
77 |
|
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
106 |
|
cgColData.resize(nGroupsInCol_); |
107 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
108 |
|
|
109 |
< |
identsRow.reserve(nAtomsInRow_); |
110 |
< |
identsCol.reserve(nAtomsInCol_); |
109 |
> |
identsRow.resize(nAtomsInRow_); |
110 |
> |
identsCol.resize(nAtomsInCol_); |
111 |
|
|
112 |
< |
AtomCommIntRow->gather(identsLocal, identsRow); |
113 |
< |
AtomCommIntColumn->gather(identsLocal, identsCol); |
112 |
> |
AtomCommIntRow->gather(idents, identsRow); |
113 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
114 |
|
|
115 |
+ |
// allocate memory for the parallel objects |
116 |
+ |
AtomRowToGlobal.resize(nAtomsInRow_); |
117 |
+ |
AtomColToGlobal.resize(nAtomsInCol_); |
118 |
+ |
cgRowToGlobal.resize(nGroupsInRow_); |
119 |
+ |
cgColToGlobal.resize(nGroupsInCol_); |
120 |
+ |
massFactorsRow.resize(nAtomsInRow_); |
121 |
+ |
massFactorsCol.resize(nAtomsInCol_); |
122 |
+ |
pot_row.resize(nAtomsInRow_); |
123 |
+ |
pot_col.resize(nAtomsInCol_); |
124 |
+ |
|
125 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
126 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
127 |
|
|
128 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
129 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
130 |
|
|
131 |
< |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
132 |
< |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
131 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
132 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
133 |
|
|
134 |
|
groupListRow_.clear(); |
135 |
< |
groupListRow_.reserve(nGroupsInRow_); |
135 |
> |
groupListRow_.resize(nGroupsInRow_); |
136 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
137 |
|
int gid = cgRowToGlobal[i]; |
138 |
|
for (int j = 0; j < nAtomsInRow_; j++) { |
143 |
|
} |
144 |
|
|
145 |
|
groupListCol_.clear(); |
146 |
< |
groupListCol_.reserve(nGroupsInCol_); |
146 |
> |
groupListCol_.resize(nGroupsInCol_); |
147 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
148 |
|
int gid = cgColToGlobal[i]; |
149 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
153 |
|
} |
154 |
|
} |
155 |
|
|
156 |
< |
skipsForRowAtom.clear(); |
157 |
< |
skipsForRowAtom.reserve(nAtomsInRow_); |
156 |
> |
excludesForAtom.clear(); |
157 |
> |
excludesForAtom.resize(nAtomsInRow_); |
158 |
> |
toposForAtom.clear(); |
159 |
> |
toposForAtom.resize(nAtomsInRow_); |
160 |
> |
topoDist.clear(); |
161 |
> |
topoDist.resize(nAtomsInRow_); |
162 |
|
for (int i = 0; i < nAtomsInRow_; i++) { |
163 |
|
int iglob = AtomRowToGlobal[i]; |
148 |
– |
for (int j = 0; j < nAtomsInCol_; j++) { |
149 |
– |
int jglob = AtomColToGlobal[j]; |
150 |
– |
if (excludes.hasPair(iglob, jglob)) |
151 |
– |
skipsForRowAtom[i].push_back(j); |
152 |
– |
} |
153 |
– |
} |
164 |
|
|
155 |
– |
toposForRowAtom.clear(); |
156 |
– |
toposForRowAtom.reserve(nAtomsInRow_); |
157 |
– |
for (int i = 0; i < nAtomsInRow_; i++) { |
158 |
– |
int iglob = AtomRowToGlobal[i]; |
159 |
– |
int nTopos = 0; |
165 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
166 |
< |
int jglob = AtomColToGlobal[j]; |
167 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
168 |
< |
toposForRowAtom[i].push_back(j); |
169 |
< |
topoDistRow[i][nTopos] = 1; |
170 |
< |
nTopos++; |
171 |
< |
} |
172 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
173 |
< |
toposForRowAtom[i].push_back(j); |
174 |
< |
topoDistRow[i][nTopos] = 2; |
175 |
< |
nTopos++; |
176 |
< |
} |
177 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
178 |
< |
toposForRowAtom[i].push_back(j); |
179 |
< |
topoDistRow[i][nTopos] = 3; |
180 |
< |
nTopos++; |
166 |
> |
int jglob = AtomColToGlobal[j]; |
167 |
> |
|
168 |
> |
if (excludes->hasPair(iglob, jglob)) |
169 |
> |
excludesForAtom[i].push_back(j); |
170 |
> |
|
171 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
172 |
> |
toposForAtom[i].push_back(j); |
173 |
> |
topoDist[i].push_back(1); |
174 |
> |
} else { |
175 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
176 |
> |
toposForAtom[i].push_back(j); |
177 |
> |
topoDist[i].push_back(2); |
178 |
> |
} else { |
179 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
180 |
> |
toposForAtom[i].push_back(j); |
181 |
> |
topoDist[i].push_back(3); |
182 |
> |
} |
183 |
> |
} |
184 |
|
} |
185 |
|
} |
186 |
|
} |
188 |
|
#endif |
189 |
|
|
190 |
|
groupList_.clear(); |
191 |
< |
groupList_.reserve(nGroups_); |
191 |
> |
groupList_.resize(nGroups_); |
192 |
|
for (int i = 0; i < nGroups_; i++) { |
193 |
|
int gid = cgLocalToGlobal[i]; |
194 |
|
for (int j = 0; j < nLocal_; j++) { |
195 |
|
int aid = AtomLocalToGlobal[j]; |
196 |
< |
if (globalGroupMembership[aid] == gid) |
196 |
> |
if (globalGroupMembership[aid] == gid) { |
197 |
|
groupList_[i].push_back(j); |
198 |
+ |
} |
199 |
|
} |
200 |
|
} |
201 |
|
|
202 |
< |
skipsForLocalAtom.clear(); |
203 |
< |
skipsForLocalAtom.reserve(nLocal_); |
202 |
> |
excludesForAtom.clear(); |
203 |
> |
excludesForAtom.resize(nLocal_); |
204 |
> |
toposForAtom.clear(); |
205 |
> |
toposForAtom.resize(nLocal_); |
206 |
> |
topoDist.clear(); |
207 |
> |
topoDist.resize(nLocal_); |
208 |
|
|
209 |
|
for (int i = 0; i < nLocal_; i++) { |
210 |
|
int iglob = AtomLocalToGlobal[i]; |
198 |
– |
for (int j = 0; j < nLocal_; j++) { |
199 |
– |
int jglob = AtomLocalToGlobal[j]; |
200 |
– |
if (excludes.hasPair(iglob, jglob)) |
201 |
– |
skipsForLocalAtom[i].push_back(j); |
202 |
– |
} |
203 |
– |
} |
211 |
|
|
205 |
– |
toposForLocalAtom.clear(); |
206 |
– |
toposForLocalAtom.reserve(nLocal_); |
207 |
– |
for (int i = 0; i < nLocal_; i++) { |
208 |
– |
int iglob = AtomLocalToGlobal[i]; |
209 |
– |
int nTopos = 0; |
212 |
|
for (int j = 0; j < nLocal_; j++) { |
213 |
< |
int jglob = AtomLocalToGlobal[j]; |
214 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
215 |
< |
toposForLocalAtom[i].push_back(j); |
216 |
< |
topoDistLocal[i][nTopos] = 1; |
217 |
< |
nTopos++; |
213 |
> |
int jglob = AtomLocalToGlobal[j]; |
214 |
> |
|
215 |
> |
if (excludes->hasPair(iglob, jglob)) |
216 |
> |
excludesForAtom[i].push_back(j); |
217 |
> |
|
218 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
219 |
> |
toposForAtom[i].push_back(j); |
220 |
> |
topoDist[i].push_back(1); |
221 |
> |
} else { |
222 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
223 |
> |
toposForAtom[i].push_back(j); |
224 |
> |
topoDist[i].push_back(2); |
225 |
> |
} else { |
226 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
227 |
> |
toposForAtom[i].push_back(j); |
228 |
> |
topoDist[i].push_back(3); |
229 |
> |
} |
230 |
> |
} |
231 |
|
} |
217 |
– |
if (oneThree.hasPair(iglob, jglob)) { |
218 |
– |
toposForLocalAtom[i].push_back(j); |
219 |
– |
topoDistLocal[i][nTopos] = 2; |
220 |
– |
nTopos++; |
221 |
– |
} |
222 |
– |
if (oneFour.hasPair(iglob, jglob)) { |
223 |
– |
toposForLocalAtom[i].push_back(j); |
224 |
– |
topoDistLocal[i][nTopos] = 3; |
225 |
– |
nTopos++; |
226 |
– |
} |
232 |
|
} |
233 |
< |
} |
233 |
> |
} |
234 |
> |
|
235 |
> |
createGtypeCutoffMap(); |
236 |
|
|
237 |
|
} |
238 |
|
|
239 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
240 |
< |
|
240 |
> |
|
241 |
|
RealType tol = 1e-6; |
242 |
|
RealType rc; |
243 |
|
int atid; |
244 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
245 |
< |
vector<RealType> atypeCutoff; |
246 |
< |
atypeCutoff.reserve( atypes.size() ); |
247 |
< |
|
248 |
< |
for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){ |
242 |
< |
rc = interactionMan_->getSuggestedCutoffRadius(*at); |
245 |
> |
map<int, RealType> atypeCutoff; |
246 |
> |
|
247 |
> |
for (set<AtomType*>::iterator at = atypes.begin(); |
248 |
> |
at != atypes.end(); ++at){ |
249 |
|
atid = (*at)->getIdent(); |
250 |
< |
atypeCutoff[atid] = rc; |
250 |
> |
if (userChoseCutoff_) |
251 |
> |
atypeCutoff[atid] = userCutoff_; |
252 |
> |
else |
253 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
254 |
|
} |
255 |
|
|
256 |
|
vector<RealType> gTypeCutoffs; |
248 |
– |
|
257 |
|
// first we do a single loop over the cutoff groups to find the |
258 |
|
// largest cutoff for any atypes present in this group. |
259 |
|
#ifdef IS_MPI |
260 |
|
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
261 |
+ |
groupRowToGtype.resize(nGroupsInRow_); |
262 |
|
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
263 |
|
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
264 |
|
for (vector<int>::iterator ia = atomListRow.begin(); |
284 |
|
|
285 |
|
} |
286 |
|
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
287 |
+ |
groupColToGtype.resize(nGroupsInCol_); |
288 |
|
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
289 |
|
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
290 |
|
for (vector<int>::iterator jb = atomListCol.begin(); |
308 |
|
} |
309 |
|
} |
310 |
|
#else |
311 |
+ |
|
312 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
313 |
+ |
groupToGtype.resize(nGroups_); |
314 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
315 |
+ |
|
316 |
|
groupCutoff[cg1] = 0.0; |
317 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
318 |
+ |
|
319 |
|
for (vector<int>::iterator ia = atomList.begin(); |
320 |
|
ia != atomList.end(); ++ia) { |
321 |
|
int atom1 = (*ia); |
322 |
< |
atid = identsLocal[atom1]; |
322 |
> |
atid = idents[atom1]; |
323 |
|
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
324 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
325 |
|
} |
341 |
|
|
342 |
|
// Now we find the maximum group cutoff value present in the simulation |
343 |
|
|
344 |
< |
vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
345 |
< |
RealType groupMax = *groupMaxLoc; |
344 |
> |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
345 |
> |
gTypeCutoffs.end()); |
346 |
|
|
347 |
|
#ifdef IS_MPI |
348 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
348 |
> |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
349 |
> |
MPI::MAX); |
350 |
|
#endif |
351 |
|
|
352 |
|
RealType tradRcut = groupMax; |
353 |
|
|
354 |
|
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
355 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
341 |
< |
|
355 |
> |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
356 |
|
RealType thisRcut; |
357 |
|
switch(cutoffPolicy_) { |
358 |
|
case TRADITIONAL: |
359 |
|
thisRcut = tradRcut; |
360 |
+ |
break; |
361 |
|
case MIX: |
362 |
|
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
363 |
+ |
break; |
364 |
|
case MAX: |
365 |
|
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
366 |
+ |
break; |
367 |
|
default: |
368 |
|
sprintf(painCave.errMsg, |
369 |
|
"ForceMatrixDecomposition::createGtypeCutoffMap " |
370 |
|
"hit an unknown cutoff policy!\n"); |
371 |
|
painCave.severity = OPENMD_ERROR; |
372 |
|
painCave.isFatal = 1; |
373 |
< |
simError(); |
373 |
> |
simError(); |
374 |
> |
break; |
375 |
|
} |
376 |
|
|
377 |
|
pair<int,int> key = make_pair(i,j); |
389 |
|
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
390 |
|
sprintf(painCave.errMsg, |
391 |
|
"ForceMatrixDecomposition::createGtypeCutoffMap " |
392 |
< |
"user-specified rCut does not match computed group Cutoff\n"); |
392 |
> |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
393 |
|
painCave.severity = OPENMD_ERROR; |
394 |
|
painCave.isFatal = 1; |
395 |
|
simError(); |
401 |
|
|
402 |
|
|
403 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
404 |
< |
int i, j; |
387 |
< |
|
404 |
> |
int i, j; |
405 |
|
#ifdef IS_MPI |
406 |
|
i = groupRowToGtype[cg1]; |
407 |
|
j = groupColToGtype[cg2]; |
408 |
|
#else |
409 |
|
i = groupToGtype[cg1]; |
410 |
|
j = groupToGtype[cg2]; |
411 |
< |
#endif |
395 |
< |
|
411 |
> |
#endif |
412 |
|
return gTypeCutoffMap[make_pair(i,j)]; |
413 |
|
} |
414 |
|
|
415 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
416 |
+ |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
417 |
+ |
if (toposForAtom[atom1][j] == atom2) |
418 |
+ |
return topoDist[atom1][j]; |
419 |
+ |
} |
420 |
+ |
return 0; |
421 |
+ |
} |
422 |
|
|
423 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
424 |
+ |
pairwisePot = 0.0; |
425 |
+ |
embeddingPot = 0.0; |
426 |
|
|
402 |
– |
for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
403 |
– |
longRangePot_[j] = 0.0; |
404 |
– |
} |
405 |
– |
|
427 |
|
#ifdef IS_MPI |
428 |
|
if (storageLayout_ & DataStorage::dslForce) { |
429 |
|
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
439 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
440 |
|
|
441 |
|
fill(pot_col.begin(), pot_col.end(), |
442 |
< |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
422 |
< |
|
423 |
< |
pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
442 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
443 |
|
|
444 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
445 |
< |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
446 |
< |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
445 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
446 |
> |
0.0); |
447 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
448 |
> |
0.0); |
449 |
|
} |
450 |
|
|
451 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
454 |
|
} |
455 |
|
|
456 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
457 |
< |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
458 |
< |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
457 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
458 |
> |
0.0); |
459 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
460 |
> |
0.0); |
461 |
|
} |
462 |
|
|
463 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
467 |
|
atomColData.functionalDerivative.end(), 0.0); |
468 |
|
} |
469 |
|
|
470 |
< |
#else |
471 |
< |
|
470 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
471 |
> |
fill(atomRowData.skippedCharge.begin(), |
472 |
> |
atomRowData.skippedCharge.end(), 0.0); |
473 |
> |
fill(atomColData.skippedCharge.begin(), |
474 |
> |
atomColData.skippedCharge.end(), 0.0); |
475 |
> |
} |
476 |
> |
|
477 |
> |
#endif |
478 |
> |
// even in parallel, we need to zero out the local arrays: |
479 |
> |
|
480 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
481 |
|
fill(snap_->atomData.particlePot.begin(), |
482 |
|
snap_->atomData.particlePot.end(), 0.0); |
494 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
495 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
496 |
|
} |
497 |
< |
#endif |
497 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
498 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
499 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
500 |
> |
} |
501 |
|
|
502 |
|
} |
503 |
|
|
534 |
|
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
535 |
|
atomColData.electroFrame); |
536 |
|
} |
537 |
+ |
|
538 |
|
#endif |
539 |
|
} |
540 |
|
|
601 |
|
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
602 |
|
for (int i = 0; i < n; i++) |
603 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
604 |
< |
|
570 |
< |
|
604 |
> |
|
605 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
606 |
|
|
607 |
< |
int nt = snap_->atomData.force.size(); |
607 |
> |
int nt = snap_->atomData.torque.size(); |
608 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
609 |
|
|
610 |
|
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
611 |
< |
for (int i = 0; i < n; i++) { |
611 |
> |
for (int i = 0; i < nt; i++) { |
612 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
613 |
|
trq_tmp[i] = 0.0; |
614 |
|
} |
615 |
|
|
616 |
|
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
617 |
< |
for (int i = 0; i < n; i++) |
617 |
> |
for (int i = 0; i < nt; i++) |
618 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
619 |
|
} |
620 |
+ |
|
621 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
622 |
+ |
|
623 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
624 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
625 |
+ |
|
626 |
+ |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
627 |
+ |
for (int i = 0; i < ns; i++) { |
628 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
629 |
+ |
skch_tmp[i] = 0.0; |
630 |
+ |
} |
631 |
+ |
|
632 |
+ |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
633 |
+ |
for (int i = 0; i < ns; i++) |
634 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
635 |
+ |
} |
636 |
|
|
637 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
638 |
|
|
644 |
|
AtomCommPotRow->scatter(pot_row, pot_temp); |
645 |
|
|
646 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
647 |
< |
pot_local += pot_temp[ii]; |
647 |
> |
pairwisePot += pot_temp[ii]; |
648 |
|
|
649 |
|
fill(pot_temp.begin(), pot_temp.end(), |
650 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
652 |
|
AtomCommPotColumn->scatter(pot_col, pot_temp); |
653 |
|
|
654 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
655 |
< |
pot_local += pot_temp[ii]; |
606 |
< |
|
655 |
> |
pairwisePot += pot_temp[ii]; |
656 |
|
#endif |
657 |
+ |
|
658 |
|
} |
659 |
|
|
660 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
729 |
|
#ifdef IS_MPI |
730 |
|
return massFactorsRow[atom1]; |
731 |
|
#else |
732 |
< |
return massFactorsLocal[atom1]; |
732 |
> |
return massFactors[atom1]; |
733 |
|
#endif |
734 |
|
} |
735 |
|
|
737 |
|
#ifdef IS_MPI |
738 |
|
return massFactorsCol[atom2]; |
739 |
|
#else |
740 |
< |
return massFactorsLocal[atom2]; |
740 |
> |
return massFactors[atom2]; |
741 |
|
#endif |
742 |
|
|
743 |
|
} |
755 |
|
return d; |
756 |
|
} |
757 |
|
|
758 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
759 |
< |
#ifdef IS_MPI |
710 |
< |
return skipsForRowAtom[atom1]; |
711 |
< |
#else |
712 |
< |
return skipsForLocalAtom[atom1]; |
713 |
< |
#endif |
758 |
> |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
759 |
> |
return excludesForAtom[atom1]; |
760 |
|
} |
761 |
|
|
762 |
|
/** |
763 |
< |
* There are a number of reasons to skip a pair or a |
718 |
< |
* particle. Mostly we do this to exclude atoms who are involved in |
719 |
< |
* short range interactions (bonds, bends, torsions), but we also |
720 |
< |
* need to exclude some overcounted interactions that result from |
763 |
> |
* We need to exclude some overcounted interactions that result from |
764 |
|
* the parallel decomposition. |
765 |
|
*/ |
766 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
780 |
|
} else { |
781 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
782 |
|
} |
740 |
– |
#else |
741 |
– |
// in the normal loop, the atom numbers are unique |
742 |
– |
unique_id_1 = atom1; |
743 |
– |
unique_id_2 = atom2; |
783 |
|
#endif |
784 |
< |
|
746 |
< |
#ifdef IS_MPI |
747 |
< |
for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
748 |
< |
i != skipsForRowAtom[atom1].end(); ++i) { |
749 |
< |
if ( (*i) == unique_id_2 ) return true; |
750 |
< |
} |
751 |
< |
#else |
752 |
< |
for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
753 |
< |
i != skipsForLocalAtom[atom1].end(); ++i) { |
754 |
< |
if ( (*i) == unique_id_2 ) return true; |
755 |
< |
} |
756 |
< |
#endif |
784 |
> |
return false; |
785 |
|
} |
786 |
|
|
787 |
< |
int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
787 |
> |
/** |
788 |
> |
* We need to handle the interactions for atoms who are involved in |
789 |
> |
* the same rigid body as well as some short range interactions |
790 |
> |
* (bonds, bends, torsions) differently from other interactions. |
791 |
> |
* We'll still visit the pairwise routines, but with a flag that |
792 |
> |
* tells those routines to exclude the pair from direct long range |
793 |
> |
* interactions. Some indirect interactions (notably reaction |
794 |
> |
* field) must still be handled for these pairs. |
795 |
> |
*/ |
796 |
> |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
797 |
> |
int unique_id_2; |
798 |
|
|
799 |
|
#ifdef IS_MPI |
800 |
< |
for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
801 |
< |
if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
764 |
< |
} |
800 |
> |
// in MPI, we have to look up the unique IDs for the row atom. |
801 |
> |
unique_id_2 = AtomColToGlobal[atom2]; |
802 |
|
#else |
803 |
< |
for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
804 |
< |
if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
768 |
< |
} |
803 |
> |
// in the normal loop, the atom numbers are unique |
804 |
> |
unique_id_2 = atom2; |
805 |
|
#endif |
806 |
+ |
|
807 |
+ |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
808 |
+ |
i != excludesForAtom[atom1].end(); ++i) { |
809 |
+ |
if ( (*i) == unique_id_2 ) return true; |
810 |
+ |
} |
811 |
|
|
812 |
< |
// zero is default for unconnected (i.e. normal) pair interactions |
772 |
< |
return 0; |
812 |
> |
return false; |
813 |
|
} |
814 |
|
|
815 |
+ |
|
816 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
817 |
|
#ifdef IS_MPI |
818 |
|
atomRowData.force[atom1] += fg; |
830 |
|
} |
831 |
|
|
832 |
|
// filling interaction blocks with pointers |
833 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
834 |
< |
InteractionData idat; |
833 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
834 |
> |
int atom1, int atom2) { |
835 |
|
|
836 |
+ |
idat.excluded = excludeAtomPair(atom1, atom2); |
837 |
+ |
|
838 |
|
#ifdef IS_MPI |
839 |
|
|
840 |
|
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
841 |
|
ff_->getAtomType(identsCol[atom2]) ); |
799 |
– |
|
842 |
|
|
843 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
844 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
875 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
876 |
|
} |
877 |
|
|
878 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
879 |
+ |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
880 |
+ |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
881 |
+ |
} |
882 |
+ |
|
883 |
|
#else |
884 |
|
|
885 |
< |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
886 |
< |
ff_->getAtomType(identsLocal[atom2]) ); |
885 |
> |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
886 |
> |
ff_->getAtomType(idents[atom2]) ); |
887 |
|
|
888 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
889 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
900 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
901 |
|
} |
902 |
|
|
903 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
903 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
904 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
905 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
906 |
|
} |
920 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
921 |
|
} |
922 |
|
|
923 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
924 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
925 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
926 |
+ |
} |
927 |
|
#endif |
877 |
– |
return idat; |
928 |
|
} |
929 |
|
|
930 |
|
|
931 |
< |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
931 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
932 |
|
#ifdef IS_MPI |
933 |
|
pot_row[atom1] += 0.5 * *(idat.pot); |
934 |
|
pot_col[atom2] += 0.5 * *(idat.pot); |
936 |
|
atomRowData.force[atom1] += *(idat.f1); |
937 |
|
atomColData.force[atom2] -= *(idat.f1); |
938 |
|
#else |
939 |
< |
longRangePot_ += *(idat.pot); |
940 |
< |
|
939 |
> |
pairwisePot += *(idat.pot); |
940 |
> |
|
941 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
942 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
943 |
|
#endif |
944 |
< |
|
944 |
> |
|
945 |
|
} |
946 |
|
|
897 |
– |
|
898 |
– |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
899 |
– |
|
900 |
– |
InteractionData idat; |
901 |
– |
#ifdef IS_MPI |
902 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
903 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
904 |
– |
|
905 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
906 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
907 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
908 |
– |
} |
909 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
910 |
– |
idat.t1 = &(atomRowData.torque[atom1]); |
911 |
– |
idat.t2 = &(atomColData.torque[atom2]); |
912 |
– |
} |
913 |
– |
#else |
914 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
915 |
– |
ff_->getAtomType(identsLocal[atom2]) ); |
916 |
– |
|
917 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
918 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
919 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
920 |
– |
} |
921 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
922 |
– |
idat.t1 = &(snap_->atomData.torque[atom1]); |
923 |
– |
idat.t2 = &(snap_->atomData.torque[atom2]); |
924 |
– |
} |
925 |
– |
#endif |
926 |
– |
} |
927 |
– |
|
947 |
|
/* |
948 |
|
* buildNeighborList |
949 |
|
* |
954 |
|
|
955 |
|
vector<pair<int, int> > neighborList; |
956 |
|
groupCutoffs cuts; |
957 |
+ |
bool doAllPairs = false; |
958 |
+ |
|
959 |
|
#ifdef IS_MPI |
960 |
|
cellListRow_.clear(); |
961 |
|
cellListCol_.clear(); |
975 |
|
nCells_.y() = (int) ( Hy.length() )/ rList_; |
976 |
|
nCells_.z() = (int) ( Hz.length() )/ rList_; |
977 |
|
|
978 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
979 |
+ |
|
980 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
981 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
982 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
983 |
+ |
|
984 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
985 |
|
Vector3d rs, scaled, dr; |
986 |
|
Vector3i whichCell; |
987 |
|
int cellIndex; |
988 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
989 |
|
|
990 |
|
#ifdef IS_MPI |
991 |
< |
for (int i = 0; i < nGroupsInRow_; i++) { |
992 |
< |
rs = cgRowData.position[i]; |
965 |
< |
// scaled positions relative to the box vectors |
966 |
< |
scaled = invHmat * rs; |
967 |
< |
// wrap the vector back into the unit box by subtracting integer box |
968 |
< |
// numbers |
969 |
< |
for (int j = 0; j < 3; j++) |
970 |
< |
scaled[j] -= roundMe(scaled[j]); |
971 |
< |
|
972 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
973 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
974 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
975 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
976 |
< |
|
977 |
< |
// find single index of this cell: |
978 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
979 |
< |
// add this cutoff group to the list of groups in this cell; |
980 |
< |
cellListRow_[cellIndex].push_back(i); |
981 |
< |
} |
982 |
< |
|
983 |
< |
for (int i = 0; i < nGroupsInCol_; i++) { |
984 |
< |
rs = cgColData.position[i]; |
985 |
< |
// scaled positions relative to the box vectors |
986 |
< |
scaled = invHmat * rs; |
987 |
< |
// wrap the vector back into the unit box by subtracting integer box |
988 |
< |
// numbers |
989 |
< |
for (int j = 0; j < 3; j++) |
990 |
< |
scaled[j] -= roundMe(scaled[j]); |
991 |
< |
|
992 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
993 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
994 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
995 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
996 |
< |
|
997 |
< |
// find single index of this cell: |
998 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
999 |
< |
// add this cutoff group to the list of groups in this cell; |
1000 |
< |
cellListCol_[cellIndex].push_back(i); |
1001 |
< |
} |
991 |
> |
cellListRow_.resize(nCtot); |
992 |
> |
cellListCol_.resize(nCtot); |
993 |
|
#else |
994 |
< |
for (int i = 0; i < nGroups_; i++) { |
1004 |
< |
rs = snap_->cgData.position[i]; |
1005 |
< |
// scaled positions relative to the box vectors |
1006 |
< |
scaled = invHmat * rs; |
1007 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1008 |
< |
// numbers |
1009 |
< |
for (int j = 0; j < 3; j++) |
1010 |
< |
scaled[j] -= roundMe(scaled[j]); |
1011 |
< |
|
1012 |
< |
// find xyz-indices of cell that cutoffGroup is in. |
1013 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
1014 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
1015 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
1016 |
< |
|
1017 |
< |
// find single index of this cell: |
1018 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1019 |
< |
// add this cutoff group to the list of groups in this cell; |
1020 |
< |
cellList_[cellIndex].push_back(i); |
1021 |
< |
} |
994 |
> |
cellList_.resize(nCtot); |
995 |
|
#endif |
996 |
|
|
997 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
998 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1026 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1027 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1028 |
< |
int m1 = Vlinear(m1v, nCells_); |
997 |
> |
if (!doAllPairs) { |
998 |
> |
#ifdef IS_MPI |
999 |
|
|
1000 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1001 |
< |
os != cellOffsets_.end(); ++os) { |
1002 |
< |
|
1003 |
< |
Vector3i m2v = m1v + (*os); |
1004 |
< |
|
1005 |
< |
if (m2v.x() >= nCells_.x()) { |
1006 |
< |
m2v.x() = 0; |
1007 |
< |
} else if (m2v.x() < 0) { |
1008 |
< |
m2v.x() = nCells_.x() - 1; |
1009 |
< |
} |
1010 |
< |
|
1011 |
< |
if (m2v.y() >= nCells_.y()) { |
1012 |
< |
m2v.y() = 0; |
1013 |
< |
} else if (m2v.y() < 0) { |
1014 |
< |
m2v.y() = nCells_.y() - 1; |
1015 |
< |
} |
1016 |
< |
|
1017 |
< |
if (m2v.z() >= nCells_.z()) { |
1018 |
< |
m2v.z() = 0; |
1019 |
< |
} else if (m2v.z() < 0) { |
1020 |
< |
m2v.z() = nCells_.z() - 1; |
1021 |
< |
} |
1022 |
< |
|
1023 |
< |
int m2 = Vlinear (m2v, nCells_); |
1000 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
1001 |
> |
rs = cgRowData.position[i]; |
1002 |
> |
|
1003 |
> |
// scaled positions relative to the box vectors |
1004 |
> |
scaled = invHmat * rs; |
1005 |
> |
|
1006 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1007 |
> |
// numbers |
1008 |
> |
for (int j = 0; j < 3; j++) { |
1009 |
> |
scaled[j] -= roundMe(scaled[j]); |
1010 |
> |
scaled[j] += 0.5; |
1011 |
> |
} |
1012 |
> |
|
1013 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1014 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1015 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1016 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1017 |
> |
|
1018 |
> |
// find single index of this cell: |
1019 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1020 |
> |
|
1021 |
> |
// add this cutoff group to the list of groups in this cell; |
1022 |
> |
cellListRow_[cellIndex].push_back(i); |
1023 |
> |
} |
1024 |
> |
|
1025 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1026 |
> |
rs = cgColData.position[i]; |
1027 |
> |
|
1028 |
> |
// scaled positions relative to the box vectors |
1029 |
> |
scaled = invHmat * rs; |
1030 |
> |
|
1031 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1032 |
> |
// numbers |
1033 |
> |
for (int j = 0; j < 3; j++) { |
1034 |
> |
scaled[j] -= roundMe(scaled[j]); |
1035 |
> |
scaled[j] += 0.5; |
1036 |
> |
} |
1037 |
> |
|
1038 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1039 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1040 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1041 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1042 |
> |
|
1043 |
> |
// find single index of this cell: |
1044 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1045 |
> |
|
1046 |
> |
// add this cutoff group to the list of groups in this cell; |
1047 |
> |
cellListCol_[cellIndex].push_back(i); |
1048 |
> |
} |
1049 |
> |
#else |
1050 |
> |
for (int i = 0; i < nGroups_; i++) { |
1051 |
> |
rs = snap_->cgData.position[i]; |
1052 |
> |
|
1053 |
> |
// scaled positions relative to the box vectors |
1054 |
> |
scaled = invHmat * rs; |
1055 |
> |
|
1056 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1057 |
> |
// numbers |
1058 |
> |
for (int j = 0; j < 3; j++) { |
1059 |
> |
scaled[j] -= roundMe(scaled[j]); |
1060 |
> |
scaled[j] += 0.5; |
1061 |
> |
} |
1062 |
> |
|
1063 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1064 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1065 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1066 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1067 |
> |
|
1068 |
> |
// find single index of this cell: |
1069 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1070 |
> |
|
1071 |
> |
// add this cutoff group to the list of groups in this cell; |
1072 |
> |
cellList_[cellIndex].push_back(i); |
1073 |
> |
} |
1074 |
> |
#endif |
1075 |
|
|
1076 |
+ |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1077 |
+ |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1078 |
+ |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1079 |
+ |
Vector3i m1v(m1x, m1y, m1z); |
1080 |
+ |
int m1 = Vlinear(m1v, nCells_); |
1081 |
+ |
|
1082 |
+ |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1083 |
+ |
os != cellOffsets_.end(); ++os) { |
1084 |
+ |
|
1085 |
+ |
Vector3i m2v = m1v + (*os); |
1086 |
+ |
|
1087 |
+ |
if (m2v.x() >= nCells_.x()) { |
1088 |
+ |
m2v.x() = 0; |
1089 |
+ |
} else if (m2v.x() < 0) { |
1090 |
+ |
m2v.x() = nCells_.x() - 1; |
1091 |
+ |
} |
1092 |
+ |
|
1093 |
+ |
if (m2v.y() >= nCells_.y()) { |
1094 |
+ |
m2v.y() = 0; |
1095 |
+ |
} else if (m2v.y() < 0) { |
1096 |
+ |
m2v.y() = nCells_.y() - 1; |
1097 |
+ |
} |
1098 |
+ |
|
1099 |
+ |
if (m2v.z() >= nCells_.z()) { |
1100 |
+ |
m2v.z() = 0; |
1101 |
+ |
} else if (m2v.z() < 0) { |
1102 |
+ |
m2v.z() = nCells_.z() - 1; |
1103 |
+ |
} |
1104 |
+ |
|
1105 |
+ |
int m2 = Vlinear (m2v, nCells_); |
1106 |
+ |
|
1107 |
|
#ifdef IS_MPI |
1108 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1109 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1110 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1111 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1112 |
< |
|
1113 |
< |
// Always do this if we're in different cells or if |
1114 |
< |
// we're in the same cell and the global index of the |
1115 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1116 |
< |
|
1117 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1118 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1119 |
< |
snap_->wrapVector(dr); |
1120 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1121 |
< |
if (dr.lengthSquare() < cuts.third) { |
1122 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1108 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1109 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1110 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1111 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1112 |
> |
|
1113 |
> |
// Always do this if we're in different cells or if |
1114 |
> |
// we're in the same cell and the global index of the |
1115 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1116 |
> |
|
1117 |
> |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1118 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1119 |
> |
snap_->wrapVector(dr); |
1120 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1121 |
> |
if (dr.lengthSquare() < cuts.third) { |
1122 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1123 |
> |
} |
1124 |
|
} |
1125 |
|
} |
1126 |
|
} |
1074 |
– |
} |
1127 |
|
#else |
1128 |
< |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1129 |
< |
j1 != cellList_[m1].end(); ++j1) { |
1130 |
< |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1131 |
< |
j2 != cellList_[m2].end(); ++j2) { |
1132 |
< |
|
1133 |
< |
// Always do this if we're in different cells or if |
1134 |
< |
// we're in the same cell and the global index of the |
1135 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1136 |
< |
|
1137 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1138 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1139 |
< |
snap_->wrapVector(dr); |
1140 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1141 |
< |
if (dr.lengthSquare() < cuts.third) { |
1142 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1128 |
> |
|
1129 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1130 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1131 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1132 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1133 |
> |
|
1134 |
> |
// Always do this if we're in different cells or if |
1135 |
> |
// we're in the same cell and the global index of the |
1136 |
> |
// j2 cutoff group is less than the j1 cutoff group |
1137 |
> |
|
1138 |
> |
if (m2 != m1 || (*j2) < (*j1)) { |
1139 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1140 |
> |
snap_->wrapVector(dr); |
1141 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1142 |
> |
if (dr.lengthSquare() < cuts.third) { |
1143 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1144 |
> |
} |
1145 |
|
} |
1146 |
|
} |
1147 |
|
} |
1094 |
– |
} |
1148 |
|
#endif |
1149 |
+ |
} |
1150 |
|
} |
1151 |
|
} |
1152 |
|
} |
1153 |
+ |
} else { |
1154 |
+ |
// branch to do all cutoff group pairs |
1155 |
+ |
#ifdef IS_MPI |
1156 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1157 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1158 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1159 |
+ |
snap_->wrapVector(dr); |
1160 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1161 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1162 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1163 |
+ |
} |
1164 |
+ |
} |
1165 |
+ |
} |
1166 |
+ |
#else |
1167 |
+ |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1168 |
+ |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1169 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1170 |
+ |
snap_->wrapVector(dr); |
1171 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1172 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1173 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1174 |
+ |
} |
1175 |
+ |
} |
1176 |
+ |
} |
1177 |
+ |
#endif |
1178 |
|
} |
1179 |
< |
|
1179 |
> |
|
1180 |
|
// save the local cutoff group positions for the check that is |
1181 |
|
// done on each loop: |
1182 |
|
saved_CG_positions_.clear(); |
1183 |
|
for (int i = 0; i < nGroups_; i++) |
1184 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1185 |
< |
|
1185 |
> |
|
1186 |
|
return neighborList; |
1187 |
|
} |
1188 |
|
} //end namespace OpenMD |