1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
#include "math/SquareMatrix3.hpp" |
44 |
#include "nonbonded/NonBondedInteraction.hpp" |
45 |
#include "brains/SnapshotManager.hpp" |
46 |
#include "brains/PairList.hpp" |
47 |
|
48 |
using namespace std; |
49 |
namespace OpenMD { |
50 |
|
51 |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
|
53 |
// In a parallel computation, row and colum scans must visit all |
54 |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
// are used when the processor can see all pairs) |
56 |
#ifdef IS_MPI |
57 |
cellOffsets_.clear(); |
58 |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
#endif |
86 |
} |
87 |
|
88 |
|
89 |
/** |
90 |
* distributeInitialData is essentially a copy of the older fortran |
91 |
* SimulationSetup |
92 |
*/ |
93 |
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
snap_ = sman_->getCurrentSnapshot(); |
95 |
storageLayout_ = sman_->getStorageLayout(); |
96 |
ff_ = info_->getForceField(); |
97 |
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
|
99 |
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
// gather the information for atomtype IDs (atids): |
101 |
idents = info_->getIdentArray(); |
102 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
103 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
104 |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
105 |
|
106 |
massFactors = info_->getMassFactors(); |
107 |
|
108 |
PairList* excludes = info_->getExcludedInteractions(); |
109 |
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
|
113 |
if (needVelocities_) |
114 |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
DataStorage::dslVelocity); |
116 |
else |
117 |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
|
119 |
#ifdef IS_MPI |
120 |
|
121 |
MPI::Intracomm row = rowComm.getComm(); |
122 |
MPI::Intracomm col = colComm.getComm(); |
123 |
|
124 |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 |
|
130 |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 |
|
136 |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 |
|
141 |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 |
|
146 |
// Modify the data storage objects with the correct layouts and sizes: |
147 |
atomRowData.resize(nAtomsInRow_); |
148 |
atomRowData.setStorageLayout(storageLayout_); |
149 |
atomColData.resize(nAtomsInCol_); |
150 |
atomColData.setStorageLayout(storageLayout_); |
151 |
cgRowData.resize(nGroupsInRow_); |
152 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
cgColData.resize(nGroupsInCol_); |
154 |
if (needVelocities_) |
155 |
// we only need column velocities if we need them. |
156 |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
DataStorage::dslVelocity); |
158 |
else |
159 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
|
161 |
identsRow.resize(nAtomsInRow_); |
162 |
identsCol.resize(nAtomsInCol_); |
163 |
|
164 |
AtomPlanIntRow->gather(idents, identsRow); |
165 |
AtomPlanIntColumn->gather(idents, identsCol); |
166 |
|
167 |
// allocate memory for the parallel objects |
168 |
atypesRow.resize(nAtomsInRow_); |
169 |
atypesCol.resize(nAtomsInCol_); |
170 |
|
171 |
for (int i = 0; i < nAtomsInRow_; i++) |
172 |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 |
for (int i = 0; i < nAtomsInCol_; i++) |
174 |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 |
|
176 |
pot_row.resize(nAtomsInRow_); |
177 |
pot_col.resize(nAtomsInCol_); |
178 |
|
179 |
AtomRowToGlobal.resize(nAtomsInRow_); |
180 |
AtomColToGlobal.resize(nAtomsInCol_); |
181 |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
182 |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
183 |
|
184 |
cgRowToGlobal.resize(nGroupsInRow_); |
185 |
cgColToGlobal.resize(nGroupsInCol_); |
186 |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
187 |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
188 |
|
189 |
massFactorsRow.resize(nAtomsInRow_); |
190 |
massFactorsCol.resize(nAtomsInCol_); |
191 |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
192 |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
193 |
|
194 |
groupListRow_.clear(); |
195 |
groupListRow_.resize(nGroupsInRow_); |
196 |
for (int i = 0; i < nGroupsInRow_; i++) { |
197 |
int gid = cgRowToGlobal[i]; |
198 |
for (int j = 0; j < nAtomsInRow_; j++) { |
199 |
int aid = AtomRowToGlobal[j]; |
200 |
if (globalGroupMembership[aid] == gid) |
201 |
groupListRow_[i].push_back(j); |
202 |
} |
203 |
} |
204 |
|
205 |
groupListCol_.clear(); |
206 |
groupListCol_.resize(nGroupsInCol_); |
207 |
for (int i = 0; i < nGroupsInCol_; i++) { |
208 |
int gid = cgColToGlobal[i]; |
209 |
for (int j = 0; j < nAtomsInCol_; j++) { |
210 |
int aid = AtomColToGlobal[j]; |
211 |
if (globalGroupMembership[aid] == gid) |
212 |
groupListCol_[i].push_back(j); |
213 |
} |
214 |
} |
215 |
|
216 |
excludesForAtom.clear(); |
217 |
excludesForAtom.resize(nAtomsInRow_); |
218 |
toposForAtom.clear(); |
219 |
toposForAtom.resize(nAtomsInRow_); |
220 |
topoDist.clear(); |
221 |
topoDist.resize(nAtomsInRow_); |
222 |
for (int i = 0; i < nAtomsInRow_; i++) { |
223 |
int iglob = AtomRowToGlobal[i]; |
224 |
|
225 |
for (int j = 0; j < nAtomsInCol_; j++) { |
226 |
int jglob = AtomColToGlobal[j]; |
227 |
|
228 |
if (excludes->hasPair(iglob, jglob)) |
229 |
excludesForAtom[i].push_back(j); |
230 |
|
231 |
if (oneTwo->hasPair(iglob, jglob)) { |
232 |
toposForAtom[i].push_back(j); |
233 |
topoDist[i].push_back(1); |
234 |
} else { |
235 |
if (oneThree->hasPair(iglob, jglob)) { |
236 |
toposForAtom[i].push_back(j); |
237 |
topoDist[i].push_back(2); |
238 |
} else { |
239 |
if (oneFour->hasPair(iglob, jglob)) { |
240 |
toposForAtom[i].push_back(j); |
241 |
topoDist[i].push_back(3); |
242 |
} |
243 |
} |
244 |
} |
245 |
} |
246 |
} |
247 |
|
248 |
#else |
249 |
excludesForAtom.clear(); |
250 |
excludesForAtom.resize(nLocal_); |
251 |
toposForAtom.clear(); |
252 |
toposForAtom.resize(nLocal_); |
253 |
topoDist.clear(); |
254 |
topoDist.resize(nLocal_); |
255 |
|
256 |
for (int i = 0; i < nLocal_; i++) { |
257 |
int iglob = AtomLocalToGlobal[i]; |
258 |
|
259 |
for (int j = 0; j < nLocal_; j++) { |
260 |
int jglob = AtomLocalToGlobal[j]; |
261 |
|
262 |
if (excludes->hasPair(iglob, jglob)) |
263 |
excludesForAtom[i].push_back(j); |
264 |
|
265 |
if (oneTwo->hasPair(iglob, jglob)) { |
266 |
toposForAtom[i].push_back(j); |
267 |
topoDist[i].push_back(1); |
268 |
} else { |
269 |
if (oneThree->hasPair(iglob, jglob)) { |
270 |
toposForAtom[i].push_back(j); |
271 |
topoDist[i].push_back(2); |
272 |
} else { |
273 |
if (oneFour->hasPair(iglob, jglob)) { |
274 |
toposForAtom[i].push_back(j); |
275 |
topoDist[i].push_back(3); |
276 |
} |
277 |
} |
278 |
} |
279 |
} |
280 |
} |
281 |
#endif |
282 |
|
283 |
// allocate memory for the parallel objects |
284 |
atypesLocal.resize(nLocal_); |
285 |
|
286 |
for (int i = 0; i < nLocal_; i++) |
287 |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
288 |
|
289 |
groupList_.clear(); |
290 |
groupList_.resize(nGroups_); |
291 |
for (int i = 0; i < nGroups_; i++) { |
292 |
int gid = cgLocalToGlobal[i]; |
293 |
for (int j = 0; j < nLocal_; j++) { |
294 |
int aid = AtomLocalToGlobal[j]; |
295 |
if (globalGroupMembership[aid] == gid) { |
296 |
groupList_[i].push_back(j); |
297 |
} |
298 |
} |
299 |
} |
300 |
|
301 |
|
302 |
createGtypeCutoffMap(); |
303 |
|
304 |
} |
305 |
|
306 |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
307 |
|
308 |
RealType tol = 1e-6; |
309 |
largestRcut_ = 0.0; |
310 |
RealType rc; |
311 |
int atid; |
312 |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
313 |
|
314 |
map<int, RealType> atypeCutoff; |
315 |
|
316 |
for (set<AtomType*>::iterator at = atypes.begin(); |
317 |
at != atypes.end(); ++at){ |
318 |
atid = (*at)->getIdent(); |
319 |
if (userChoseCutoff_) |
320 |
atypeCutoff[atid] = userCutoff_; |
321 |
else |
322 |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
323 |
} |
324 |
|
325 |
vector<RealType> gTypeCutoffs; |
326 |
// first we do a single loop over the cutoff groups to find the |
327 |
// largest cutoff for any atypes present in this group. |
328 |
#ifdef IS_MPI |
329 |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
330 |
groupRowToGtype.resize(nGroupsInRow_); |
331 |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
332 |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
333 |
for (vector<int>::iterator ia = atomListRow.begin(); |
334 |
ia != atomListRow.end(); ++ia) { |
335 |
int atom1 = (*ia); |
336 |
atid = identsRow[atom1]; |
337 |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
338 |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
339 |
} |
340 |
} |
341 |
|
342 |
bool gTypeFound = false; |
343 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
344 |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
345 |
groupRowToGtype[cg1] = gt; |
346 |
gTypeFound = true; |
347 |
} |
348 |
} |
349 |
if (!gTypeFound) { |
350 |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
351 |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
352 |
} |
353 |
|
354 |
} |
355 |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
356 |
groupColToGtype.resize(nGroupsInCol_); |
357 |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
358 |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
359 |
for (vector<int>::iterator jb = atomListCol.begin(); |
360 |
jb != atomListCol.end(); ++jb) { |
361 |
int atom2 = (*jb); |
362 |
atid = identsCol[atom2]; |
363 |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
364 |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
365 |
} |
366 |
} |
367 |
bool gTypeFound = false; |
368 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
369 |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
370 |
groupColToGtype[cg2] = gt; |
371 |
gTypeFound = true; |
372 |
} |
373 |
} |
374 |
if (!gTypeFound) { |
375 |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
376 |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
377 |
} |
378 |
} |
379 |
#else |
380 |
|
381 |
vector<RealType> groupCutoff(nGroups_, 0.0); |
382 |
groupToGtype.resize(nGroups_); |
383 |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
384 |
groupCutoff[cg1] = 0.0; |
385 |
vector<int> atomList = getAtomsInGroupRow(cg1); |
386 |
for (vector<int>::iterator ia = atomList.begin(); |
387 |
ia != atomList.end(); ++ia) { |
388 |
int atom1 = (*ia); |
389 |
atid = idents[atom1]; |
390 |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
391 |
groupCutoff[cg1] = atypeCutoff[atid]; |
392 |
} |
393 |
|
394 |
bool gTypeFound = false; |
395 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
396 |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
397 |
groupToGtype[cg1] = gt; |
398 |
gTypeFound = true; |
399 |
} |
400 |
} |
401 |
if (!gTypeFound) { |
402 |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
403 |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
404 |
} |
405 |
} |
406 |
#endif |
407 |
|
408 |
// Now we find the maximum group cutoff value present in the simulation |
409 |
|
410 |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
411 |
gTypeCutoffs.end()); |
412 |
|
413 |
#ifdef IS_MPI |
414 |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
415 |
MPI::MAX); |
416 |
#endif |
417 |
|
418 |
RealType tradRcut = groupMax; |
419 |
|
420 |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
421 |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 |
RealType thisRcut; |
423 |
switch(cutoffPolicy_) { |
424 |
case TRADITIONAL: |
425 |
thisRcut = tradRcut; |
426 |
break; |
427 |
case MIX: |
428 |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
429 |
break; |
430 |
case MAX: |
431 |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
432 |
break; |
433 |
default: |
434 |
sprintf(painCave.errMsg, |
435 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
436 |
"hit an unknown cutoff policy!\n"); |
437 |
painCave.severity = OPENMD_ERROR; |
438 |
painCave.isFatal = 1; |
439 |
simError(); |
440 |
break; |
441 |
} |
442 |
|
443 |
pair<int,int> key = make_pair(i,j); |
444 |
gTypeCutoffMap[key].first = thisRcut; |
445 |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
446 |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
447 |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
448 |
// sanity check |
449 |
|
450 |
if (userChoseCutoff_) { |
451 |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
452 |
sprintf(painCave.errMsg, |
453 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
454 |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
455 |
painCave.severity = OPENMD_ERROR; |
456 |
painCave.isFatal = 1; |
457 |
simError(); |
458 |
} |
459 |
} |
460 |
} |
461 |
} |
462 |
} |
463 |
|
464 |
|
465 |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
466 |
int i, j; |
467 |
#ifdef IS_MPI |
468 |
i = groupRowToGtype[cg1]; |
469 |
j = groupColToGtype[cg2]; |
470 |
#else |
471 |
i = groupToGtype[cg1]; |
472 |
j = groupToGtype[cg2]; |
473 |
#endif |
474 |
return gTypeCutoffMap[make_pair(i,j)]; |
475 |
} |
476 |
|
477 |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
478 |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
479 |
if (toposForAtom[atom1][j] == atom2) |
480 |
return topoDist[atom1][j]; |
481 |
} |
482 |
return 0; |
483 |
} |
484 |
|
485 |
void ForceMatrixDecomposition::zeroWorkArrays() { |
486 |
pairwisePot = 0.0; |
487 |
embeddingPot = 0.0; |
488 |
|
489 |
#ifdef IS_MPI |
490 |
if (storageLayout_ & DataStorage::dslForce) { |
491 |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
492 |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
493 |
} |
494 |
|
495 |
if (storageLayout_ & DataStorage::dslTorque) { |
496 |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
497 |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
498 |
} |
499 |
|
500 |
fill(pot_row.begin(), pot_row.end(), |
501 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
502 |
|
503 |
fill(pot_col.begin(), pot_col.end(), |
504 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
505 |
|
506 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
507 |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
508 |
0.0); |
509 |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
510 |
0.0); |
511 |
} |
512 |
|
513 |
if (storageLayout_ & DataStorage::dslDensity) { |
514 |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
515 |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
516 |
} |
517 |
|
518 |
if (storageLayout_ & DataStorage::dslFunctional) { |
519 |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
520 |
0.0); |
521 |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
522 |
0.0); |
523 |
} |
524 |
|
525 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
526 |
fill(atomRowData.functionalDerivative.begin(), |
527 |
atomRowData.functionalDerivative.end(), 0.0); |
528 |
fill(atomColData.functionalDerivative.begin(), |
529 |
atomColData.functionalDerivative.end(), 0.0); |
530 |
} |
531 |
|
532 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
533 |
fill(atomRowData.skippedCharge.begin(), |
534 |
atomRowData.skippedCharge.end(), 0.0); |
535 |
fill(atomColData.skippedCharge.begin(), |
536 |
atomColData.skippedCharge.end(), 0.0); |
537 |
} |
538 |
|
539 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
540 |
fill(atomRowData.flucQFrc.begin(), |
541 |
atomRowData.flucQFrc.end(), 0.0); |
542 |
fill(atomColData.flucQFrc.begin(), |
543 |
atomColData.flucQFrc.end(), 0.0); |
544 |
} |
545 |
|
546 |
if (storageLayout_ & DataStorage::dslElectricField) { |
547 |
fill(atomRowData.electricField.begin(), |
548 |
atomRowData.electricField.end(), V3Zero); |
549 |
fill(atomColData.electricField.begin(), |
550 |
atomColData.electricField.end(), V3Zero); |
551 |
} |
552 |
|
553 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
554 |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
555 |
0.0); |
556 |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
557 |
0.0); |
558 |
} |
559 |
|
560 |
#endif |
561 |
// even in parallel, we need to zero out the local arrays: |
562 |
|
563 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
564 |
fill(snap_->atomData.particlePot.begin(), |
565 |
snap_->atomData.particlePot.end(), 0.0); |
566 |
} |
567 |
|
568 |
if (storageLayout_ & DataStorage::dslDensity) { |
569 |
fill(snap_->atomData.density.begin(), |
570 |
snap_->atomData.density.end(), 0.0); |
571 |
} |
572 |
|
573 |
if (storageLayout_ & DataStorage::dslFunctional) { |
574 |
fill(snap_->atomData.functional.begin(), |
575 |
snap_->atomData.functional.end(), 0.0); |
576 |
} |
577 |
|
578 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
579 |
fill(snap_->atomData.functionalDerivative.begin(), |
580 |
snap_->atomData.functionalDerivative.end(), 0.0); |
581 |
} |
582 |
|
583 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
584 |
fill(snap_->atomData.skippedCharge.begin(), |
585 |
snap_->atomData.skippedCharge.end(), 0.0); |
586 |
} |
587 |
|
588 |
if (storageLayout_ & DataStorage::dslElectricField) { |
589 |
fill(snap_->atomData.electricField.begin(), |
590 |
snap_->atomData.electricField.end(), V3Zero); |
591 |
} |
592 |
} |
593 |
|
594 |
|
595 |
void ForceMatrixDecomposition::distributeData() { |
596 |
snap_ = sman_->getCurrentSnapshot(); |
597 |
storageLayout_ = sman_->getStorageLayout(); |
598 |
#ifdef IS_MPI |
599 |
|
600 |
// gather up the atomic positions |
601 |
AtomPlanVectorRow->gather(snap_->atomData.position, |
602 |
atomRowData.position); |
603 |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
604 |
atomColData.position); |
605 |
|
606 |
// gather up the cutoff group positions |
607 |
|
608 |
cgPlanVectorRow->gather(snap_->cgData.position, |
609 |
cgRowData.position); |
610 |
|
611 |
cgPlanVectorColumn->gather(snap_->cgData.position, |
612 |
cgColData.position); |
613 |
|
614 |
|
615 |
|
616 |
if (needVelocities_) { |
617 |
// gather up the atomic velocities |
618 |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
619 |
atomColData.velocity); |
620 |
|
621 |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
622 |
cgColData.velocity); |
623 |
} |
624 |
|
625 |
|
626 |
// if needed, gather the atomic rotation matrices |
627 |
if (storageLayout_ & DataStorage::dslAmat) { |
628 |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
629 |
atomRowData.aMat); |
630 |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
631 |
atomColData.aMat); |
632 |
} |
633 |
|
634 |
// if needed, gather the atomic eletrostatic frames |
635 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
636 |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
637 |
atomRowData.electroFrame); |
638 |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
639 |
atomColData.electroFrame); |
640 |
} |
641 |
|
642 |
// if needed, gather the atomic fluctuating charge values |
643 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
644 |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
645 |
atomRowData.flucQPos); |
646 |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
647 |
atomColData.flucQPos); |
648 |
} |
649 |
|
650 |
#endif |
651 |
} |
652 |
|
653 |
/* collects information obtained during the pre-pair loop onto local |
654 |
* data structures. |
655 |
*/ |
656 |
void ForceMatrixDecomposition::collectIntermediateData() { |
657 |
snap_ = sman_->getCurrentSnapshot(); |
658 |
storageLayout_ = sman_->getStorageLayout(); |
659 |
#ifdef IS_MPI |
660 |
|
661 |
if (storageLayout_ & DataStorage::dslDensity) { |
662 |
|
663 |
AtomPlanRealRow->scatter(atomRowData.density, |
664 |
snap_->atomData.density); |
665 |
|
666 |
int n = snap_->atomData.density.size(); |
667 |
vector<RealType> rho_tmp(n, 0.0); |
668 |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
669 |
for (int i = 0; i < n; i++) |
670 |
snap_->atomData.density[i] += rho_tmp[i]; |
671 |
} |
672 |
|
673 |
if (storageLayout_ & DataStorage::dslElectricField) { |
674 |
|
675 |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
676 |
snap_->atomData.electricField); |
677 |
|
678 |
int n = snap_->atomData.electricField.size(); |
679 |
vector<Vector3d> field_tmp(n, V3Zero); |
680 |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
681 |
for (int i = 0; i < n; i++) |
682 |
snap_->atomData.electricField[i] += field_tmp[i]; |
683 |
} |
684 |
#endif |
685 |
} |
686 |
|
687 |
/* |
688 |
* redistributes information obtained during the pre-pair loop out to |
689 |
* row and column-indexed data structures |
690 |
*/ |
691 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
692 |
snap_ = sman_->getCurrentSnapshot(); |
693 |
storageLayout_ = sman_->getStorageLayout(); |
694 |
#ifdef IS_MPI |
695 |
if (storageLayout_ & DataStorage::dslFunctional) { |
696 |
AtomPlanRealRow->gather(snap_->atomData.functional, |
697 |
atomRowData.functional); |
698 |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
699 |
atomColData.functional); |
700 |
} |
701 |
|
702 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
703 |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
704 |
atomRowData.functionalDerivative); |
705 |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
706 |
atomColData.functionalDerivative); |
707 |
} |
708 |
#endif |
709 |
} |
710 |
|
711 |
|
712 |
void ForceMatrixDecomposition::collectData() { |
713 |
snap_ = sman_->getCurrentSnapshot(); |
714 |
storageLayout_ = sman_->getStorageLayout(); |
715 |
#ifdef IS_MPI |
716 |
int n = snap_->atomData.force.size(); |
717 |
vector<Vector3d> frc_tmp(n, V3Zero); |
718 |
|
719 |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
720 |
for (int i = 0; i < n; i++) { |
721 |
snap_->atomData.force[i] += frc_tmp[i]; |
722 |
frc_tmp[i] = 0.0; |
723 |
} |
724 |
|
725 |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
726 |
for (int i = 0; i < n; i++) { |
727 |
snap_->atomData.force[i] += frc_tmp[i]; |
728 |
} |
729 |
|
730 |
if (storageLayout_ & DataStorage::dslTorque) { |
731 |
|
732 |
int nt = snap_->atomData.torque.size(); |
733 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
734 |
|
735 |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
736 |
for (int i = 0; i < nt; i++) { |
737 |
snap_->atomData.torque[i] += trq_tmp[i]; |
738 |
trq_tmp[i] = 0.0; |
739 |
} |
740 |
|
741 |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
742 |
for (int i = 0; i < nt; i++) |
743 |
snap_->atomData.torque[i] += trq_tmp[i]; |
744 |
} |
745 |
|
746 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
747 |
|
748 |
int ns = snap_->atomData.skippedCharge.size(); |
749 |
vector<RealType> skch_tmp(ns, 0.0); |
750 |
|
751 |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
752 |
for (int i = 0; i < ns; i++) { |
753 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
754 |
skch_tmp[i] = 0.0; |
755 |
} |
756 |
|
757 |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
758 |
for (int i = 0; i < ns; i++) |
759 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
760 |
|
761 |
} |
762 |
|
763 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
764 |
|
765 |
int nq = snap_->atomData.flucQFrc.size(); |
766 |
vector<RealType> fqfrc_tmp(nq, 0.0); |
767 |
|
768 |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
769 |
for (int i = 0; i < nq; i++) { |
770 |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
771 |
fqfrc_tmp[i] = 0.0; |
772 |
} |
773 |
|
774 |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
775 |
for (int i = 0; i < nq; i++) |
776 |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
777 |
|
778 |
} |
779 |
|
780 |
nLocal_ = snap_->getNumberOfAtoms(); |
781 |
|
782 |
vector<potVec> pot_temp(nLocal_, |
783 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
784 |
|
785 |
// scatter/gather pot_row into the members of my column |
786 |
|
787 |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
788 |
|
789 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
790 |
pairwisePot += pot_temp[ii]; |
791 |
|
792 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
793 |
// This is the pairwise contribution to the particle pot. The |
794 |
// embedding contribution is added in each of the low level |
795 |
// non-bonded routines. In single processor, this is done in |
796 |
// unpackInteractionData, not in collectData. |
797 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
798 |
for (int i = 0; i < nLocal_; i++) { |
799 |
// factor of two is because the total potential terms are divided |
800 |
// by 2 in parallel due to row/ column scatter |
801 |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
802 |
} |
803 |
} |
804 |
} |
805 |
|
806 |
fill(pot_temp.begin(), pot_temp.end(), |
807 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
808 |
|
809 |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
810 |
|
811 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
812 |
pairwisePot += pot_temp[ii]; |
813 |
|
814 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
815 |
// This is the pairwise contribution to the particle pot. The |
816 |
// embedding contribution is added in each of the low level |
817 |
// non-bonded routines. In single processor, this is done in |
818 |
// unpackInteractionData, not in collectData. |
819 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
820 |
for (int i = 0; i < nLocal_; i++) { |
821 |
// factor of two is because the total potential terms are divided |
822 |
// by 2 in parallel due to row/ column scatter |
823 |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
824 |
} |
825 |
} |
826 |
} |
827 |
|
828 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
829 |
int npp = snap_->atomData.particlePot.size(); |
830 |
vector<RealType> ppot_temp(npp, 0.0); |
831 |
|
832 |
// This is the direct or embedding contribution to the particle |
833 |
// pot. |
834 |
|
835 |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
836 |
for (int i = 0; i < npp; i++) { |
837 |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
838 |
} |
839 |
|
840 |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
841 |
|
842 |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
843 |
for (int i = 0; i < npp; i++) { |
844 |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
845 |
} |
846 |
} |
847 |
|
848 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
849 |
RealType ploc1 = pairwisePot[ii]; |
850 |
RealType ploc2 = 0.0; |
851 |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
852 |
pairwisePot[ii] = ploc2; |
853 |
} |
854 |
|
855 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
856 |
RealType ploc1 = embeddingPot[ii]; |
857 |
RealType ploc2 = 0.0; |
858 |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
859 |
embeddingPot[ii] = ploc2; |
860 |
} |
861 |
|
862 |
// Here be dragons. |
863 |
MPI::Intracomm col = colComm.getComm(); |
864 |
|
865 |
col.Allreduce(MPI::IN_PLACE, |
866 |
&snap_->frameData.conductiveHeatFlux[0], 3, |
867 |
MPI::REALTYPE, MPI::SUM); |
868 |
|
869 |
|
870 |
#endif |
871 |
|
872 |
} |
873 |
|
874 |
int ForceMatrixDecomposition::getNAtomsInRow() { |
875 |
#ifdef IS_MPI |
876 |
return nAtomsInRow_; |
877 |
#else |
878 |
return nLocal_; |
879 |
#endif |
880 |
} |
881 |
|
882 |
/** |
883 |
* returns the list of atoms belonging to this group. |
884 |
*/ |
885 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
886 |
#ifdef IS_MPI |
887 |
return groupListRow_[cg1]; |
888 |
#else |
889 |
return groupList_[cg1]; |
890 |
#endif |
891 |
} |
892 |
|
893 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
894 |
#ifdef IS_MPI |
895 |
return groupListCol_[cg2]; |
896 |
#else |
897 |
return groupList_[cg2]; |
898 |
#endif |
899 |
} |
900 |
|
901 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
902 |
Vector3d d; |
903 |
|
904 |
#ifdef IS_MPI |
905 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
906 |
#else |
907 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
908 |
#endif |
909 |
|
910 |
snap_->wrapVector(d); |
911 |
return d; |
912 |
} |
913 |
|
914 |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
915 |
#ifdef IS_MPI |
916 |
return cgColData.velocity[cg2]; |
917 |
#else |
918 |
return snap_->cgData.velocity[cg2]; |
919 |
#endif |
920 |
} |
921 |
|
922 |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
923 |
#ifdef IS_MPI |
924 |
return atomColData.velocity[atom2]; |
925 |
#else |
926 |
return snap_->atomData.velocity[atom2]; |
927 |
#endif |
928 |
} |
929 |
|
930 |
|
931 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
932 |
|
933 |
Vector3d d; |
934 |
|
935 |
#ifdef IS_MPI |
936 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
937 |
#else |
938 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
939 |
#endif |
940 |
|
941 |
snap_->wrapVector(d); |
942 |
return d; |
943 |
} |
944 |
|
945 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
946 |
Vector3d d; |
947 |
|
948 |
#ifdef IS_MPI |
949 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
950 |
#else |
951 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
952 |
#endif |
953 |
|
954 |
snap_->wrapVector(d); |
955 |
return d; |
956 |
} |
957 |
|
958 |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
959 |
#ifdef IS_MPI |
960 |
return massFactorsRow[atom1]; |
961 |
#else |
962 |
return massFactors[atom1]; |
963 |
#endif |
964 |
} |
965 |
|
966 |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
967 |
#ifdef IS_MPI |
968 |
return massFactorsCol[atom2]; |
969 |
#else |
970 |
return massFactors[atom2]; |
971 |
#endif |
972 |
|
973 |
} |
974 |
|
975 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
976 |
Vector3d d; |
977 |
|
978 |
#ifdef IS_MPI |
979 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
980 |
#else |
981 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
982 |
#endif |
983 |
|
984 |
snap_->wrapVector(d); |
985 |
return d; |
986 |
} |
987 |
|
988 |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
989 |
return excludesForAtom[atom1]; |
990 |
} |
991 |
|
992 |
/** |
993 |
* We need to exclude some overcounted interactions that result from |
994 |
* the parallel decomposition. |
995 |
*/ |
996 |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
997 |
int unique_id_1, unique_id_2; |
998 |
|
999 |
#ifdef IS_MPI |
1000 |
// in MPI, we have to look up the unique IDs for each atom |
1001 |
unique_id_1 = AtomRowToGlobal[atom1]; |
1002 |
unique_id_2 = AtomColToGlobal[atom2]; |
1003 |
#else |
1004 |
unique_id_1 = AtomLocalToGlobal[atom1]; |
1005 |
unique_id_2 = AtomLocalToGlobal[atom2]; |
1006 |
#endif |
1007 |
|
1008 |
if (unique_id_1 == unique_id_2) return true; |
1009 |
|
1010 |
#ifdef IS_MPI |
1011 |
// this prevents us from doing the pair on multiple processors |
1012 |
if (unique_id_1 < unique_id_2) { |
1013 |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1014 |
} else { |
1015 |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1016 |
} |
1017 |
#endif |
1018 |
|
1019 |
return false; |
1020 |
} |
1021 |
|
1022 |
/** |
1023 |
* We need to handle the interactions for atoms who are involved in |
1024 |
* the same rigid body as well as some short range interactions |
1025 |
* (bonds, bends, torsions) differently from other interactions. |
1026 |
* We'll still visit the pairwise routines, but with a flag that |
1027 |
* tells those routines to exclude the pair from direct long range |
1028 |
* interactions. Some indirect interactions (notably reaction |
1029 |
* field) must still be handled for these pairs. |
1030 |
*/ |
1031 |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1032 |
|
1033 |
// excludesForAtom was constructed to use row/column indices in the MPI |
1034 |
// version, and to use local IDs in the non-MPI version: |
1035 |
|
1036 |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1037 |
i != excludesForAtom[atom1].end(); ++i) { |
1038 |
if ( (*i) == atom2 ) return true; |
1039 |
} |
1040 |
|
1041 |
return false; |
1042 |
} |
1043 |
|
1044 |
|
1045 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
1046 |
#ifdef IS_MPI |
1047 |
atomRowData.force[atom1] += fg; |
1048 |
#else |
1049 |
snap_->atomData.force[atom1] += fg; |
1050 |
#endif |
1051 |
} |
1052 |
|
1053 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
1054 |
#ifdef IS_MPI |
1055 |
atomColData.force[atom2] += fg; |
1056 |
#else |
1057 |
snap_->atomData.force[atom2] += fg; |
1058 |
#endif |
1059 |
} |
1060 |
|
1061 |
// filling interaction blocks with pointers |
1062 |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1063 |
int atom1, int atom2) { |
1064 |
|
1065 |
idat.excluded = excludeAtomPair(atom1, atom2); |
1066 |
|
1067 |
#ifdef IS_MPI |
1068 |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1069 |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1070 |
// ff_->getAtomType(identsCol[atom2]) ); |
1071 |
|
1072 |
if (storageLayout_ & DataStorage::dslAmat) { |
1073 |
idat.A1 = &(atomRowData.aMat[atom1]); |
1074 |
idat.A2 = &(atomColData.aMat[atom2]); |
1075 |
} |
1076 |
|
1077 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1078 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1079 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1080 |
} |
1081 |
|
1082 |
if (storageLayout_ & DataStorage::dslTorque) { |
1083 |
idat.t1 = &(atomRowData.torque[atom1]); |
1084 |
idat.t2 = &(atomColData.torque[atom2]); |
1085 |
} |
1086 |
|
1087 |
if (storageLayout_ & DataStorage::dslDensity) { |
1088 |
idat.rho1 = &(atomRowData.density[atom1]); |
1089 |
idat.rho2 = &(atomColData.density[atom2]); |
1090 |
} |
1091 |
|
1092 |
if (storageLayout_ & DataStorage::dslFunctional) { |
1093 |
idat.frho1 = &(atomRowData.functional[atom1]); |
1094 |
idat.frho2 = &(atomColData.functional[atom2]); |
1095 |
} |
1096 |
|
1097 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1098 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
1099 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
1100 |
} |
1101 |
|
1102 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
1103 |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1104 |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1105 |
} |
1106 |
|
1107 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1108 |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1109 |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1110 |
} |
1111 |
|
1112 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1113 |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1114 |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1115 |
} |
1116 |
|
1117 |
#else |
1118 |
|
1119 |
|
1120 |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1121 |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1122 |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1123 |
|
1124 |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1125 |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1126 |
// ff_->getAtomType(idents[atom2]) ); |
1127 |
|
1128 |
if (storageLayout_ & DataStorage::dslAmat) { |
1129 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1130 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1131 |
} |
1132 |
|
1133 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1134 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1135 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1136 |
} |
1137 |
|
1138 |
if (storageLayout_ & DataStorage::dslTorque) { |
1139 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
1140 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
1141 |
} |
1142 |
|
1143 |
if (storageLayout_ & DataStorage::dslDensity) { |
1144 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
1145 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
1146 |
} |
1147 |
|
1148 |
if (storageLayout_ & DataStorage::dslFunctional) { |
1149 |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
1150 |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
1151 |
} |
1152 |
|
1153 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1154 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
1155 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
1156 |
} |
1157 |
|
1158 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
1159 |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1160 |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1161 |
} |
1162 |
|
1163 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1164 |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1165 |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1166 |
} |
1167 |
|
1168 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1169 |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1170 |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1171 |
} |
1172 |
|
1173 |
#endif |
1174 |
} |
1175 |
|
1176 |
|
1177 |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1178 |
#ifdef IS_MPI |
1179 |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1180 |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1181 |
|
1182 |
atomRowData.force[atom1] += *(idat.f1); |
1183 |
atomColData.force[atom2] -= *(idat.f1); |
1184 |
|
1185 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1186 |
atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1187 |
atomColData.flucQFrc[atom2] += *(idat.dVdFQ2); |
1188 |
} |
1189 |
|
1190 |
if (storageLayout_ & DataStorage::dslElectricField) { |
1191 |
atomRowData.electricField[atom1] += *(idat.eField1); |
1192 |
atomColData.electricField[atom2] += *(idat.eField2); |
1193 |
} |
1194 |
|
1195 |
#else |
1196 |
pairwisePot += *(idat.pot); |
1197 |
|
1198 |
snap_->atomData.force[atom1] += *(idat.f1); |
1199 |
snap_->atomData.force[atom2] -= *(idat.f1); |
1200 |
|
1201 |
if (idat.doParticlePot) { |
1202 |
// This is the pairwise contribution to the particle pot. The |
1203 |
// embedding contribution is added in each of the low level |
1204 |
// non-bonded routines. In parallel, this calculation is done |
1205 |
// in collectData, not in unpackInteractionData. |
1206 |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1207 |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1208 |
} |
1209 |
|
1210 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1211 |
snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1212 |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1213 |
} |
1214 |
|
1215 |
if (storageLayout_ & DataStorage::dslElectricField) { |
1216 |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1217 |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1218 |
} |
1219 |
|
1220 |
#endif |
1221 |
|
1222 |
} |
1223 |
|
1224 |
/* |
1225 |
* buildNeighborList |
1226 |
* |
1227 |
* first element of pair is row-indexed CutoffGroup |
1228 |
* second element of pair is column-indexed CutoffGroup |
1229 |
*/ |
1230 |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1231 |
|
1232 |
vector<pair<int, int> > neighborList; |
1233 |
groupCutoffs cuts; |
1234 |
bool doAllPairs = false; |
1235 |
|
1236 |
#ifdef IS_MPI |
1237 |
cellListRow_.clear(); |
1238 |
cellListCol_.clear(); |
1239 |
#else |
1240 |
cellList_.clear(); |
1241 |
#endif |
1242 |
|
1243 |
RealType rList_ = (largestRcut_ + skinThickness_); |
1244 |
RealType rl2 = rList_ * rList_; |
1245 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1246 |
Mat3x3d Hmat = snap_->getHmat(); |
1247 |
Vector3d Hx = Hmat.getColumn(0); |
1248 |
Vector3d Hy = Hmat.getColumn(1); |
1249 |
Vector3d Hz = Hmat.getColumn(2); |
1250 |
|
1251 |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1252 |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1253 |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1254 |
|
1255 |
// handle small boxes where the cell offsets can end up repeating cells |
1256 |
|
1257 |
if (nCells_.x() < 3) doAllPairs = true; |
1258 |
if (nCells_.y() < 3) doAllPairs = true; |
1259 |
if (nCells_.z() < 3) doAllPairs = true; |
1260 |
|
1261 |
Mat3x3d invHmat = snap_->getInvHmat(); |
1262 |
Vector3d rs, scaled, dr; |
1263 |
Vector3i whichCell; |
1264 |
int cellIndex; |
1265 |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1266 |
|
1267 |
#ifdef IS_MPI |
1268 |
cellListRow_.resize(nCtot); |
1269 |
cellListCol_.resize(nCtot); |
1270 |
#else |
1271 |
cellList_.resize(nCtot); |
1272 |
#endif |
1273 |
|
1274 |
if (!doAllPairs) { |
1275 |
#ifdef IS_MPI |
1276 |
|
1277 |
for (int i = 0; i < nGroupsInRow_; i++) { |
1278 |
rs = cgRowData.position[i]; |
1279 |
|
1280 |
// scaled positions relative to the box vectors |
1281 |
scaled = invHmat * rs; |
1282 |
|
1283 |
// wrap the vector back into the unit box by subtracting integer box |
1284 |
// numbers |
1285 |
for (int j = 0; j < 3; j++) { |
1286 |
scaled[j] -= roundMe(scaled[j]); |
1287 |
scaled[j] += 0.5; |
1288 |
} |
1289 |
|
1290 |
// find xyz-indices of cell that cutoffGroup is in. |
1291 |
whichCell.x() = nCells_.x() * scaled.x(); |
1292 |
whichCell.y() = nCells_.y() * scaled.y(); |
1293 |
whichCell.z() = nCells_.z() * scaled.z(); |
1294 |
|
1295 |
// find single index of this cell: |
1296 |
cellIndex = Vlinear(whichCell, nCells_); |
1297 |
|
1298 |
// add this cutoff group to the list of groups in this cell; |
1299 |
cellListRow_[cellIndex].push_back(i); |
1300 |
} |
1301 |
for (int i = 0; i < nGroupsInCol_; i++) { |
1302 |
rs = cgColData.position[i]; |
1303 |
|
1304 |
// scaled positions relative to the box vectors |
1305 |
scaled = invHmat * rs; |
1306 |
|
1307 |
// wrap the vector back into the unit box by subtracting integer box |
1308 |
// numbers |
1309 |
for (int j = 0; j < 3; j++) { |
1310 |
scaled[j] -= roundMe(scaled[j]); |
1311 |
scaled[j] += 0.5; |
1312 |
} |
1313 |
|
1314 |
// find xyz-indices of cell that cutoffGroup is in. |
1315 |
whichCell.x() = nCells_.x() * scaled.x(); |
1316 |
whichCell.y() = nCells_.y() * scaled.y(); |
1317 |
whichCell.z() = nCells_.z() * scaled.z(); |
1318 |
|
1319 |
// find single index of this cell: |
1320 |
cellIndex = Vlinear(whichCell, nCells_); |
1321 |
|
1322 |
// add this cutoff group to the list of groups in this cell; |
1323 |
cellListCol_[cellIndex].push_back(i); |
1324 |
} |
1325 |
|
1326 |
#else |
1327 |
for (int i = 0; i < nGroups_; i++) { |
1328 |
rs = snap_->cgData.position[i]; |
1329 |
|
1330 |
// scaled positions relative to the box vectors |
1331 |
scaled = invHmat * rs; |
1332 |
|
1333 |
// wrap the vector back into the unit box by subtracting integer box |
1334 |
// numbers |
1335 |
for (int j = 0; j < 3; j++) { |
1336 |
scaled[j] -= roundMe(scaled[j]); |
1337 |
scaled[j] += 0.5; |
1338 |
} |
1339 |
|
1340 |
// find xyz-indices of cell that cutoffGroup is in. |
1341 |
whichCell.x() = nCells_.x() * scaled.x(); |
1342 |
whichCell.y() = nCells_.y() * scaled.y(); |
1343 |
whichCell.z() = nCells_.z() * scaled.z(); |
1344 |
|
1345 |
// find single index of this cell: |
1346 |
cellIndex = Vlinear(whichCell, nCells_); |
1347 |
|
1348 |
// add this cutoff group to the list of groups in this cell; |
1349 |
cellList_[cellIndex].push_back(i); |
1350 |
} |
1351 |
|
1352 |
#endif |
1353 |
|
1354 |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1355 |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1356 |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1357 |
Vector3i m1v(m1x, m1y, m1z); |
1358 |
int m1 = Vlinear(m1v, nCells_); |
1359 |
|
1360 |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1361 |
os != cellOffsets_.end(); ++os) { |
1362 |
|
1363 |
Vector3i m2v = m1v + (*os); |
1364 |
|
1365 |
|
1366 |
if (m2v.x() >= nCells_.x()) { |
1367 |
m2v.x() = 0; |
1368 |
} else if (m2v.x() < 0) { |
1369 |
m2v.x() = nCells_.x() - 1; |
1370 |
} |
1371 |
|
1372 |
if (m2v.y() >= nCells_.y()) { |
1373 |
m2v.y() = 0; |
1374 |
} else if (m2v.y() < 0) { |
1375 |
m2v.y() = nCells_.y() - 1; |
1376 |
} |
1377 |
|
1378 |
if (m2v.z() >= nCells_.z()) { |
1379 |
m2v.z() = 0; |
1380 |
} else if (m2v.z() < 0) { |
1381 |
m2v.z() = nCells_.z() - 1; |
1382 |
} |
1383 |
|
1384 |
int m2 = Vlinear (m2v, nCells_); |
1385 |
|
1386 |
#ifdef IS_MPI |
1387 |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1388 |
j1 != cellListRow_[m1].end(); ++j1) { |
1389 |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1390 |
j2 != cellListCol_[m2].end(); ++j2) { |
1391 |
|
1392 |
// In parallel, we need to visit *all* pairs of row |
1393 |
// & column indicies and will divide labor in the |
1394 |
// force evaluation later. |
1395 |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1396 |
snap_->wrapVector(dr); |
1397 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1398 |
if (dr.lengthSquare() < cuts.third) { |
1399 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1400 |
} |
1401 |
} |
1402 |
} |
1403 |
#else |
1404 |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1405 |
j1 != cellList_[m1].end(); ++j1) { |
1406 |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1407 |
j2 != cellList_[m2].end(); ++j2) { |
1408 |
|
1409 |
// Always do this if we're in different cells or if |
1410 |
// we're in the same cell and the global index of |
1411 |
// the j2 cutoff group is greater than or equal to |
1412 |
// the j1 cutoff group. Note that Rappaport's code |
1413 |
// has a "less than" conditional here, but that |
1414 |
// deals with atom-by-atom computation. OpenMD |
1415 |
// allows atoms within a single cutoff group to |
1416 |
// interact with each other. |
1417 |
|
1418 |
|
1419 |
|
1420 |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1421 |
|
1422 |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1423 |
snap_->wrapVector(dr); |
1424 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1425 |
if (dr.lengthSquare() < cuts.third) { |
1426 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1427 |
} |
1428 |
} |
1429 |
} |
1430 |
} |
1431 |
#endif |
1432 |
} |
1433 |
} |
1434 |
} |
1435 |
} |
1436 |
} else { |
1437 |
// branch to do all cutoff group pairs |
1438 |
#ifdef IS_MPI |
1439 |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1440 |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1441 |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1442 |
snap_->wrapVector(dr); |
1443 |
cuts = getGroupCutoffs( j1, j2 ); |
1444 |
if (dr.lengthSquare() < cuts.third) { |
1445 |
neighborList.push_back(make_pair(j1, j2)); |
1446 |
} |
1447 |
} |
1448 |
} |
1449 |
#else |
1450 |
// include all groups here. |
1451 |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1452 |
// include self group interactions j2 == j1 |
1453 |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1454 |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1455 |
snap_->wrapVector(dr); |
1456 |
cuts = getGroupCutoffs( j1, j2 ); |
1457 |
if (dr.lengthSquare() < cuts.third) { |
1458 |
neighborList.push_back(make_pair(j1, j2)); |
1459 |
} |
1460 |
} |
1461 |
} |
1462 |
#endif |
1463 |
} |
1464 |
|
1465 |
// save the local cutoff group positions for the check that is |
1466 |
// done on each loop: |
1467 |
saved_CG_positions_.clear(); |
1468 |
for (int i = 0; i < nGroups_; i++) |
1469 |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1470 |
|
1471 |
return neighborList; |
1472 |
} |
1473 |
} //end namespace OpenMD |