36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
48 |
|
using namespace std; |
49 |
|
namespace OpenMD { |
50 |
|
|
51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
+ |
|
53 |
+ |
// In a parallel computation, row and colum scans must visit all |
54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
+ |
// are used when the processor can see all pairs) |
56 |
+ |
#ifdef IS_MPI |
57 |
+ |
cellOffsets_.clear(); |
58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
+ |
#endif |
86 |
+ |
} |
87 |
+ |
|
88 |
+ |
|
89 |
|
/** |
90 |
|
* distributeInitialData is essentially a copy of the older fortran |
91 |
|
* SimulationSetup |
92 |
|
*/ |
54 |
– |
|
93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
|
snap_ = sman_->getCurrentSnapshot(); |
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
– |
cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
102 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
103 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
104 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
105 |
+ |
|
106 |
|
massFactors = info_->getMassFactors(); |
69 |
– |
PairList excludes = info_->getExcludedInteractions(); |
70 |
– |
PairList oneTwo = info_->getOneTwoInteractions(); |
71 |
– |
PairList oneThree = info_->getOneThreeInteractions(); |
72 |
– |
PairList oneFour = info_->getOneFourInteractions(); |
107 |
|
|
108 |
+ |
PairList* excludes = info_->getExcludedInteractions(); |
109 |
+ |
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
+ |
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
+ |
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
+ |
|
113 |
+ |
if (needVelocities_) |
114 |
+ |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
+ |
DataStorage::dslVelocity); |
116 |
+ |
else |
117 |
+ |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
+ |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
121 |
> |
MPI::Intracomm row = rowComm.getComm(); |
122 |
> |
MPI::Intracomm col = colComm.getComm(); |
123 |
|
|
124 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
128 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
124 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 |
|
|
130 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 |
|
|
136 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
139 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 |
|
|
141 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 |
+ |
|
146 |
|
// Modify the data storage objects with the correct layouts and sizes: |
147 |
|
atomRowData.resize(nAtomsInRow_); |
148 |
|
atomRowData.setStorageLayout(storageLayout_); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
164 |
< |
AtomCommIntRow->gather(idents, identsRow); |
165 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
164 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
165 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
166 |
|
|
167 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
168 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
169 |
< |
|
117 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
118 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
167 |
> |
// allocate memory for the parallel objects |
168 |
> |
atypesRow.resize(nAtomsInRow_); |
169 |
> |
atypesCol.resize(nAtomsInCol_); |
170 |
|
|
171 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
172 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
171 |
> |
for (int i = 0; i < nAtomsInRow_; i++) |
172 |
> |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 |
> |
for (int i = 0; i < nAtomsInCol_; i++) |
174 |
> |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 |
|
|
176 |
+ |
pot_row.resize(nAtomsInRow_); |
177 |
+ |
pot_col.resize(nAtomsInCol_); |
178 |
+ |
|
179 |
+ |
expot_row.resize(nAtomsInRow_); |
180 |
+ |
expot_col.resize(nAtomsInCol_); |
181 |
+ |
|
182 |
+ |
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
+ |
AtomColToGlobal.resize(nAtomsInCol_); |
184 |
+ |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 |
+ |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 |
+ |
|
187 |
+ |
cgRowToGlobal.resize(nGroupsInRow_); |
188 |
+ |
cgColToGlobal.resize(nGroupsInCol_); |
189 |
+ |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 |
+ |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 |
+ |
|
192 |
+ |
massFactorsRow.resize(nAtomsInRow_); |
193 |
+ |
massFactorsCol.resize(nAtomsInCol_); |
194 |
+ |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 |
+ |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 |
+ |
|
197 |
|
groupListRow_.clear(); |
198 |
|
groupListRow_.resize(nGroupsInRow_); |
199 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
216 |
|
} |
217 |
|
} |
218 |
|
|
219 |
< |
skipsForAtom.clear(); |
220 |
< |
skipsForAtom.resize(nAtomsInRow_); |
219 |
> |
excludesForAtom.clear(); |
220 |
> |
excludesForAtom.resize(nAtomsInRow_); |
221 |
|
toposForAtom.clear(); |
222 |
|
toposForAtom.resize(nAtomsInRow_); |
223 |
|
topoDist.clear(); |
228 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
229 |
|
int jglob = AtomColToGlobal[j]; |
230 |
|
|
231 |
< |
if (excludes.hasPair(iglob, jglob)) |
232 |
< |
skipsForAtom[i].push_back(j); |
231 |
> |
if (excludes->hasPair(iglob, jglob)) |
232 |
> |
excludesForAtom[i].push_back(j); |
233 |
|
|
234 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
234 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
235 |
|
toposForAtom[i].push_back(j); |
236 |
|
topoDist[i].push_back(1); |
237 |
|
} else { |
238 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
238 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
239 |
|
toposForAtom[i].push_back(j); |
240 |
|
topoDist[i].push_back(2); |
241 |
|
} else { |
242 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
242 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
243 |
|
toposForAtom[i].push_back(j); |
244 |
|
topoDist[i].push_back(3); |
245 |
|
} |
248 |
|
} |
249 |
|
} |
250 |
|
|
251 |
< |
#endif |
252 |
< |
|
253 |
< |
groupList_.clear(); |
180 |
< |
groupList_.resize(nGroups_); |
181 |
< |
for (int i = 0; i < nGroups_; i++) { |
182 |
< |
int gid = cgLocalToGlobal[i]; |
183 |
< |
for (int j = 0; j < nLocal_; j++) { |
184 |
< |
int aid = AtomLocalToGlobal[j]; |
185 |
< |
if (globalGroupMembership[aid] == gid) { |
186 |
< |
groupList_[i].push_back(j); |
187 |
< |
} |
188 |
< |
} |
189 |
< |
} |
190 |
< |
|
191 |
< |
skipsForAtom.clear(); |
192 |
< |
skipsForAtom.resize(nLocal_); |
251 |
> |
#else |
252 |
> |
excludesForAtom.clear(); |
253 |
> |
excludesForAtom.resize(nLocal_); |
254 |
|
toposForAtom.clear(); |
255 |
|
toposForAtom.resize(nLocal_); |
256 |
|
topoDist.clear(); |
262 |
|
for (int j = 0; j < nLocal_; j++) { |
263 |
|
int jglob = AtomLocalToGlobal[j]; |
264 |
|
|
265 |
< |
if (excludes.hasPair(iglob, jglob)) |
266 |
< |
skipsForAtom[i].push_back(j); |
265 |
> |
if (excludes->hasPair(iglob, jglob)) |
266 |
> |
excludesForAtom[i].push_back(j); |
267 |
|
|
268 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
268 |
> |
if (oneTwo->hasPair(iglob, jglob)) { |
269 |
|
toposForAtom[i].push_back(j); |
270 |
|
topoDist[i].push_back(1); |
271 |
|
} else { |
272 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
272 |
> |
if (oneThree->hasPair(iglob, jglob)) { |
273 |
|
toposForAtom[i].push_back(j); |
274 |
|
topoDist[i].push_back(2); |
275 |
|
} else { |
276 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
276 |
> |
if (oneFour->hasPair(iglob, jglob)) { |
277 |
|
toposForAtom[i].push_back(j); |
278 |
|
topoDist[i].push_back(3); |
279 |
|
} |
281 |
|
} |
282 |
|
} |
283 |
|
} |
284 |
< |
|
284 |
> |
#endif |
285 |
> |
|
286 |
> |
// allocate memory for the parallel objects |
287 |
> |
atypesLocal.resize(nLocal_); |
288 |
> |
|
289 |
> |
for (int i = 0; i < nLocal_; i++) |
290 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 |
> |
|
292 |
> |
groupList_.clear(); |
293 |
> |
groupList_.resize(nGroups_); |
294 |
> |
for (int i = 0; i < nGroups_; i++) { |
295 |
> |
int gid = cgLocalToGlobal[i]; |
296 |
> |
for (int j = 0; j < nLocal_; j++) { |
297 |
> |
int aid = AtomLocalToGlobal[j]; |
298 |
> |
if (globalGroupMembership[aid] == gid) { |
299 |
> |
groupList_[i].push_back(j); |
300 |
> |
} |
301 |
> |
} |
302 |
> |
} |
303 |
> |
|
304 |
> |
|
305 |
|
createGtypeCutoffMap(); |
306 |
+ |
|
307 |
|
} |
308 |
|
|
309 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
310 |
< |
|
310 |
> |
|
311 |
|
RealType tol = 1e-6; |
312 |
+ |
largestRcut_ = 0.0; |
313 |
|
RealType rc; |
314 |
|
int atid; |
315 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
316 |
< |
vector<RealType> atypeCutoff; |
317 |
< |
atypeCutoff.resize( atypes.size() ); |
316 |
> |
|
317 |
> |
map<int, RealType> atypeCutoff; |
318 |
|
|
319 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
320 |
|
at != atypes.end(); ++at){ |
321 |
|
atid = (*at)->getIdent(); |
322 |
< |
|
240 |
< |
if (userChoseCutoff_) |
322 |
> |
if (userChoseCutoff_) |
323 |
|
atypeCutoff[atid] = userCutoff_; |
324 |
|
else |
325 |
|
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
326 |
|
} |
327 |
< |
|
327 |
> |
|
328 |
|
vector<RealType> gTypeCutoffs; |
247 |
– |
|
329 |
|
// first we do a single loop over the cutoff groups to find the |
330 |
|
// largest cutoff for any atypes present in this group. |
331 |
|
#ifdef IS_MPI |
383 |
|
|
384 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
385 |
|
groupToGtype.resize(nGroups_); |
305 |
– |
|
306 |
– |
cerr << "nGroups = " << nGroups_ << "\n"; |
386 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
308 |
– |
|
387 |
|
groupCutoff[cg1] = 0.0; |
388 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
311 |
– |
|
389 |
|
for (vector<int>::iterator ia = atomList.begin(); |
390 |
|
ia != atomList.end(); ++ia) { |
391 |
|
int atom1 = (*ia); |
392 |
|
atid = idents[atom1]; |
393 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
393 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
394 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
318 |
– |
} |
395 |
|
} |
396 |
< |
|
396 |
> |
|
397 |
|
bool gTypeFound = false; |
398 |
|
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
399 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
401 |
|
gTypeFound = true; |
402 |
|
} |
403 |
|
} |
404 |
< |
if (!gTypeFound) { |
404 |
> |
if (!gTypeFound) { |
405 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
406 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
407 |
|
} |
408 |
|
} |
409 |
|
#endif |
410 |
|
|
335 |
– |
cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
411 |
|
// Now we find the maximum group cutoff value present in the simulation |
412 |
|
|
413 |
< |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
413 |
> |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
414 |
> |
gTypeCutoffs.end()); |
415 |
|
|
416 |
|
#ifdef IS_MPI |
417 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
417 |
> |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
418 |
> |
MPI::MAX); |
419 |
|
#endif |
420 |
|
|
421 |
|
RealType tradRcut = groupMax; |
445 |
|
|
446 |
|
pair<int,int> key = make_pair(i,j); |
447 |
|
gTypeCutoffMap[key].first = thisRcut; |
371 |
– |
|
448 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
373 |
– |
|
449 |
|
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
375 |
– |
|
450 |
|
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
377 |
– |
|
451 |
|
// sanity check |
452 |
|
|
453 |
|
if (userChoseCutoff_) { |
464 |
|
} |
465 |
|
} |
466 |
|
|
394 |
– |
|
467 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
468 |
|
int i, j; |
469 |
|
#ifdef IS_MPI |
487 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
488 |
|
pairwisePot = 0.0; |
489 |
|
embeddingPot = 0.0; |
490 |
+ |
excludedPot = 0.0; |
491 |
|
|
492 |
|
#ifdef IS_MPI |
493 |
|
if (storageLayout_ & DataStorage::dslForce) { |
506 |
|
fill(pot_col.begin(), pot_col.end(), |
507 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
508 |
|
|
509 |
+ |
fill(expot_row.begin(), expot_row.end(), |
510 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 |
+ |
|
512 |
+ |
fill(expot_col.begin(), expot_col.end(), |
513 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 |
+ |
|
515 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
516 |
< |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
517 |
< |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
516 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
517 |
> |
0.0); |
518 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
519 |
> |
0.0); |
520 |
|
} |
521 |
|
|
522 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
525 |
|
} |
526 |
|
|
527 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
528 |
< |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
529 |
< |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
528 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
529 |
> |
0.0); |
530 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
531 |
> |
0.0); |
532 |
|
} |
533 |
|
|
534 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
538 |
|
atomColData.functionalDerivative.end(), 0.0); |
539 |
|
} |
540 |
|
|
541 |
< |
#else |
542 |
< |
|
541 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
542 |
> |
fill(atomRowData.skippedCharge.begin(), |
543 |
> |
atomRowData.skippedCharge.end(), 0.0); |
544 |
> |
fill(atomColData.skippedCharge.begin(), |
545 |
> |
atomColData.skippedCharge.end(), 0.0); |
546 |
> |
} |
547 |
> |
|
548 |
> |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 |
> |
fill(atomRowData.flucQFrc.begin(), |
550 |
> |
atomRowData.flucQFrc.end(), 0.0); |
551 |
> |
fill(atomColData.flucQFrc.begin(), |
552 |
> |
atomColData.flucQFrc.end(), 0.0); |
553 |
> |
} |
554 |
> |
|
555 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
556 |
> |
fill(atomRowData.electricField.begin(), |
557 |
> |
atomRowData.electricField.end(), V3Zero); |
558 |
> |
fill(atomColData.electricField.begin(), |
559 |
> |
atomColData.electricField.end(), V3Zero); |
560 |
> |
} |
561 |
> |
|
562 |
> |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 |
> |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 |
> |
0.0); |
565 |
> |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 |
> |
0.0); |
567 |
> |
} |
568 |
> |
|
569 |
> |
#endif |
570 |
> |
// even in parallel, we need to zero out the local arrays: |
571 |
> |
|
572 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
573 |
|
fill(snap_->atomData.particlePot.begin(), |
574 |
|
snap_->atomData.particlePot.end(), 0.0); |
578 |
|
fill(snap_->atomData.density.begin(), |
579 |
|
snap_->atomData.density.end(), 0.0); |
580 |
|
} |
581 |
+ |
|
582 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
583 |
|
fill(snap_->atomData.functional.begin(), |
584 |
|
snap_->atomData.functional.end(), 0.0); |
585 |
|
} |
586 |
+ |
|
587 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
588 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
589 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
590 |
|
} |
591 |
< |
#endif |
592 |
< |
|
591 |
> |
|
592 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
593 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
594 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
595 |
> |
} |
596 |
> |
|
597 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
598 |
> |
fill(snap_->atomData.electricField.begin(), |
599 |
> |
snap_->atomData.electricField.end(), V3Zero); |
600 |
> |
} |
601 |
|
} |
602 |
|
|
603 |
|
|
607 |
|
#ifdef IS_MPI |
608 |
|
|
609 |
|
// gather up the atomic positions |
610 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
610 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
611 |
|
atomRowData.position); |
612 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
612 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
613 |
|
atomColData.position); |
614 |
|
|
615 |
|
// gather up the cutoff group positions |
616 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
616 |
> |
|
617 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
618 |
|
cgRowData.position); |
619 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
619 |
> |
|
620 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
621 |
|
cgColData.position); |
622 |
+ |
|
623 |
+ |
|
624 |
+ |
|
625 |
+ |
if (needVelocities_) { |
626 |
+ |
// gather up the atomic velocities |
627 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
628 |
+ |
atomColData.velocity); |
629 |
+ |
|
630 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
631 |
+ |
cgColData.velocity); |
632 |
+ |
} |
633 |
+ |
|
634 |
|
|
635 |
|
// if needed, gather the atomic rotation matrices |
636 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
637 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
637 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
638 |
|
atomRowData.aMat); |
639 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
639 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
640 |
|
atomColData.aMat); |
641 |
|
} |
642 |
|
|
643 |
|
// if needed, gather the atomic eletrostatic frames |
644 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
645 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
645 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
646 |
|
atomRowData.electroFrame); |
647 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
647 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
648 |
|
atomColData.electroFrame); |
649 |
|
} |
650 |
+ |
|
651 |
+ |
// if needed, gather the atomic fluctuating charge values |
652 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 |
+ |
atomRowData.flucQPos); |
655 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 |
+ |
atomColData.flucQPos); |
657 |
+ |
} |
658 |
+ |
|
659 |
|
#endif |
660 |
|
} |
661 |
|
|
669 |
|
|
670 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
671 |
|
|
672 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
672 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
673 |
|
snap_->atomData.density); |
674 |
|
|
675 |
|
int n = snap_->atomData.density.size(); |
676 |
|
vector<RealType> rho_tmp(n, 0.0); |
677 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
677 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
678 |
|
for (int i = 0; i < n; i++) |
679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
680 |
|
} |
681 |
+ |
|
682 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
683 |
+ |
|
684 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
685 |
+ |
snap_->atomData.electricField); |
686 |
+ |
|
687 |
+ |
int n = snap_->atomData.electricField.size(); |
688 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
689 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
690 |
+ |
for (int i = 0; i < n; i++) |
691 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
692 |
+ |
} |
693 |
|
#endif |
694 |
|
} |
695 |
|
|
702 |
|
storageLayout_ = sman_->getStorageLayout(); |
703 |
|
#ifdef IS_MPI |
704 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
705 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
705 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
706 |
|
atomRowData.functional); |
707 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
707 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
708 |
|
atomColData.functional); |
709 |
|
} |
710 |
|
|
711 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
712 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
712 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
713 |
|
atomRowData.functionalDerivative); |
714 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
714 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
715 |
|
atomColData.functionalDerivative); |
716 |
|
} |
717 |
|
#endif |
725 |
|
int n = snap_->atomData.force.size(); |
726 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
727 |
|
|
728 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
728 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
729 |
|
for (int i = 0; i < n; i++) { |
730 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
731 |
|
frc_tmp[i] = 0.0; |
732 |
|
} |
733 |
|
|
734 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
735 |
< |
for (int i = 0; i < n; i++) |
734 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
735 |
> |
for (int i = 0; i < n; i++) { |
736 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
737 |
< |
|
738 |
< |
|
737 |
> |
} |
738 |
> |
|
739 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
740 |
|
|
741 |
< |
int nt = snap_->atomData.force.size(); |
741 |
> |
int nt = snap_->atomData.torque.size(); |
742 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
743 |
|
|
744 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
745 |
< |
for (int i = 0; i < n; i++) { |
744 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
745 |
> |
for (int i = 0; i < nt; i++) { |
746 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
747 |
|
trq_tmp[i] = 0.0; |
748 |
|
} |
749 |
|
|
750 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
751 |
< |
for (int i = 0; i < n; i++) |
750 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
751 |
> |
for (int i = 0; i < nt; i++) |
752 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
753 |
|
} |
754 |
+ |
|
755 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
756 |
+ |
|
757 |
+ |
int ns = snap_->atomData.skippedCharge.size(); |
758 |
+ |
vector<RealType> skch_tmp(ns, 0.0); |
759 |
+ |
|
760 |
+ |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
761 |
+ |
for (int i = 0; i < ns; i++) { |
762 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
763 |
+ |
skch_tmp[i] = 0.0; |
764 |
+ |
} |
765 |
+ |
|
766 |
+ |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
767 |
+ |
for (int i = 0; i < ns; i++) |
768 |
+ |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
769 |
+ |
|
770 |
+ |
} |
771 |
|
|
772 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
773 |
+ |
|
774 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
775 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
776 |
+ |
|
777 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
778 |
+ |
for (int i = 0; i < nq; i++) { |
779 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
780 |
+ |
fqfrc_tmp[i] = 0.0; |
781 |
+ |
} |
782 |
+ |
|
783 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
784 |
+ |
for (int i = 0; i < nq; i++) |
785 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
786 |
+ |
|
787 |
+ |
} |
788 |
+ |
|
789 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
790 |
|
|
791 |
|
vector<potVec> pot_temp(nLocal_, |
792 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
793 |
+ |
vector<potVec> expot_temp(nLocal_, |
794 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
795 |
|
|
796 |
|
// scatter/gather pot_row into the members of my column |
797 |
|
|
798 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
798 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
799 |
> |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
800 |
|
|
801 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
801 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 |
|
pairwisePot += pot_temp[ii]; |
803 |
< |
|
803 |
> |
|
804 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
805 |
> |
excludedPot += expot_temp[ii]; |
806 |
> |
|
807 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
808 |
> |
// This is the pairwise contribution to the particle pot. The |
809 |
> |
// embedding contribution is added in each of the low level |
810 |
> |
// non-bonded routines. In single processor, this is done in |
811 |
> |
// unpackInteractionData, not in collectData. |
812 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
813 |
> |
for (int i = 0; i < nLocal_; i++) { |
814 |
> |
// factor of two is because the total potential terms are divided |
815 |
> |
// by 2 in parallel due to row/ column scatter |
816 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
817 |
> |
} |
818 |
> |
} |
819 |
> |
} |
820 |
> |
|
821 |
|
fill(pot_temp.begin(), pot_temp.end(), |
822 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
823 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
824 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
825 |
|
|
826 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
826 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
827 |
> |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
828 |
|
|
829 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
830 |
|
pairwisePot += pot_temp[ii]; |
831 |
+ |
|
832 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
833 |
+ |
excludedPot += expot_temp[ii]; |
834 |
+ |
|
835 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
836 |
+ |
// This is the pairwise contribution to the particle pot. The |
837 |
+ |
// embedding contribution is added in each of the low level |
838 |
+ |
// non-bonded routines. In single processor, this is done in |
839 |
+ |
// unpackInteractionData, not in collectData. |
840 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
841 |
+ |
for (int i = 0; i < nLocal_; i++) { |
842 |
+ |
// factor of two is because the total potential terms are divided |
843 |
+ |
// by 2 in parallel due to row/ column scatter |
844 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
845 |
+ |
} |
846 |
+ |
} |
847 |
+ |
} |
848 |
+ |
|
849 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
850 |
+ |
int npp = snap_->atomData.particlePot.size(); |
851 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
852 |
+ |
|
853 |
+ |
// This is the direct or embedding contribution to the particle |
854 |
+ |
// pot. |
855 |
+ |
|
856 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
857 |
+ |
for (int i = 0; i < npp; i++) { |
858 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
859 |
+ |
} |
860 |
+ |
|
861 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
862 |
+ |
|
863 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
864 |
+ |
for (int i = 0; i < npp; i++) { |
865 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
866 |
+ |
} |
867 |
+ |
} |
868 |
+ |
|
869 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
870 |
+ |
RealType ploc1 = pairwisePot[ii]; |
871 |
+ |
RealType ploc2 = 0.0; |
872 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
873 |
+ |
pairwisePot[ii] = ploc2; |
874 |
+ |
} |
875 |
+ |
|
876 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
877 |
+ |
RealType ploc1 = excludedPot[ii]; |
878 |
+ |
RealType ploc2 = 0.0; |
879 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
880 |
+ |
excludedPot[ii] = ploc2; |
881 |
+ |
} |
882 |
+ |
|
883 |
+ |
// Here be dragons. |
884 |
+ |
MPI::Intracomm col = colComm.getComm(); |
885 |
+ |
|
886 |
+ |
col.Allreduce(MPI::IN_PLACE, |
887 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
888 |
+ |
MPI::REALTYPE, MPI::SUM); |
889 |
+ |
|
890 |
+ |
|
891 |
|
#endif |
892 |
+ |
|
893 |
+ |
} |
894 |
|
|
895 |
+ |
/** |
896 |
+ |
* Collects information obtained during the post-pair (and embedding |
897 |
+ |
* functional) loops onto local data structures. |
898 |
+ |
*/ |
899 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
900 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
901 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
902 |
+ |
|
903 |
+ |
#ifdef IS_MPI |
904 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
905 |
+ |
RealType ploc1 = embeddingPot[ii]; |
906 |
+ |
RealType ploc2 = 0.0; |
907 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
908 |
+ |
embeddingPot[ii] = ploc2; |
909 |
+ |
} |
910 |
+ |
#endif |
911 |
+ |
|
912 |
|
} |
913 |
|
|
914 |
+ |
|
915 |
+ |
|
916 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
917 |
|
#ifdef IS_MPI |
918 |
|
return nAtomsInRow_; |
953 |
|
return d; |
954 |
|
} |
955 |
|
|
956 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
957 |
+ |
#ifdef IS_MPI |
958 |
+ |
return cgColData.velocity[cg2]; |
959 |
+ |
#else |
960 |
+ |
return snap_->cgData.velocity[cg2]; |
961 |
+ |
#endif |
962 |
+ |
} |
963 |
|
|
964 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
965 |
+ |
#ifdef IS_MPI |
966 |
+ |
return atomColData.velocity[atom2]; |
967 |
+ |
#else |
968 |
+ |
return snap_->atomData.velocity[atom2]; |
969 |
+ |
#endif |
970 |
+ |
} |
971 |
+ |
|
972 |
+ |
|
973 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
974 |
|
|
975 |
|
Vector3d d; |
1027 |
|
return d; |
1028 |
|
} |
1029 |
|
|
1030 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
1031 |
< |
return skipsForAtom[atom1]; |
1030 |
> |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1031 |
> |
return excludesForAtom[atom1]; |
1032 |
|
} |
1033 |
|
|
1034 |
|
/** |
1035 |
< |
* There are a number of reasons to skip a pair or a |
725 |
< |
* particle. Mostly we do this to exclude atoms who are involved in |
726 |
< |
* short range interactions (bonds, bends, torsions), but we also |
727 |
< |
* need to exclude some overcounted interactions that result from |
1035 |
> |
* We need to exclude some overcounted interactions that result from |
1036 |
|
* the parallel decomposition. |
1037 |
|
*/ |
1038 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1039 |
< |
int unique_id_1, unique_id_2; |
1040 |
< |
|
1038 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1039 |
> |
int unique_id_1, unique_id_2, group1, group2; |
1040 |
> |
|
1041 |
|
#ifdef IS_MPI |
1042 |
|
// in MPI, we have to look up the unique IDs for each atom |
1043 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1044 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1045 |
+ |
group1 = cgRowToGlobal[cg1]; |
1046 |
+ |
group2 = cgColToGlobal[cg2]; |
1047 |
+ |
#else |
1048 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
1049 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
1050 |
+ |
group1 = cgLocalToGlobal[cg1]; |
1051 |
+ |
group2 = cgLocalToGlobal[cg2]; |
1052 |
+ |
#endif |
1053 |
|
|
738 |
– |
// this situation should only arise in MPI simulations |
1054 |
|
if (unique_id_1 == unique_id_2) return true; |
1055 |
< |
|
1055 |
> |
|
1056 |
> |
#ifdef IS_MPI |
1057 |
|
// this prevents us from doing the pair on multiple processors |
1058 |
|
if (unique_id_1 < unique_id_2) { |
1059 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1060 |
|
} else { |
1061 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1061 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1062 |
|
} |
1063 |
< |
#else |
1064 |
< |
// in the normal loop, the atom numbers are unique |
1065 |
< |
unique_id_1 = atom1; |
1066 |
< |
unique_id_2 = atom2; |
1063 |
> |
#endif |
1064 |
> |
|
1065 |
> |
#ifndef IS_MPI |
1066 |
> |
if (group1 == group2) { |
1067 |
> |
if (unique_id_1 < unique_id_2) return true; |
1068 |
> |
} |
1069 |
|
#endif |
1070 |
|
|
1071 |
< |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
1072 |
< |
i != skipsForAtom[atom1].end(); ++i) { |
1073 |
< |
if ( (*i) == unique_id_2 ) return true; |
1071 |
> |
return false; |
1072 |
> |
} |
1073 |
> |
|
1074 |
> |
/** |
1075 |
> |
* We need to handle the interactions for atoms who are involved in |
1076 |
> |
* the same rigid body as well as some short range interactions |
1077 |
> |
* (bonds, bends, torsions) differently from other interactions. |
1078 |
> |
* We'll still visit the pairwise routines, but with a flag that |
1079 |
> |
* tells those routines to exclude the pair from direct long range |
1080 |
> |
* interactions. Some indirect interactions (notably reaction |
1081 |
> |
* field) must still be handled for these pairs. |
1082 |
> |
*/ |
1083 |
> |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1084 |
> |
|
1085 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
1086 |
> |
// version, and to use local IDs in the non-MPI version: |
1087 |
> |
|
1088 |
> |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1089 |
> |
i != excludesForAtom[atom1].end(); ++i) { |
1090 |
> |
if ( (*i) == atom2 ) return true; |
1091 |
|
} |
1092 |
|
|
1093 |
|
return false; |
1112 |
|
|
1113 |
|
// filling interaction blocks with pointers |
1114 |
|
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1115 |
< |
int atom1, int atom2) { |
1115 |
> |
int atom1, int atom2) { |
1116 |
> |
|
1117 |
> |
idat.excluded = excludeAtomPair(atom1, atom2); |
1118 |
> |
|
1119 |
|
#ifdef IS_MPI |
1120 |
+ |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1121 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1122 |
+ |
// ff_->getAtomType(identsCol[atom2]) ); |
1123 |
|
|
783 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
784 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
785 |
– |
|
1124 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1125 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
1126 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
1156 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1157 |
|
} |
1158 |
|
|
1159 |
< |
#else |
1159 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1160 |
> |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1161 |
> |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1162 |
> |
} |
1163 |
|
|
1164 |
< |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1165 |
< |
ff_->getAtomType(idents[atom2]) ); |
1164 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1165 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1166 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1167 |
> |
} |
1168 |
|
|
1169 |
+ |
#else |
1170 |
+ |
|
1171 |
+ |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1172 |
+ |
|
1173 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1174 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1175 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1205 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1206 |
|
} |
1207 |
|
|
1208 |
+ |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1209 |
+ |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1210 |
+ |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1211 |
+ |
} |
1212 |
+ |
|
1213 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1214 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1215 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1216 |
+ |
} |
1217 |
+ |
|
1218 |
|
#endif |
1219 |
|
} |
1220 |
|
|
1221 |
|
|
1222 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1223 |
|
#ifdef IS_MPI |
1224 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1225 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1224 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1225 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1226 |
> |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1227 |
> |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1228 |
|
|
1229 |
|
atomRowData.force[atom1] += *(idat.f1); |
1230 |
|
atomColData.force[atom2] -= *(idat.f1); |
1231 |
+ |
|
1232 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1233 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1234 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1235 |
+ |
} |
1236 |
+ |
|
1237 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1238 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1239 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1240 |
+ |
} |
1241 |
+ |
|
1242 |
|
#else |
1243 |
|
pairwisePot += *(idat.pot); |
1244 |
+ |
excludedPot += *(idat.excludedPot); |
1245 |
|
|
1246 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1247 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
877 |
– |
#endif |
1248 |
|
|
1249 |
< |
} |
1250 |
< |
|
1251 |
< |
|
1252 |
< |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
1253 |
< |
int atom1, int atom2) { |
1254 |
< |
// Still Missing:: skippedCharge fill must be added to DataStorage |
1255 |
< |
#ifdef IS_MPI |
886 |
< |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
887 |
< |
ff_->getAtomType(identsCol[atom2]) ); |
888 |
< |
|
889 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
890 |
< |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
891 |
< |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1249 |
> |
if (idat.doParticlePot) { |
1250 |
> |
// This is the pairwise contribution to the particle pot. The |
1251 |
> |
// embedding contribution is added in each of the low level |
1252 |
> |
// non-bonded routines. In parallel, this calculation is done |
1253 |
> |
// in collectData, not in unpackInteractionData. |
1254 |
> |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1255 |
> |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1256 |
|
} |
1257 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
1258 |
< |
idat.t1 = &(atomRowData.torque[atom1]); |
1259 |
< |
idat.t2 = &(atomColData.torque[atom2]); |
1257 |
> |
|
1258 |
> |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1259 |
> |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1260 |
> |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1261 |
|
} |
897 |
– |
#else |
898 |
– |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
899 |
– |
ff_->getAtomType(idents[atom2]) ); |
1262 |
|
|
1263 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
1264 |
< |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1265 |
< |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1263 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
1264 |
> |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1265 |
> |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1266 |
|
} |
905 |
– |
if (storageLayout_ & DataStorage::dslTorque) { |
906 |
– |
idat.t1 = &(snap_->atomData.torque[atom1]); |
907 |
– |
idat.t2 = &(snap_->atomData.torque[atom2]); |
908 |
– |
} |
909 |
– |
#endif |
910 |
– |
} |
1267 |
|
|
912 |
– |
|
913 |
– |
void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
914 |
– |
#ifdef IS_MPI |
915 |
– |
pot_row[atom1] += 0.5 * *(idat.pot); |
916 |
– |
pot_col[atom2] += 0.5 * *(idat.pot); |
917 |
– |
#else |
918 |
– |
pairwisePot += *(idat.pot); |
1268 |
|
#endif |
1269 |
< |
|
1269 |
> |
|
1270 |
|
} |
1271 |
|
|
923 |
– |
|
1272 |
|
/* |
1273 |
|
* buildNeighborList |
1274 |
|
* |
1279 |
|
|
1280 |
|
vector<pair<int, int> > neighborList; |
1281 |
|
groupCutoffs cuts; |
1282 |
+ |
bool doAllPairs = false; |
1283 |
+ |
|
1284 |
|
#ifdef IS_MPI |
1285 |
|
cellListRow_.clear(); |
1286 |
|
cellListCol_.clear(); |
1300 |
|
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1301 |
|
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1302 |
|
|
1303 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
1304 |
+ |
|
1305 |
+ |
if (nCells_.x() < 3) doAllPairs = true; |
1306 |
+ |
if (nCells_.y() < 3) doAllPairs = true; |
1307 |
+ |
if (nCells_.z() < 3) doAllPairs = true; |
1308 |
+ |
|
1309 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
1310 |
|
Vector3d rs, scaled, dr; |
1311 |
|
Vector3i whichCell; |
1319 |
|
cellList_.resize(nCtot); |
1320 |
|
#endif |
1321 |
|
|
1322 |
+ |
if (!doAllPairs) { |
1323 |
|
#ifdef IS_MPI |
967 |
– |
for (int i = 0; i < nGroupsInRow_; i++) { |
968 |
– |
rs = cgRowData.position[i]; |
1324 |
|
|
1325 |
< |
// scaled positions relative to the box vectors |
1326 |
< |
scaled = invHmat * rs; |
1327 |
< |
|
1328 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1329 |
< |
// numbers |
1330 |
< |
for (int j = 0; j < 3; j++) { |
1331 |
< |
scaled[j] -= roundMe(scaled[j]); |
1332 |
< |
scaled[j] += 0.5; |
1325 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
1326 |
> |
rs = cgRowData.position[i]; |
1327 |
> |
|
1328 |
> |
// scaled positions relative to the box vectors |
1329 |
> |
scaled = invHmat * rs; |
1330 |
> |
|
1331 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1332 |
> |
// numbers |
1333 |
> |
for (int j = 0; j < 3; j++) { |
1334 |
> |
scaled[j] -= roundMe(scaled[j]); |
1335 |
> |
scaled[j] += 0.5; |
1336 |
> |
} |
1337 |
> |
|
1338 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1339 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1340 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1341 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1342 |
> |
|
1343 |
> |
// find single index of this cell: |
1344 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1345 |
> |
|
1346 |
> |
// add this cutoff group to the list of groups in this cell; |
1347 |
> |
cellListRow_[cellIndex].push_back(i); |
1348 |
> |
} |
1349 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
1350 |
> |
rs = cgColData.position[i]; |
1351 |
> |
|
1352 |
> |
// scaled positions relative to the box vectors |
1353 |
> |
scaled = invHmat * rs; |
1354 |
> |
|
1355 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1356 |
> |
// numbers |
1357 |
> |
for (int j = 0; j < 3; j++) { |
1358 |
> |
scaled[j] -= roundMe(scaled[j]); |
1359 |
> |
scaled[j] += 0.5; |
1360 |
> |
} |
1361 |
> |
|
1362 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1363 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1364 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1365 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1366 |
> |
|
1367 |
> |
// find single index of this cell: |
1368 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1369 |
> |
|
1370 |
> |
// add this cutoff group to the list of groups in this cell; |
1371 |
> |
cellListCol_[cellIndex].push_back(i); |
1372 |
|
} |
1373 |
|
|
980 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
981 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
982 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
983 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
984 |
– |
|
985 |
– |
// find single index of this cell: |
986 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
987 |
– |
|
988 |
– |
// add this cutoff group to the list of groups in this cell; |
989 |
– |
cellListRow_[cellIndex].push_back(i); |
990 |
– |
} |
991 |
– |
|
992 |
– |
for (int i = 0; i < nGroupsInCol_; i++) { |
993 |
– |
rs = cgColData.position[i]; |
994 |
– |
|
995 |
– |
// scaled positions relative to the box vectors |
996 |
– |
scaled = invHmat * rs; |
997 |
– |
|
998 |
– |
// wrap the vector back into the unit box by subtracting integer box |
999 |
– |
// numbers |
1000 |
– |
for (int j = 0; j < 3; j++) { |
1001 |
– |
scaled[j] -= roundMe(scaled[j]); |
1002 |
– |
scaled[j] += 0.5; |
1003 |
– |
} |
1004 |
– |
|
1005 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1006 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1007 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1008 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1009 |
– |
|
1010 |
– |
// find single index of this cell: |
1011 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1012 |
– |
|
1013 |
– |
// add this cutoff group to the list of groups in this cell; |
1014 |
– |
cellListCol_[cellIndex].push_back(i); |
1015 |
– |
} |
1374 |
|
#else |
1375 |
< |
for (int i = 0; i < nGroups_; i++) { |
1376 |
< |
rs = snap_->cgData.position[i]; |
1377 |
< |
|
1378 |
< |
// scaled positions relative to the box vectors |
1379 |
< |
scaled = invHmat * rs; |
1380 |
< |
|
1381 |
< |
// wrap the vector back into the unit box by subtracting integer box |
1382 |
< |
// numbers |
1383 |
< |
for (int j = 0; j < 3; j++) { |
1384 |
< |
scaled[j] -= roundMe(scaled[j]); |
1385 |
< |
scaled[j] += 0.5; |
1375 |
> |
for (int i = 0; i < nGroups_; i++) { |
1376 |
> |
rs = snap_->cgData.position[i]; |
1377 |
> |
|
1378 |
> |
// scaled positions relative to the box vectors |
1379 |
> |
scaled = invHmat * rs; |
1380 |
> |
|
1381 |
> |
// wrap the vector back into the unit box by subtracting integer box |
1382 |
> |
// numbers |
1383 |
> |
for (int j = 0; j < 3; j++) { |
1384 |
> |
scaled[j] -= roundMe(scaled[j]); |
1385 |
> |
scaled[j] += 0.5; |
1386 |
> |
} |
1387 |
> |
|
1388 |
> |
// find xyz-indices of cell that cutoffGroup is in. |
1389 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1390 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1391 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1392 |
> |
|
1393 |
> |
// find single index of this cell: |
1394 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1395 |
> |
|
1396 |
> |
// add this cutoff group to the list of groups in this cell; |
1397 |
> |
cellList_[cellIndex].push_back(i); |
1398 |
|
} |
1399 |
|
|
1030 |
– |
// find xyz-indices of cell that cutoffGroup is in. |
1031 |
– |
whichCell.x() = nCells_.x() * scaled.x(); |
1032 |
– |
whichCell.y() = nCells_.y() * scaled.y(); |
1033 |
– |
whichCell.z() = nCells_.z() * scaled.z(); |
1034 |
– |
|
1035 |
– |
// find single index of this cell: |
1036 |
– |
cellIndex = Vlinear(whichCell, nCells_); |
1037 |
– |
|
1038 |
– |
// add this cutoff group to the list of groups in this cell; |
1039 |
– |
cellList_[cellIndex].push_back(i); |
1040 |
– |
} |
1400 |
|
#endif |
1401 |
|
|
1402 |
< |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1403 |
< |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1404 |
< |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1405 |
< |
Vector3i m1v(m1x, m1y, m1z); |
1406 |
< |
int m1 = Vlinear(m1v, nCells_); |
1048 |
< |
|
1049 |
< |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1050 |
< |
os != cellOffsets_.end(); ++os) { |
1402 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1403 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1404 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1405 |
> |
Vector3i m1v(m1x, m1y, m1z); |
1406 |
> |
int m1 = Vlinear(m1v, nCells_); |
1407 |
|
|
1408 |
< |
Vector3i m2v = m1v + (*os); |
1409 |
< |
|
1410 |
< |
if (m2v.x() >= nCells_.x()) { |
1411 |
< |
m2v.x() = 0; |
1412 |
< |
} else if (m2v.x() < 0) { |
1057 |
< |
m2v.x() = nCells_.x() - 1; |
1058 |
< |
} |
1059 |
< |
|
1060 |
< |
if (m2v.y() >= nCells_.y()) { |
1061 |
< |
m2v.y() = 0; |
1062 |
< |
} else if (m2v.y() < 0) { |
1063 |
< |
m2v.y() = nCells_.y() - 1; |
1064 |
< |
} |
1065 |
< |
|
1066 |
< |
if (m2v.z() >= nCells_.z()) { |
1067 |
< |
m2v.z() = 0; |
1068 |
< |
} else if (m2v.z() < 0) { |
1069 |
< |
m2v.z() = nCells_.z() - 1; |
1070 |
< |
} |
1071 |
< |
|
1072 |
< |
int m2 = Vlinear (m2v, nCells_); |
1408 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1409 |
> |
os != cellOffsets_.end(); ++os) { |
1410 |
> |
|
1411 |
> |
Vector3i m2v = m1v + (*os); |
1412 |
> |
|
1413 |
|
|
1414 |
< |
#ifdef IS_MPI |
1415 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1416 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
1417 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1418 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
1419 |
< |
|
1420 |
< |
// Always do this if we're in different cells or if |
1421 |
< |
// we're in the same cell and the global index of the |
1422 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1414 |
> |
if (m2v.x() >= nCells_.x()) { |
1415 |
> |
m2v.x() = 0; |
1416 |
> |
} else if (m2v.x() < 0) { |
1417 |
> |
m2v.x() = nCells_.x() - 1; |
1418 |
> |
} |
1419 |
> |
|
1420 |
> |
if (m2v.y() >= nCells_.y()) { |
1421 |
> |
m2v.y() = 0; |
1422 |
> |
} else if (m2v.y() < 0) { |
1423 |
> |
m2v.y() = nCells_.y() - 1; |
1424 |
> |
} |
1425 |
> |
|
1426 |
> |
if (m2v.z() >= nCells_.z()) { |
1427 |
> |
m2v.z() = 0; |
1428 |
> |
} else if (m2v.z() < 0) { |
1429 |
> |
m2v.z() = nCells_.z() - 1; |
1430 |
> |
} |
1431 |
|
|
1432 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1432 |
> |
int m2 = Vlinear (m2v, nCells_); |
1433 |
> |
|
1434 |
> |
#ifdef IS_MPI |
1435 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1436 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1437 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1438 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1439 |
> |
|
1440 |
> |
// In parallel, we need to visit *all* pairs of row |
1441 |
> |
// & column indicies and will divide labor in the |
1442 |
> |
// force evaluation later. |
1443 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1444 |
|
snap_->wrapVector(dr); |
1445 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1446 |
|
if (dr.lengthSquare() < cuts.third) { |
1447 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1448 |
< |
} |
1448 |
> |
} |
1449 |
|
} |
1450 |
|
} |
1093 |
– |
} |
1451 |
|
#else |
1452 |
+ |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1453 |
+ |
j1 != cellList_[m1].end(); ++j1) { |
1454 |
+ |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1455 |
+ |
j2 != cellList_[m2].end(); ++j2) { |
1456 |
+ |
|
1457 |
+ |
// Always do this if we're in different cells or if |
1458 |
+ |
// we're in the same cell and the global index of |
1459 |
+ |
// the j2 cutoff group is greater than or equal to |
1460 |
+ |
// the j1 cutoff group. Note that Rappaport's code |
1461 |
+ |
// has a "less than" conditional here, but that |
1462 |
+ |
// deals with atom-by-atom computation. OpenMD |
1463 |
+ |
// allows atoms within a single cutoff group to |
1464 |
+ |
// interact with each other. |
1465 |
|
|
1096 |
– |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1097 |
– |
j1 != cellList_[m1].end(); ++j1) { |
1098 |
– |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1099 |
– |
j2 != cellList_[m2].end(); ++j2) { |
1466 |
|
|
1101 |
– |
// Always do this if we're in different cells or if |
1102 |
– |
// we're in the same cell and the global index of the |
1103 |
– |
// j2 cutoff group is less than the j1 cutoff group |
1467 |
|
|
1468 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1469 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1470 |
< |
snap_->wrapVector(dr); |
1471 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1472 |
< |
if (dr.lengthSquare() < cuts.third) { |
1473 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1468 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1469 |
> |
|
1470 |
> |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1471 |
> |
snap_->wrapVector(dr); |
1472 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1473 |
> |
if (dr.lengthSquare() < cuts.third) { |
1474 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1475 |
> |
} |
1476 |
|
} |
1477 |
|
} |
1478 |
|
} |
1114 |
– |
} |
1479 |
|
#endif |
1480 |
+ |
} |
1481 |
|
} |
1482 |
|
} |
1483 |
|
} |
1484 |
+ |
} else { |
1485 |
+ |
// branch to do all cutoff group pairs |
1486 |
+ |
#ifdef IS_MPI |
1487 |
+ |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1488 |
+ |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1489 |
+ |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1490 |
+ |
snap_->wrapVector(dr); |
1491 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1492 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1493 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1494 |
+ |
} |
1495 |
+ |
} |
1496 |
+ |
} |
1497 |
+ |
#else |
1498 |
+ |
// include all groups here. |
1499 |
+ |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1500 |
+ |
// include self group interactions j2 == j1 |
1501 |
+ |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1502 |
+ |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1503 |
+ |
snap_->wrapVector(dr); |
1504 |
+ |
cuts = getGroupCutoffs( j1, j2 ); |
1505 |
+ |
if (dr.lengthSquare() < cuts.third) { |
1506 |
+ |
neighborList.push_back(make_pair(j1, j2)); |
1507 |
+ |
} |
1508 |
+ |
} |
1509 |
+ |
} |
1510 |
+ |
#endif |
1511 |
|
} |
1512 |
< |
|
1512 |
> |
|
1513 |
|
// save the local cutoff group positions for the check that is |
1514 |
|
// done on each loop: |
1515 |
|
saved_CG_positions_.clear(); |
1516 |
|
for (int i = 0; i < nGroups_; i++) |
1517 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1518 |
< |
|
1518 |
> |
|
1519 |
|
return neighborList; |
1520 |
|
} |
1521 |
|
} //end namespace OpenMD |