36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
48 |
|
using namespace std; |
49 |
|
namespace OpenMD { |
50 |
|
|
51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
+ |
|
53 |
+ |
// In a parallel computation, row and colum scans must visit all |
54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
+ |
// are used when the processor can see all pairs) |
56 |
+ |
#ifdef IS_MPI |
57 |
+ |
cellOffsets_.clear(); |
58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
+ |
#endif |
86 |
+ |
} |
87 |
+ |
|
88 |
+ |
|
89 |
|
/** |
90 |
|
* distributeInitialData is essentially a copy of the older fortran |
91 |
|
* SimulationSetup |
92 |
|
*/ |
54 |
– |
|
93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
|
snap_ = sman_->getCurrentSnapshot(); |
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
112 |
|
|
113 |
|
#ifdef IS_MPI |
114 |
|
|
115 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
116 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
115 |
> |
MPI::Intracomm row = rowComm.getComm(); |
116 |
> |
MPI::Intracomm col = colComm.getComm(); |
117 |
|
|
118 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
119 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
120 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
121 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
122 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
118 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
119 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
120 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
121 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
122 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
123 |
|
|
124 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
125 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
126 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
127 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
124 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
125 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
126 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
127 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
128 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
129 |
|
|
130 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
131 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
132 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
133 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
130 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
131 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
132 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
133 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
134 |
|
|
135 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
136 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
137 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
138 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
139 |
+ |
|
140 |
|
// Modify the data storage objects with the correct layouts and sizes: |
141 |
|
atomRowData.resize(nAtomsInRow_); |
142 |
|
atomRowData.setStorageLayout(storageLayout_); |
150 |
|
identsRow.resize(nAtomsInRow_); |
151 |
|
identsCol.resize(nAtomsInCol_); |
152 |
|
|
153 |
< |
AtomCommIntRow->gather(idents, identsRow); |
154 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
153 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
154 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
155 |
|
|
156 |
< |
vector<int>::iterator it; |
157 |
< |
for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) { |
158 |
< |
cerr << "my AtomLocalToGlobal = " << (*it) << "\n"; |
118 |
< |
} |
119 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
120 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
121 |
< |
|
122 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
123 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
156 |
> |
// allocate memory for the parallel objects |
157 |
> |
atypesRow.resize(nAtomsInRow_); |
158 |
> |
atypesCol.resize(nAtomsInCol_); |
159 |
|
|
160 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
161 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
160 |
> |
for (int i = 0; i < nAtomsInRow_; i++) |
161 |
> |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
162 |
> |
for (int i = 0; i < nAtomsInCol_; i++) |
163 |
> |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
164 |
|
|
165 |
+ |
pot_row.resize(nAtomsInRow_); |
166 |
+ |
pot_col.resize(nAtomsInCol_); |
167 |
+ |
|
168 |
+ |
AtomRowToGlobal.resize(nAtomsInRow_); |
169 |
+ |
AtomColToGlobal.resize(nAtomsInCol_); |
170 |
+ |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 |
+ |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 |
+ |
|
173 |
+ |
cgRowToGlobal.resize(nGroupsInRow_); |
174 |
+ |
cgColToGlobal.resize(nGroupsInCol_); |
175 |
+ |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 |
+ |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
177 |
+ |
|
178 |
+ |
massFactorsRow.resize(nAtomsInRow_); |
179 |
+ |
massFactorsCol.resize(nAtomsInCol_); |
180 |
+ |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
181 |
+ |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
182 |
+ |
|
183 |
|
groupListRow_.clear(); |
184 |
|
groupListRow_.resize(nGroupsInRow_); |
185 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
234 |
|
} |
235 |
|
} |
236 |
|
|
237 |
< |
#endif |
183 |
< |
|
184 |
< |
groupList_.clear(); |
185 |
< |
groupList_.resize(nGroups_); |
186 |
< |
for (int i = 0; i < nGroups_; i++) { |
187 |
< |
int gid = cgLocalToGlobal[i]; |
188 |
< |
for (int j = 0; j < nLocal_; j++) { |
189 |
< |
int aid = AtomLocalToGlobal[j]; |
190 |
< |
if (globalGroupMembership[aid] == gid) { |
191 |
< |
groupList_[i].push_back(j); |
192 |
< |
} |
193 |
< |
} |
194 |
< |
} |
195 |
< |
|
237 |
> |
#else |
238 |
|
excludesForAtom.clear(); |
239 |
|
excludesForAtom.resize(nLocal_); |
240 |
|
toposForAtom.clear(); |
267 |
|
} |
268 |
|
} |
269 |
|
} |
270 |
< |
|
270 |
> |
#endif |
271 |
> |
|
272 |
> |
// allocate memory for the parallel objects |
273 |
> |
atypesLocal.resize(nLocal_); |
274 |
> |
|
275 |
> |
for (int i = 0; i < nLocal_; i++) |
276 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 |
> |
|
278 |
> |
groupList_.clear(); |
279 |
> |
groupList_.resize(nGroups_); |
280 |
> |
for (int i = 0; i < nGroups_; i++) { |
281 |
> |
int gid = cgLocalToGlobal[i]; |
282 |
> |
for (int j = 0; j < nLocal_; j++) { |
283 |
> |
int aid = AtomLocalToGlobal[j]; |
284 |
> |
if (globalGroupMembership[aid] == gid) { |
285 |
> |
groupList_[i].push_back(j); |
286 |
> |
} |
287 |
> |
} |
288 |
> |
} |
289 |
> |
|
290 |
> |
|
291 |
|
createGtypeCutoffMap(); |
292 |
|
|
293 |
|
} |
295 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
296 |
|
|
297 |
|
RealType tol = 1e-6; |
298 |
+ |
largestRcut_ = 0.0; |
299 |
|
RealType rc; |
300 |
|
int atid; |
301 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
302 |
+ |
|
303 |
|
map<int, RealType> atypeCutoff; |
304 |
|
|
305 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
307 |
|
atid = (*at)->getIdent(); |
308 |
|
if (userChoseCutoff_) |
309 |
|
atypeCutoff[atid] = userCutoff_; |
310 |
< |
else |
310 |
> |
else |
311 |
|
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
312 |
|
} |
313 |
< |
|
313 |
> |
|
314 |
|
vector<RealType> gTypeCutoffs; |
315 |
|
// first we do a single loop over the cutoff groups to find the |
316 |
|
// largest cutoff for any atypes present in this group. |
370 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
371 |
|
groupToGtype.resize(nGroups_); |
372 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
309 |
– |
|
373 |
|
groupCutoff[cg1] = 0.0; |
374 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
312 |
– |
|
375 |
|
for (vector<int>::iterator ia = atomList.begin(); |
376 |
|
ia != atomList.end(); ++ia) { |
377 |
|
int atom1 = (*ia); |
378 |
|
atid = idents[atom1]; |
379 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
379 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
380 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
319 |
– |
} |
381 |
|
} |
382 |
< |
|
382 |
> |
|
383 |
|
bool gTypeFound = false; |
384 |
|
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
385 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
387 |
|
gTypeFound = true; |
388 |
|
} |
389 |
|
} |
390 |
< |
if (!gTypeFound) { |
390 |
> |
if (!gTypeFound) { |
391 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
392 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
393 |
|
} |
396 |
|
|
397 |
|
// Now we find the maximum group cutoff value present in the simulation |
398 |
|
|
399 |
< |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
399 |
> |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
400 |
> |
gTypeCutoffs.end()); |
401 |
|
|
402 |
|
#ifdef IS_MPI |
403 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
403 |
> |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
404 |
> |
MPI::MAX); |
405 |
|
#endif |
406 |
|
|
407 |
|
RealType tradRcut = groupMax; |
431 |
|
|
432 |
|
pair<int,int> key = make_pair(i,j); |
433 |
|
gTypeCutoffMap[key].first = thisRcut; |
371 |
– |
|
434 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
373 |
– |
|
435 |
|
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
375 |
– |
|
436 |
|
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
377 |
– |
|
437 |
|
// sanity check |
438 |
|
|
439 |
|
if (userChoseCutoff_) { |
493 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
494 |
|
|
495 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
496 |
< |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
497 |
< |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
496 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
497 |
> |
0.0); |
498 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
499 |
> |
0.0); |
500 |
|
} |
501 |
|
|
502 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
505 |
|
} |
506 |
|
|
507 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
508 |
< |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
509 |
< |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
508 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
509 |
> |
0.0); |
510 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
511 |
> |
0.0); |
512 |
|
} |
513 |
|
|
514 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
525 |
|
atomColData.skippedCharge.end(), 0.0); |
526 |
|
} |
527 |
|
|
528 |
< |
#else |
529 |
< |
|
528 |
> |
#endif |
529 |
> |
// even in parallel, we need to zero out the local arrays: |
530 |
> |
|
531 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
532 |
|
fill(snap_->atomData.particlePot.begin(), |
533 |
|
snap_->atomData.particlePot.end(), 0.0); |
549 |
|
fill(snap_->atomData.skippedCharge.begin(), |
550 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
551 |
|
} |
488 |
– |
#endif |
552 |
|
|
553 |
|
} |
554 |
|
|
559 |
|
#ifdef IS_MPI |
560 |
|
|
561 |
|
// gather up the atomic positions |
562 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
562 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
563 |
|
atomRowData.position); |
564 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
564 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
565 |
|
atomColData.position); |
566 |
|
|
567 |
|
// gather up the cutoff group positions |
568 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
568 |
> |
|
569 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
570 |
|
cgRowData.position); |
571 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
571 |
> |
|
572 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
573 |
|
cgColData.position); |
574 |
+ |
|
575 |
|
|
576 |
|
// if needed, gather the atomic rotation matrices |
577 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
578 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
578 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
579 |
|
atomRowData.aMat); |
580 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
580 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
581 |
|
atomColData.aMat); |
582 |
|
} |
583 |
|
|
584 |
|
// if needed, gather the atomic eletrostatic frames |
585 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
586 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
586 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
587 |
|
atomRowData.electroFrame); |
588 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
588 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
589 |
|
atomColData.electroFrame); |
590 |
|
} |
591 |
+ |
|
592 |
|
#endif |
593 |
|
} |
594 |
|
|
602 |
|
|
603 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
604 |
|
|
605 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
605 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
606 |
|
snap_->atomData.density); |
607 |
|
|
608 |
|
int n = snap_->atomData.density.size(); |
609 |
|
vector<RealType> rho_tmp(n, 0.0); |
610 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
610 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
611 |
|
for (int i = 0; i < n; i++) |
612 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
613 |
|
} |
623 |
|
storageLayout_ = sman_->getStorageLayout(); |
624 |
|
#ifdef IS_MPI |
625 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
626 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
626 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
627 |
|
atomRowData.functional); |
628 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
628 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
629 |
|
atomColData.functional); |
630 |
|
} |
631 |
|
|
632 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
633 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
633 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
634 |
|
atomRowData.functionalDerivative); |
635 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
635 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
636 |
|
atomColData.functionalDerivative); |
637 |
|
} |
638 |
|
#endif |
646 |
|
int n = snap_->atomData.force.size(); |
647 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
648 |
|
|
649 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
649 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
650 |
|
for (int i = 0; i < n; i++) { |
651 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
652 |
|
frc_tmp[i] = 0.0; |
653 |
|
} |
654 |
|
|
655 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
656 |
< |
for (int i = 0; i < n; i++) |
655 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
656 |
> |
for (int i = 0; i < n; i++) { |
657 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
658 |
< |
|
659 |
< |
|
658 |
> |
} |
659 |
> |
|
660 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
661 |
|
|
662 |
|
int nt = snap_->atomData.torque.size(); |
663 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
664 |
|
|
665 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
665 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
666 |
|
for (int i = 0; i < nt; i++) { |
667 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
668 |
|
trq_tmp[i] = 0.0; |
669 |
|
} |
670 |
|
|
671 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
671 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
672 |
|
for (int i = 0; i < nt; i++) |
673 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
674 |
|
} |
678 |
|
int ns = snap_->atomData.skippedCharge.size(); |
679 |
|
vector<RealType> skch_tmp(ns, 0.0); |
680 |
|
|
681 |
< |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
681 |
> |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
682 |
|
for (int i = 0; i < ns; i++) { |
683 |
< |
snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
683 |
> |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
684 |
|
skch_tmp[i] = 0.0; |
685 |
|
} |
686 |
|
|
687 |
< |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
688 |
< |
for (int i = 0; i < ns; i++) |
687 |
> |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
688 |
> |
for (int i = 0; i < ns; i++) |
689 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
690 |
+ |
|
691 |
|
} |
692 |
|
|
693 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
697 |
|
|
698 |
|
// scatter/gather pot_row into the members of my column |
699 |
|
|
700 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
700 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
701 |
|
|
702 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
703 |
|
pairwisePot += pot_temp[ii]; |
705 |
|
fill(pot_temp.begin(), pot_temp.end(), |
706 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
707 |
|
|
708 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
708 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
709 |
|
|
710 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
711 |
|
pairwisePot += pot_temp[ii]; |
712 |
+ |
|
713 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
714 |
+ |
RealType ploc1 = pairwisePot[ii]; |
715 |
+ |
RealType ploc2 = 0.0; |
716 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
717 |
+ |
pairwisePot[ii] = ploc2; |
718 |
+ |
} |
719 |
+ |
|
720 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
721 |
+ |
RealType ploc1 = embeddingPot[ii]; |
722 |
+ |
RealType ploc2 = 0.0; |
723 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
724 |
+ |
embeddingPot[ii] = ploc2; |
725 |
+ |
} |
726 |
+ |
|
727 |
|
#endif |
728 |
|
|
729 |
|
} |
836 |
|
*/ |
837 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
838 |
|
int unique_id_1, unique_id_2; |
839 |
< |
|
839 |
> |
|
840 |
|
#ifdef IS_MPI |
841 |
|
// in MPI, we have to look up the unique IDs for each atom |
842 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
843 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
844 |
+ |
#else |
845 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
846 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
847 |
+ |
#endif |
848 |
|
|
762 |
– |
// this situation should only arise in MPI simulations |
849 |
|
if (unique_id_1 == unique_id_2) return true; |
850 |
< |
|
850 |
> |
|
851 |
> |
#ifdef IS_MPI |
852 |
|
// this prevents us from doing the pair on multiple processors |
853 |
|
if (unique_id_1 < unique_id_2) { |
854 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
855 |
|
} else { |
856 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
856 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
857 |
|
} |
858 |
|
#endif |
859 |
+ |
|
860 |
|
return false; |
861 |
|
} |
862 |
|
|
870 |
|
* field) must still be handled for these pairs. |
871 |
|
*/ |
872 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
873 |
< |
int unique_id_2; |
874 |
< |
|
875 |
< |
#ifdef IS_MPI |
788 |
< |
// in MPI, we have to look up the unique IDs for the row atom. |
789 |
< |
unique_id_2 = AtomColToGlobal[atom2]; |
790 |
< |
#else |
791 |
< |
// in the normal loop, the atom numbers are unique |
792 |
< |
unique_id_2 = atom2; |
793 |
< |
#endif |
873 |
> |
|
874 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
875 |
> |
// version, and to use local IDs in the non-MPI version: |
876 |
|
|
877 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
878 |
|
i != excludesForAtom[atom1].end(); ++i) { |
879 |
< |
if ( (*i) == unique_id_2 ) return true; |
879 |
> |
if ( (*i) == atom2 ) return true; |
880 |
|
} |
881 |
|
|
882 |
|
return false; |
906 |
|
idat.excluded = excludeAtomPair(atom1, atom2); |
907 |
|
|
908 |
|
#ifdef IS_MPI |
909 |
+ |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
910 |
+ |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
911 |
+ |
// ff_->getAtomType(identsCol[atom2]) ); |
912 |
|
|
828 |
– |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
829 |
– |
ff_->getAtomType(identsCol[atom2]) ); |
830 |
– |
|
913 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
914 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
915 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
952 |
|
|
953 |
|
#else |
954 |
|
|
955 |
< |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
956 |
< |
ff_->getAtomType(idents[atom2]) ); |
955 |
> |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
956 |
> |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
957 |
> |
// ff_->getAtomType(idents[atom2]) ); |
958 |
|
|
959 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
960 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1092 |
|
// add this cutoff group to the list of groups in this cell; |
1093 |
|
cellListRow_[cellIndex].push_back(i); |
1094 |
|
} |
1012 |
– |
|
1095 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
1096 |
|
rs = cgColData.position[i]; |
1097 |
|
|
1116 |
|
// add this cutoff group to the list of groups in this cell; |
1117 |
|
cellListCol_[cellIndex].push_back(i); |
1118 |
|
} |
1119 |
+ |
|
1120 |
|
#else |
1121 |
|
for (int i = 0; i < nGroups_; i++) { |
1122 |
|
rs = snap_->cgData.position[i]; |
1137 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
1138 |
|
|
1139 |
|
// find single index of this cell: |
1140 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1140 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1141 |
|
|
1142 |
|
// add this cutoff group to the list of groups in this cell; |
1143 |
|
cellList_[cellIndex].push_back(i); |
1144 |
|
} |
1145 |
+ |
|
1146 |
|
#endif |
1147 |
|
|
1148 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1155 |
|
os != cellOffsets_.end(); ++os) { |
1156 |
|
|
1157 |
|
Vector3i m2v = m1v + (*os); |
1158 |
< |
|
1158 |
> |
|
1159 |
> |
|
1160 |
|
if (m2v.x() >= nCells_.x()) { |
1161 |
|
m2v.x() = 0; |
1162 |
|
} else if (m2v.x() < 0) { |
1174 |
|
} else if (m2v.z() < 0) { |
1175 |
|
m2v.z() = nCells_.z() - 1; |
1176 |
|
} |
1177 |
< |
|
1177 |
> |
|
1178 |
|
int m2 = Vlinear (m2v, nCells_); |
1179 |
|
|
1180 |
|
#ifdef IS_MPI |
1183 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1184 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1185 |
|
|
1186 |
< |
// Always do this if we're in different cells or if |
1187 |
< |
// we're in the same cell and the global index of the |
1188 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1189 |
< |
|
1190 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1191 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1192 |
< |
snap_->wrapVector(dr); |
1193 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1194 |
< |
if (dr.lengthSquare() < cuts.third) { |
1110 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1111 |
< |
} |
1112 |
< |
} |
1186 |
> |
// In parallel, we need to visit *all* pairs of row |
1187 |
> |
// & column indicies and will divide labor in the |
1188 |
> |
// force evaluation later. |
1189 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1190 |
> |
snap_->wrapVector(dr); |
1191 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1192 |
> |
if (dr.lengthSquare() < cuts.third) { |
1193 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1194 |
> |
} |
1195 |
|
} |
1196 |
|
} |
1197 |
|
#else |
1116 |
– |
|
1198 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1199 |
|
j1 != cellList_[m1].end(); ++j1) { |
1200 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1201 |
|
j2 != cellList_[m2].end(); ++j2) { |
1202 |
< |
|
1202 |
> |
|
1203 |
|
// Always do this if we're in different cells or if |
1204 |
< |
// we're in the same cell and the global index of the |
1205 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1206 |
< |
|
1207 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1204 |
> |
// we're in the same cell and the global index of |
1205 |
> |
// the j2 cutoff group is greater than or equal to |
1206 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1207 |
> |
// has a "less than" conditional here, but that |
1208 |
> |
// deals with atom-by-atom computation. OpenMD |
1209 |
> |
// allows atoms within a single cutoff group to |
1210 |
> |
// interact with each other. |
1211 |
> |
|
1212 |
> |
|
1213 |
> |
|
1214 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1215 |
> |
|
1216 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1217 |
|
snap_->wrapVector(dr); |
1218 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1231 |
|
// branch to do all cutoff group pairs |
1232 |
|
#ifdef IS_MPI |
1233 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1234 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1234 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1235 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1236 |
|
snap_->wrapVector(dr); |
1237 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1239 |
|
neighborList.push_back(make_pair(j1, j2)); |
1240 |
|
} |
1241 |
|
} |
1242 |
< |
} |
1242 |
> |
} |
1243 |
|
#else |
1244 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1245 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1244 |
> |
// include all groups here. |
1245 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1246 |
> |
// include self group interactions j2 == j1 |
1247 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1248 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1249 |
|
snap_->wrapVector(dr); |
1250 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1251 |
|
if (dr.lengthSquare() < cuts.third) { |
1252 |
|
neighborList.push_back(make_pair(j1, j2)); |
1253 |
|
} |
1254 |
< |
} |
1255 |
< |
} |
1254 |
> |
} |
1255 |
> |
} |
1256 |
|
#endif |
1257 |
|
} |
1258 |
|
|