36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
48 |
|
using namespace std; |
49 |
|
namespace OpenMD { |
50 |
|
|
51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
+ |
|
53 |
+ |
// In a parallel computation, row and colum scans must visit all |
54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
+ |
// are used when the processor can see all pairs) |
56 |
+ |
#ifdef IS_MPI |
57 |
+ |
cellOffsets_.clear(); |
58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
+ |
#endif |
86 |
+ |
} |
87 |
+ |
|
88 |
+ |
|
89 |
|
/** |
90 |
|
* distributeInitialData is essentially a copy of the older fortran |
91 |
|
* SimulationSetup |
92 |
|
*/ |
54 |
– |
|
93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
|
snap_ = sman_->getCurrentSnapshot(); |
95 |
|
storageLayout_ = sman_->getStorageLayout(); |
96 |
|
ff_ = info_->getForceField(); |
97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
< |
|
98 |
> |
|
99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
|
// gather the information for atomtype IDs (atids): |
101 |
|
idents = info_->getIdentArray(); |
109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
< |
|
112 |
> |
|
113 |
> |
if (needVelocities_) |
114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
> |
DataStorage::dslVelocity); |
116 |
> |
else |
117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
> |
|
119 |
|
#ifdef IS_MPI |
120 |
|
|
121 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
121 |
> |
MPI::Intracomm row = rowComm.getComm(); |
122 |
> |
MPI::Intracomm col = colComm.getComm(); |
123 |
|
|
124 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
128 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
124 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 |
|
|
130 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 |
|
|
136 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
139 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 |
|
|
141 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 |
+ |
|
146 |
|
// Modify the data storage objects with the correct layouts and sizes: |
147 |
|
atomRowData.resize(nAtomsInRow_); |
148 |
|
atomRowData.setStorageLayout(storageLayout_); |
151 |
|
cgRowData.resize(nGroupsInRow_); |
152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
|
cgColData.resize(nGroupsInCol_); |
154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
155 |
< |
|
154 |
> |
if (needVelocities_) |
155 |
> |
// we only need column velocities if we need them. |
156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
> |
DataStorage::dslVelocity); |
158 |
> |
else |
159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
> |
|
161 |
|
identsRow.resize(nAtomsInRow_); |
162 |
|
identsCol.resize(nAtomsInCol_); |
163 |
|
|
164 |
< |
AtomCommIntRow->gather(idents, identsRow); |
165 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
164 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
165 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
166 |
|
|
167 |
|
// allocate memory for the parallel objects |
168 |
|
atypesRow.resize(nAtomsInRow_); |
178 |
|
|
179 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
180 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
181 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
182 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
183 |
< |
|
181 |
> |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
182 |
> |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
183 |
> |
|
184 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
185 |
|
cgColToGlobal.resize(nGroupsInCol_); |
186 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
187 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
186 |
> |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
187 |
> |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
188 |
|
|
189 |
|
massFactorsRow.resize(nAtomsInRow_); |
190 |
|
massFactorsCol.resize(nAtomsInCol_); |
191 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
192 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
191 |
> |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
192 |
> |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
193 |
|
|
194 |
|
groupListRow_.clear(); |
195 |
|
groupListRow_.resize(nGroupsInRow_); |
245 |
|
} |
246 |
|
} |
247 |
|
|
248 |
< |
#endif |
197 |
< |
|
198 |
< |
// allocate memory for the parallel objects |
199 |
< |
atypesLocal.resize(nLocal_); |
200 |
< |
|
201 |
< |
for (int i = 0; i < nLocal_; i++) |
202 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 |
< |
|
204 |
< |
groupList_.clear(); |
205 |
< |
groupList_.resize(nGroups_); |
206 |
< |
for (int i = 0; i < nGroups_; i++) { |
207 |
< |
int gid = cgLocalToGlobal[i]; |
208 |
< |
for (int j = 0; j < nLocal_; j++) { |
209 |
< |
int aid = AtomLocalToGlobal[j]; |
210 |
< |
if (globalGroupMembership[aid] == gid) { |
211 |
< |
groupList_[i].push_back(j); |
212 |
< |
} |
213 |
< |
} |
214 |
< |
} |
215 |
< |
|
248 |
> |
#else |
249 |
|
excludesForAtom.clear(); |
250 |
|
excludesForAtom.resize(nLocal_); |
251 |
|
toposForAtom.clear(); |
278 |
|
} |
279 |
|
} |
280 |
|
} |
281 |
< |
|
281 |
> |
#endif |
282 |
> |
|
283 |
> |
// allocate memory for the parallel objects |
284 |
> |
atypesLocal.resize(nLocal_); |
285 |
> |
|
286 |
> |
for (int i = 0; i < nLocal_; i++) |
287 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
288 |
> |
|
289 |
> |
groupList_.clear(); |
290 |
> |
groupList_.resize(nGroups_); |
291 |
> |
for (int i = 0; i < nGroups_; i++) { |
292 |
> |
int gid = cgLocalToGlobal[i]; |
293 |
> |
for (int j = 0; j < nLocal_; j++) { |
294 |
> |
int aid = AtomLocalToGlobal[j]; |
295 |
> |
if (globalGroupMembership[aid] == gid) { |
296 |
> |
groupList_[i].push_back(j); |
297 |
> |
} |
298 |
> |
} |
299 |
> |
} |
300 |
> |
|
301 |
> |
|
302 |
|
createGtypeCutoffMap(); |
303 |
|
|
304 |
|
} |
306 |
|
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
307 |
|
|
308 |
|
RealType tol = 1e-6; |
309 |
+ |
largestRcut_ = 0.0; |
310 |
|
RealType rc; |
311 |
|
int atid; |
312 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
313 |
+ |
|
314 |
|
map<int, RealType> atypeCutoff; |
315 |
|
|
316 |
|
for (set<AtomType*>::iterator at = atypes.begin(); |
318 |
|
atid = (*at)->getIdent(); |
319 |
|
if (userChoseCutoff_) |
320 |
|
atypeCutoff[atid] = userCutoff_; |
321 |
< |
else |
321 |
> |
else |
322 |
|
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
323 |
|
} |
324 |
< |
|
324 |
> |
|
325 |
|
vector<RealType> gTypeCutoffs; |
326 |
|
// first we do a single loop over the cutoff groups to find the |
327 |
|
// largest cutoff for any atypes present in this group. |
381 |
|
vector<RealType> groupCutoff(nGroups_, 0.0); |
382 |
|
groupToGtype.resize(nGroups_); |
383 |
|
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
329 |
– |
|
384 |
|
groupCutoff[cg1] = 0.0; |
385 |
|
vector<int> atomList = getAtomsInGroupRow(cg1); |
332 |
– |
|
386 |
|
for (vector<int>::iterator ia = atomList.begin(); |
387 |
|
ia != atomList.end(); ++ia) { |
388 |
|
int atom1 = (*ia); |
389 |
|
atid = idents[atom1]; |
390 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
390 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
391 |
|
groupCutoff[cg1] = atypeCutoff[atid]; |
339 |
– |
} |
392 |
|
} |
393 |
< |
|
393 |
> |
|
394 |
|
bool gTypeFound = false; |
395 |
|
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
396 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
398 |
|
gTypeFound = true; |
399 |
|
} |
400 |
|
} |
401 |
< |
if (!gTypeFound) { |
401 |
> |
if (!gTypeFound) { |
402 |
|
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
403 |
|
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
404 |
|
} |
442 |
|
|
443 |
|
pair<int,int> key = make_pair(i,j); |
444 |
|
gTypeCutoffMap[key].first = thisRcut; |
393 |
– |
|
445 |
|
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
395 |
– |
|
446 |
|
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
397 |
– |
|
447 |
|
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
399 |
– |
|
448 |
|
// sanity check |
449 |
|
|
450 |
|
if (userChoseCutoff_) { |
461 |
|
} |
462 |
|
} |
463 |
|
|
416 |
– |
|
464 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
465 |
|
int i, j; |
466 |
|
#ifdef IS_MPI |
535 |
|
atomColData.skippedCharge.end(), 0.0); |
536 |
|
} |
537 |
|
|
538 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
539 |
+ |
fill(atomRowData.flucQFrc.begin(), |
540 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
541 |
+ |
fill(atomColData.flucQFrc.begin(), |
542 |
+ |
atomColData.flucQFrc.end(), 0.0); |
543 |
+ |
} |
544 |
+ |
|
545 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
546 |
+ |
fill(atomRowData.electricField.begin(), |
547 |
+ |
atomRowData.electricField.end(), V3Zero); |
548 |
+ |
fill(atomColData.electricField.begin(), |
549 |
+ |
atomColData.electricField.end(), V3Zero); |
550 |
+ |
} |
551 |
+ |
|
552 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
553 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
554 |
+ |
0.0); |
555 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
556 |
+ |
0.0); |
557 |
+ |
} |
558 |
+ |
|
559 |
|
#endif |
560 |
|
// even in parallel, we need to zero out the local arrays: |
561 |
|
|
568 |
|
fill(snap_->atomData.density.begin(), |
569 |
|
snap_->atomData.density.end(), 0.0); |
570 |
|
} |
571 |
+ |
|
572 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
573 |
|
fill(snap_->atomData.functional.begin(), |
574 |
|
snap_->atomData.functional.end(), 0.0); |
575 |
|
} |
576 |
+ |
|
577 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
578 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
579 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
580 |
|
} |
581 |
+ |
|
582 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
583 |
|
fill(snap_->atomData.skippedCharge.begin(), |
584 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
585 |
|
} |
586 |
< |
|
586 |
> |
|
587 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
588 |
> |
fill(snap_->atomData.electricField.begin(), |
589 |
> |
snap_->atomData.electricField.end(), V3Zero); |
590 |
> |
} |
591 |
|
} |
592 |
|
|
593 |
|
|
597 |
|
#ifdef IS_MPI |
598 |
|
|
599 |
|
// gather up the atomic positions |
600 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
600 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
601 |
|
atomRowData.position); |
602 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
602 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
603 |
|
atomColData.position); |
604 |
|
|
605 |
|
// gather up the cutoff group positions |
606 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
606 |
> |
|
607 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
608 |
|
cgRowData.position); |
609 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
609 |
> |
|
610 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
611 |
|
cgColData.position); |
612 |
+ |
|
613 |
+ |
|
614 |
+ |
|
615 |
+ |
if (needVelocities_) { |
616 |
+ |
// gather up the atomic velocities |
617 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
618 |
+ |
atomColData.velocity); |
619 |
+ |
|
620 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
621 |
+ |
cgColData.velocity); |
622 |
+ |
} |
623 |
+ |
|
624 |
|
|
625 |
|
// if needed, gather the atomic rotation matrices |
626 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
627 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
627 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
628 |
|
atomRowData.aMat); |
629 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
629 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
630 |
|
atomColData.aMat); |
631 |
|
} |
632 |
|
|
633 |
|
// if needed, gather the atomic eletrostatic frames |
634 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
635 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
635 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
636 |
|
atomRowData.electroFrame); |
637 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
637 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
638 |
|
atomColData.electroFrame); |
639 |
|
} |
640 |
|
|
641 |
+ |
// if needed, gather the atomic fluctuating charge values |
642 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
643 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
644 |
+ |
atomRowData.flucQPos); |
645 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
646 |
+ |
atomColData.flucQPos); |
647 |
+ |
} |
648 |
+ |
|
649 |
|
#endif |
650 |
|
} |
651 |
|
|
659 |
|
|
660 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
661 |
|
|
662 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
662 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
663 |
|
snap_->atomData.density); |
664 |
|
|
665 |
|
int n = snap_->atomData.density.size(); |
666 |
|
vector<RealType> rho_tmp(n, 0.0); |
667 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
667 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
668 |
|
for (int i = 0; i < n; i++) |
669 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
670 |
|
} |
671 |
+ |
|
672 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
673 |
+ |
|
674 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
675 |
+ |
snap_->atomData.electricField); |
676 |
+ |
|
677 |
+ |
int n = snap_->atomData.electricField.size(); |
678 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
679 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
680 |
+ |
for (int i = 0; i < n; i++) |
681 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
682 |
+ |
} |
683 |
|
#endif |
684 |
|
} |
685 |
|
|
692 |
|
storageLayout_ = sman_->getStorageLayout(); |
693 |
|
#ifdef IS_MPI |
694 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
695 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
695 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
696 |
|
atomRowData.functional); |
697 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
697 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
698 |
|
atomColData.functional); |
699 |
|
} |
700 |
|
|
701 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
702 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
702 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
703 |
|
atomRowData.functionalDerivative); |
704 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
704 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
705 |
|
atomColData.functionalDerivative); |
706 |
|
} |
707 |
|
#endif |
715 |
|
int n = snap_->atomData.force.size(); |
716 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
717 |
|
|
718 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
718 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
719 |
|
for (int i = 0; i < n; i++) { |
720 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
721 |
|
frc_tmp[i] = 0.0; |
722 |
|
} |
723 |
|
|
724 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
725 |
< |
for (int i = 0; i < n; i++) |
724 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
725 |
> |
for (int i = 0; i < n; i++) { |
726 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
727 |
+ |
} |
728 |
|
|
729 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
730 |
|
|
731 |
|
int nt = snap_->atomData.torque.size(); |
732 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
733 |
|
|
734 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
734 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
735 |
|
for (int i = 0; i < nt; i++) { |
736 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
737 |
|
trq_tmp[i] = 0.0; |
738 |
|
} |
739 |
|
|
740 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
740 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
741 |
|
for (int i = 0; i < nt; i++) |
742 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
743 |
|
} |
747 |
|
int ns = snap_->atomData.skippedCharge.size(); |
748 |
|
vector<RealType> skch_tmp(ns, 0.0); |
749 |
|
|
750 |
< |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
750 |
> |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
751 |
|
for (int i = 0; i < ns; i++) { |
752 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
753 |
|
skch_tmp[i] = 0.0; |
754 |
|
} |
755 |
|
|
756 |
< |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
757 |
< |
for (int i = 0; i < ns; i++) |
756 |
> |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
757 |
> |
for (int i = 0; i < ns; i++) |
758 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
759 |
+ |
|
760 |
|
} |
761 |
|
|
762 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
763 |
+ |
|
764 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
765 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
766 |
+ |
|
767 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
768 |
+ |
for (int i = 0; i < nq; i++) { |
769 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
770 |
+ |
fqfrc_tmp[i] = 0.0; |
771 |
+ |
} |
772 |
+ |
|
773 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
774 |
+ |
for (int i = 0; i < nq; i++) |
775 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
776 |
+ |
|
777 |
+ |
} |
778 |
+ |
|
779 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
780 |
|
|
781 |
|
vector<potVec> pot_temp(nLocal_, |
783 |
|
|
784 |
|
// scatter/gather pot_row into the members of my column |
785 |
|
|
786 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
786 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
787 |
|
|
788 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
789 |
|
pairwisePot += pot_temp[ii]; |
790 |
< |
|
790 |
> |
|
791 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
792 |
> |
// This is the pairwise contribution to the particle pot. The |
793 |
> |
// embedding contribution is added in each of the low level |
794 |
> |
// non-bonded routines. In single processor, this is done in |
795 |
> |
// unpackInteractionData, not in collectData. |
796 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
797 |
> |
for (int i = 0; i < nLocal_; i++) { |
798 |
> |
// factor of two is because the total potential terms are divided |
799 |
> |
// by 2 in parallel due to row/ column scatter |
800 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
801 |
> |
} |
802 |
> |
} |
803 |
> |
} |
804 |
> |
|
805 |
|
fill(pot_temp.begin(), pot_temp.end(), |
806 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
807 |
|
|
808 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
808 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
809 |
|
|
810 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
811 |
|
pairwisePot += pot_temp[ii]; |
812 |
+ |
|
813 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
814 |
+ |
// This is the pairwise contribution to the particle pot. The |
815 |
+ |
// embedding contribution is added in each of the low level |
816 |
+ |
// non-bonded routines. In single processor, this is done in |
817 |
+ |
// unpackInteractionData, not in collectData. |
818 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
819 |
+ |
for (int i = 0; i < nLocal_; i++) { |
820 |
+ |
// factor of two is because the total potential terms are divided |
821 |
+ |
// by 2 in parallel due to row/ column scatter |
822 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
823 |
+ |
} |
824 |
+ |
} |
825 |
+ |
} |
826 |
+ |
|
827 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
828 |
+ |
int npp = snap_->atomData.particlePot.size(); |
829 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
830 |
+ |
|
831 |
+ |
// This is the direct or embedding contribution to the particle |
832 |
+ |
// pot. |
833 |
+ |
|
834 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
835 |
+ |
for (int i = 0; i < npp; i++) { |
836 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
837 |
+ |
} |
838 |
+ |
|
839 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
840 |
+ |
|
841 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
842 |
+ |
for (int i = 0; i < npp; i++) { |
843 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
844 |
+ |
} |
845 |
+ |
} |
846 |
+ |
|
847 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
848 |
+ |
RealType ploc1 = pairwisePot[ii]; |
849 |
+ |
RealType ploc2 = 0.0; |
850 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
851 |
+ |
pairwisePot[ii] = ploc2; |
852 |
+ |
} |
853 |
+ |
|
854 |
+ |
// Here be dragons. |
855 |
+ |
MPI::Intracomm col = colComm.getComm(); |
856 |
+ |
|
857 |
+ |
col.Allreduce(MPI::IN_PLACE, |
858 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
859 |
+ |
MPI::REALTYPE, MPI::SUM); |
860 |
+ |
|
861 |
+ |
|
862 |
|
#endif |
863 |
|
|
864 |
|
} |
865 |
|
|
866 |
+ |
/** |
867 |
+ |
* Collects information obtained during the post-pair (and embedding |
868 |
+ |
* functional) loops onto local data structures. |
869 |
+ |
*/ |
870 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
871 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
872 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
873 |
+ |
|
874 |
+ |
#ifdef IS_MPI |
875 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
876 |
+ |
RealType ploc1 = embeddingPot[ii]; |
877 |
+ |
RealType ploc2 = 0.0; |
878 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
879 |
+ |
embeddingPot[ii] = ploc2; |
880 |
+ |
} |
881 |
+ |
#endif |
882 |
+ |
|
883 |
+ |
} |
884 |
+ |
|
885 |
+ |
|
886 |
+ |
|
887 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
888 |
|
#ifdef IS_MPI |
889 |
|
return nAtomsInRow_; |
924 |
|
return d; |
925 |
|
} |
926 |
|
|
927 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
928 |
+ |
#ifdef IS_MPI |
929 |
+ |
return cgColData.velocity[cg2]; |
930 |
+ |
#else |
931 |
+ |
return snap_->cgData.velocity[cg2]; |
932 |
+ |
#endif |
933 |
+ |
} |
934 |
|
|
935 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
936 |
+ |
#ifdef IS_MPI |
937 |
+ |
return atomColData.velocity[atom2]; |
938 |
+ |
#else |
939 |
+ |
return snap_->atomData.velocity[atom2]; |
940 |
+ |
#endif |
941 |
+ |
} |
942 |
+ |
|
943 |
+ |
|
944 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
945 |
|
|
946 |
|
Vector3d d; |
1006 |
|
* We need to exclude some overcounted interactions that result from |
1007 |
|
* the parallel decomposition. |
1008 |
|
*/ |
1009 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1010 |
< |
int unique_id_1, unique_id_2; |
1011 |
< |
|
1009 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1010 |
> |
int unique_id_1, unique_id_2, group1, group2; |
1011 |
> |
|
1012 |
|
#ifdef IS_MPI |
1013 |
|
// in MPI, we have to look up the unique IDs for each atom |
1014 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
1015 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
1016 |
+ |
group1 = cgRowToGlobal[cg1]; |
1017 |
+ |
group2 = cgColToGlobal[cg2]; |
1018 |
+ |
#else |
1019 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
1020 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
1021 |
+ |
group1 = cgLocalToGlobal[cg1]; |
1022 |
+ |
group2 = cgLocalToGlobal[cg2]; |
1023 |
+ |
#endif |
1024 |
|
|
788 |
– |
// this situation should only arise in MPI simulations |
1025 |
|
if (unique_id_1 == unique_id_2) return true; |
1026 |
< |
|
1026 |
> |
|
1027 |
> |
#ifdef IS_MPI |
1028 |
|
// this prevents us from doing the pair on multiple processors |
1029 |
|
if (unique_id_1 < unique_id_2) { |
1030 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1031 |
|
} else { |
1032 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1032 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1033 |
|
} |
1034 |
+ |
#endif |
1035 |
+ |
|
1036 |
+ |
#ifndef IS_MPI |
1037 |
+ |
if (group1 == group2) { |
1038 |
+ |
if (unique_id_1 < unique_id_2) return true; |
1039 |
+ |
} |
1040 |
|
#endif |
1041 |
+ |
|
1042 |
|
return false; |
1043 |
|
} |
1044 |
|
|
1052 |
|
* field) must still be handled for these pairs. |
1053 |
|
*/ |
1054 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1055 |
< |
int unique_id_2; |
1055 |
> |
|
1056 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
1057 |
> |
// version, and to use local IDs in the non-MPI version: |
1058 |
|
|
813 |
– |
#ifdef IS_MPI |
814 |
– |
// in MPI, we have to look up the unique IDs for the row atom. |
815 |
– |
unique_id_2 = AtomColToGlobal[atom2]; |
816 |
– |
#else |
817 |
– |
// in the normal loop, the atom numbers are unique |
818 |
– |
unique_id_2 = atom2; |
819 |
– |
#endif |
820 |
– |
|
1059 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1060 |
|
i != excludesForAtom[atom1].end(); ++i) { |
1061 |
< |
if ( (*i) == unique_id_2 ) return true; |
1061 |
> |
if ( (*i) == atom2 ) return true; |
1062 |
|
} |
1063 |
|
|
1064 |
|
return false; |
1132 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1133 |
|
} |
1134 |
|
|
1135 |
< |
#else |
1135 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1136 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1137 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1138 |
> |
} |
1139 |
|
|
1140 |
+ |
#else |
1141 |
+ |
|
1142 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
900 |
– |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
901 |
– |
// ff_->getAtomType(idents[atom2]) ); |
1143 |
|
|
1144 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
1145 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1180 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1181 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1182 |
|
} |
1183 |
+ |
|
1184 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1185 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1186 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1187 |
+ |
} |
1188 |
+ |
|
1189 |
|
#endif |
1190 |
|
} |
1191 |
|
|
1192 |
|
|
1193 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1194 |
|
#ifdef IS_MPI |
1195 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1196 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1195 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1196 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1197 |
|
|
1198 |
|
atomRowData.force[atom1] += *(idat.f1); |
1199 |
|
atomColData.force[atom2] -= *(idat.f1); |
1200 |
+ |
|
1201 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1202 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1203 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1204 |
+ |
} |
1205 |
+ |
|
1206 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1207 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
1208 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
1209 |
+ |
} |
1210 |
+ |
|
1211 |
|
#else |
1212 |
|
pairwisePot += *(idat.pot); |
1213 |
|
|
1214 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1215 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1216 |
+ |
|
1217 |
+ |
if (idat.doParticlePot) { |
1218 |
+ |
// This is the pairwise contribution to the particle pot. The |
1219 |
+ |
// embedding contribution is added in each of the low level |
1220 |
+ |
// non-bonded routines. In parallel, this calculation is done |
1221 |
+ |
// in collectData, not in unpackInteractionData. |
1222 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1223 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1224 |
+ |
} |
1225 |
+ |
|
1226 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1227 |
+ |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1228 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1229 |
+ |
} |
1230 |
+ |
|
1231 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
1232 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1233 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1234 |
+ |
} |
1235 |
+ |
|
1236 |
|
#endif |
1237 |
|
|
1238 |
|
} |
1314 |
|
// add this cutoff group to the list of groups in this cell; |
1315 |
|
cellListRow_[cellIndex].push_back(i); |
1316 |
|
} |
1039 |
– |
|
1317 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
1318 |
|
rs = cgColData.position[i]; |
1319 |
|
|
1338 |
|
// add this cutoff group to the list of groups in this cell; |
1339 |
|
cellListCol_[cellIndex].push_back(i); |
1340 |
|
} |
1341 |
+ |
|
1342 |
|
#else |
1343 |
|
for (int i = 0; i < nGroups_; i++) { |
1344 |
|
rs = snap_->cgData.position[i]; |
1359 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
1360 |
|
|
1361 |
|
// find single index of this cell: |
1362 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
1362 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1363 |
|
|
1364 |
|
// add this cutoff group to the list of groups in this cell; |
1365 |
|
cellList_[cellIndex].push_back(i); |
1366 |
|
} |
1367 |
+ |
|
1368 |
|
#endif |
1369 |
|
|
1370 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1377 |
|
os != cellOffsets_.end(); ++os) { |
1378 |
|
|
1379 |
|
Vector3i m2v = m1v + (*os); |
1380 |
< |
|
1380 |
> |
|
1381 |
> |
|
1382 |
|
if (m2v.x() >= nCells_.x()) { |
1383 |
|
m2v.x() = 0; |
1384 |
|
} else if (m2v.x() < 0) { |
1396 |
|
} else if (m2v.z() < 0) { |
1397 |
|
m2v.z() = nCells_.z() - 1; |
1398 |
|
} |
1399 |
< |
|
1399 |
> |
|
1400 |
|
int m2 = Vlinear (m2v, nCells_); |
1401 |
|
|
1402 |
|
#ifdef IS_MPI |
1405 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1406 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1407 |
|
|
1408 |
< |
// Always do this if we're in different cells or if |
1409 |
< |
// we're in the same cell and the global index of the |
1410 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1411 |
< |
|
1412 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1413 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1414 |
< |
snap_->wrapVector(dr); |
1415 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1416 |
< |
if (dr.lengthSquare() < cuts.third) { |
1137 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
1138 |
< |
} |
1139 |
< |
} |
1408 |
> |
// In parallel, we need to visit *all* pairs of row |
1409 |
> |
// & column indicies and will divide labor in the |
1410 |
> |
// force evaluation later. |
1411 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1412 |
> |
snap_->wrapVector(dr); |
1413 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1414 |
> |
if (dr.lengthSquare() < cuts.third) { |
1415 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
1416 |
> |
} |
1417 |
|
} |
1418 |
|
} |
1419 |
|
#else |
1143 |
– |
|
1420 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1421 |
|
j1 != cellList_[m1].end(); ++j1) { |
1422 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1423 |
|
j2 != cellList_[m2].end(); ++j2) { |
1424 |
< |
|
1424 |
> |
|
1425 |
|
// Always do this if we're in different cells or if |
1426 |
< |
// we're in the same cell and the global index of the |
1427 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1428 |
< |
|
1429 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1426 |
> |
// we're in the same cell and the global index of |
1427 |
> |
// the j2 cutoff group is greater than or equal to |
1428 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1429 |
> |
// has a "less than" conditional here, but that |
1430 |
> |
// deals with atom-by-atom computation. OpenMD |
1431 |
> |
// allows atoms within a single cutoff group to |
1432 |
> |
// interact with each other. |
1433 |
> |
|
1434 |
> |
|
1435 |
> |
|
1436 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1437 |
> |
|
1438 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1439 |
|
snap_->wrapVector(dr); |
1440 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1453 |
|
// branch to do all cutoff group pairs |
1454 |
|
#ifdef IS_MPI |
1455 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1456 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1456 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1457 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1458 |
|
snap_->wrapVector(dr); |
1459 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1461 |
|
neighborList.push_back(make_pair(j1, j2)); |
1462 |
|
} |
1463 |
|
} |
1464 |
< |
} |
1464 |
> |
} |
1465 |
|
#else |
1466 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1467 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1466 |
> |
// include all groups here. |
1467 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1468 |
> |
// include self group interactions j2 == j1 |
1469 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1470 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1471 |
|
snap_->wrapVector(dr); |
1472 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1473 |
|
if (dr.lengthSquare() < cuts.third) { |
1474 |
|
neighborList.push_back(make_pair(j1, j2)); |
1475 |
|
} |
1476 |
< |
} |
1477 |
< |
} |
1476 |
> |
} |
1477 |
> |
} |
1478 |
|
#endif |
1479 |
|
} |
1480 |
|
|